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ABSTRACT 

The sudden release of a mass of fluid in a channel generates a highly unsteady flow motion, called dam break 
wave. While industrial fluids exhibit sometimes non-Newtonian behaviours, the viscous fluid flow assumption 
remains a useful approximation for simplified analyses. In this study, new solutions of laminar dam break wave 
are proposed for a semi-infinite reservoir based upon the method of characteristics. The solutions yield simple 
explicit expressions of the wave front location, wave front celerity and instantaneous free-surface profiles that 
compare favourably with experimental observations. Both horizontal and sloping channel configurations are 
treated. The simplicity of the equations may allow future extension to more complicated fluid flows. 
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1. INTRODUCTION 

A dam break wave is the result of a sudden release of 
fluid in a channel which may happen in various forms. 
The fluid may be clear-water, sediment-laden waters, 
muds and debris. Related situations include industrial 
applications with liquid concrete, some paints, some 
food liquid products, pasty sewage sludges and 
wastewater treatment residues (e.g. Coussot 1997, 
Tabuteau et al. 2004). In all applications, the surge 
front is a flow singularity characterised by a sudden 
discontinuity in flow depth and velocity. Hydraulic 
researchers conducted numerous studies of turbulent 
dam break wave experimentally (e.g. Schoklitsch 
1917, Escande et al. 1961, Estrade and Martinot-
Lagarde 1964) and analytically (e.g. Whitham 1955, 
Hunt 1982, 1984). A few studies considered laminar 
flow motion (e.g. Hunt 1994, Aguirre-Pe et al. 1995, 
Debiane 2000). Hunt (1994) developed an analytical 
solution for dam break wave down a sloping channel 
based upon a kinematics’ wave approximation. 
Aguirre-Pe et al. (1995) studied both experimentally 

and numerically the flow on a sloping channel. 
Debiane (2000) considered both horizontal and 
sloping channel geometries. Piau (1996) analysed 
theoretically the dam break wave of an ideal fluid 
with yield stress, while Chanson et al. (2004) 
studied experimentally the dam break wave of 
thixotropic fluid down a sloping chute. 

While some industrial fluids exhibit a non-
Newtonian behaviour, the viscous fluid flow 
assumption (i.e. laminar regime) remains a useful 
approximation for simplified analyses. In this study, 
new analytical solutions are developed for laminar 
dam break waves. The results yield simple solutions 
for a semi-infinite reservoir with horizontal and 
sloping channels. The results are compared with 
some experimental data. 

1.1 Fundamental Equations 

For an unsteady open channel flow, the continuity 
and momentum equations yield a system of two 
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differential equations in terms of the depth-average 
velocity and flow depth. For a rectangular prismatic 
channel, the equations may be expressed in 
dimensionless terms as: 

0
d v d

d v
t x x

∂ ∂ ∂
+ + =

∂ ∂ ∂
                                              (1) 

( ) 0
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where d is the dimensionless flow depth (d = D/Do), 
D is the flow depth, Do is the initial reservoir height 
(Fig. 1), t is the dimensionless time ( t T g Do= ),   
T is the time, g is the gravity acceleration, x is the 
dimensionless distance from the dam wall (x = X/Do), 
X is the streamwise co-ordinate, v is the dimensionless 
flow velocity ( v V gDo= ), V is the depth-average 
velocity, So is the bed slope (So = sinθ), θ is the angle 
between the bed and the horizontal with θ > 0 for a 
downward slope, and Sf is the friction slope (e.g. 
Liggett 1994, Montes 1998, Chanson 2004). The 
friction slope is the slope of the total energy line and 
it is defined as: ( )22S f V gDHf = ×  where DH is 

the hydraulic diameter and f is the Darcy-Weisbach 
friction factor. 

Equations (1) and (2) are called the Saint-Venant 
equations. They cannot be solved analytically usually 
because of non-linear terms (e.g. Sf). A mathematical 
technique to solve them is the method of 
characteristics. It yields a characteristic system of 
equations: 

( )2d v c S So fdt
+ = −                                             (3a) 

( )2d v c S So fdt
− = −                                              (3b) 

, along respectively: 

dx v c
dt

= +                     Forward characteristic C1 (4a) 

dx v c
dt

= −                  Backward characteristic C2 (4b) 

where c is the dimensionless celerity of a small 
disturbance (c = C/Co), C is the celerity of a small 
disturbance for an observer travelling with the flow  
( C gD= in rectangular channel) and o oC gD= . 

In the particular case of a frictionless dam break in a 
wide horizontal channel, equations (3) and (4) may 
be solved analytically (Ritter 1892). The 
dimensionless celerity of the dam break wave front 
equals: 

2u =                                                                       (5) 

, where ou U gD=  and U is the wave front 
celerity. The dimensionless free-surface profile of an 
ideal dam break wave is a parabola: 

2 3 ,      1 2x xd
t t
= − − ≤ ≤                                   (6) 

Ritter's solution is sketched in Fig. 1 (Top). 
Experimental observations showed however that 
laminar dam break waves propagate at a much 
slower pace than ideal fluid flow predictions. 
Further the leading edge of the wave has a rounded 
shape. These findings were confirmed by field 
observations of debris flow (e.g. Wan and Wang 
1994, Wang 2002). 

2. LAMINAR DAM BREAK WAVE IN A 
HORIZONTAL CHANNEL 

The dam break flow is analysed as an ideal-fluid 
flow region behind a flow resistance-dominated tip 
zone (Fig. 1). Whitham (1955) introduced this 
approach for turbulent motion. Debiane (2000) used 
a similar model, but his development differs from 
the present simplified solution. The transition 
between the ideal dam break wave profile and the 
wave tip region is located at x = x1 where the 
dimensionless water depth is d = d1 (Fig.  1). 

In the ideal fluid flow region, the basic equations 
yield the simple wave equations: 

( )2 0d v c
dt

+ =                                                      (7a) 

( )2 0d v c
dt

− =                                                      (7b) 

, along forward (Eq. (4a)) and backward (Eq. (4b)) 
characteristics.  

In the wave tip region ( 1 sx x x≤ ≤ ), the flow 
velocity does not vary rapidly: experimental data 
showed that it is approximately the wave front 
celerity (Hunt 1994). Flow resistance is dominant, 
and the acceleration and inertial terms are small. The 
dynamic wave equation (Eq. (2)) may be reduced 
into a diffusive wave equation. For a horizontal 
channel, it yields: 
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                           Wave tip region    (8) 

, assuming a constant dimensionless velocity for 
1 sx x x≤ ≤ . Basically, the slope of the free-surface 

becomes important to counterbalance the flow 
resistance next to the leading edge of the wave. 
Several researchers argued that the flow resistance in 
unsteady dam break wave flows may differ from 
classical steady flow estimates (e.g. Aguirre-Pe et al. 
1995, Debiane 2000). It is assumed therefore that the 
flow resistance satisfies: 

64
Re

f α=                                                                  (9) 

, where α is a correction factor and Re is the flow 
Reynolds number defined in terms of the hydraulic 
diameter DH. For α=1, equation (9) yields the well-
known steady flow result. For a wide channel         
(i.e. 4HD D≈ ), equation (9) may be rewritten in the 
wave tip region as: 

16f
ud
α

=
R

                                                              (10) 

, where 

3
ogDρ

µ
=R                                                           (11) 

is a reservoir flow Reynolds number that is a function 
of fluid properties and initial flow conditions only, 
and ρ and µ are the density and dynamic viscosity of 
the fluid respectively. The diffusive wave equation for 
the wave tip region (Eq. (8)) may be transformed. Its 
integration yields the shape of wave tip region for a 
laminar flow motion: 

( )3
16 ,      s s

ud x x x x xα= − ≤ ≤
R

                         (12) 

, assuming a flow resistance correction coefficient α 
independent of the longitudinal distance x. Equation 
(12) is shown in Fig. 2 for two values of the 
correction coefficient α and compared with some 
experimental data. 

At the transition between ideal fluid and friction-
dominated wave tip region, the free-surface and 
velocity must be continuous. It yields two 
relationships: 

( )
2

1 3
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                    (13a) 
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                                             (13b) 

, where the subscript 1 refers to the flow conditions 
at x = x1 (Fig. 1). 

The conservation of mass must be satisfied. The 
mass of fluid in the wave front region has to equal 
the mass of fluid in the ideal fluid flow profile       
for  x1 ≤ x: 

( )
1 1

22
3

16 2
9

sx t

s
x x

u xx x dx dx
t

α ⎛ ⎞− = −⎜ ⎟
⎝ ⎠∫ ∫R

         (14) 

After substitution, the solution in terms of the 
dimensionless wave front celerity is: 

511
1 2

8

u
t
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⎝ ⎠ =R                                     (15) 

The dimensionless wave front location is: 
63 1 11 1

2 6 2sx u t u
uα

⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

R                        (16) 

, and the entire free-surface profile equation 
satisfies: 
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           (17) 

Equations (15) to (17) yield a complete analytical 
solution of the laminar dam break wave in a 
horizontal channel, while the location of the 
transition between wave tip and ideal flow is given 
by Eq. (13b). Typical longitudinal free-surface 
profiles are shown in Fig. 3 for several flow 
conditions. In Fig. 3b, Eq. (17) is plotted for three 
values of α and compared with experimental data. 
The graph shows that the correction term α has little 
influence on the front shape for α > 5 to 10. 

3. EXTENSION OF THE SOLUTION TO A 
MILD-SLOPE CHANNEL WITH SOME 

INITIAL MOTION 

The solution of the laminar dam break wave on a 
horizontal invert may be extended to a mild-slope 
channel including with some initial flow motion as 
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sketched in Fig. 4. Prior to dam break, the translation 
of both dam and reservoir is assumed frictionless. 
Dam break occurs at t = 0 when the dam wall is 
located at x = 0. After instantaneous wall removal, the 
flow is assumed to be an ideal fluid flow region 
behind a friction dominated wave tip region, while the 
translation of the undisturbed reservoir remains 
frictionless for t > 0. 

In the ideal fluid flow region, equations (3) and (4) 
are applied assuming Sf = 0 (frictionless flow). 
Complete solutions for ideal dam break on sloping 
channel were presented by Peregrine and Williams 
(2001) and Chanson (2005). For a flat slope, the 
initial backward characteristic propagates upstream 
with a dimensionless celerity (1-vo) in first 
approximation, where vo is the dimensionless initial 

reservoir translation velocity ( o o ov V gD= ) and Vo 
is the initial reservoir translation speed (Fig. 4). Using 
the method of characteristics, the ideal fluid flow 
properties satisfy: 

2
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3 2
2 11 ,      1
3 2

o o o

o o o

o o o

xx xd v S t v
t t t
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t t t

xx xv v S t v
t t t

⎛ ⎞= + + − − ≤ ≤⎜ ⎟
⎝ ⎠
⎛ ⎞= + + − − ≤ ≤⎜ ⎟
⎝ ⎠
⎛ ⎞= + + + − ≤ ≤⎜ ⎟
⎝ ⎠

      (18)   

, where So is positive for a downward slope. 

In the wave tip region, the flow properties may be 
estimated using the diffusion wave equation taking 
into account flow resistance and bed slope: 

2
0

8 o
d f u S
x d

∂
+ − =

∂
                  Wave tip region    (19) 

The solution of Eq. (19) gives the shape of the free-
surface profile as: 

11 2 tanh
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         (20) 

Equation (20) is shown in Fig. 5, where it is compared 
with experimental data and Eq. (12). On a mild slope, 
equations (20) and (12) yield almost identical results. 
Indeed, very close to the wave front, a Taylor series 
expansion of Eq. (20) yields Eq. (12) using the first 
two terms of the expansion only. 

3.1 Simplified Solution 

A simplified solution of the free-surface profile may 
be obtained assuming that the free-surface profile in 
the wave tip follows Eq. (12). The conservation of 
mass must be satisfied: 

( )

( )
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              (21) 

The free-surface profile and velocity must be further 
continuous at the transition between the ideal fluid 
region and the friction dominated front region. After 
substitution, the exact solution of the dam break 
wave in terms of the dimensionless wave front 
celerity is: 

51 1 11
2 2 2

8

o ov S t u
t

uα

⎛ ⎞+ + −⎜ ⎟
⎝ ⎠ =

R                      (22) 

The dimensionless wave front location is: 
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, and the location of the transition between ideal and 
friction-dominated regions is given by: 

1
3 1 1
2 2 o ox u v S t t⎛ ⎞= − − −⎜ ⎟

⎝ ⎠
                                   (24) 

Equation (22) provides an explicit relationship 
between the dimensionless wave front celerity and 
dimensionless time. The solution in terms of the 
wave front celerity is non-linear with the 
dimensionless time being present on both sides of 
Eq. (22). Equation (23) yields the dimensionless 
location of the wave front location as a function of 
the dimensionless wave front celerity and 
dimensionless time. Equations (18a), (12) and (24) 
gives the entire dimensionless free-surface profile      
d = F(x/t). 

4. DISCUSSION 

4.1 Comparison with Experimental Data 

The solutions were in qualitative agreement in terms 
of the wave front shape with the experimental data 
of Tinney and Bassett (1961), Aguirre et al. (1995) 
and Debiane (2000), and the analytical solution of 
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Hunt (1994). However further comparison is 
restricted by limited detailed flow measurements in 
viscous flow dam break waves, particularly on 
horizontal channels. Debiane (2000) presented a 
unique data set for laminar dam break wave in 
horizontal and sloping channels. He conducted basic 
experiments in a 3.0 m long, 0.3 m wide channel using 
glucose-syrup solutions of dynamic viscosities 
between 12 to 170 Pa.s. During the early stages of the 
dam break, the dam break wave flow was similar to 
the flow conditions for an infinitely large reservoir 
and only this data set is considered herein for 
comparison: e.g., Figs. 2, 3 and 5. 

Experiments with very viscous solutions may 
experience however some difficulties that were 
discussed by Debiane (Debiane 2000, pp. 161-163). 
Often the gate opening is relatively slow and cannot 
be considered to be an instantaneous dam break. 
Further, for very viscous solutions, some fluid is 
affected by the opening motion. Some fluid attaches 
to the gate while other portions are projected away. 
Debiane observed also sidewall effects for the most 
viscous solutions (µ = 170 Pa.s) including some fluid 
crystallisation next to the walls at the wave front 
(Debiane 2000, p. 163). Overall the outcomes of these 
experimental problems are illustrated in Fig. 6 
presenting a comparison between Debiane's data and 
analytical results in terms of dimensionless wave front 
locations for a laminar dam break motion in 
horizontal channel, an ideal dam break wave (Ritter's 
solution) and a turbulent dam break wave flow 
(Whitham 1955). The data showed systematically 
smaller dam break front celerity than theoretical 
predictions, including Ritter's solution (ideal fluid), 
Whitham's (1955) solution for turbulent flows, and 
theoretical solutions for laminar flows even with a 
flow resistance correction term α spreading over two 
orders of magnitude (Fig. 6). 

4.2 Limitations of the Analytical Solutions 

The present solutions are based upon a series of basic 
approximations. It is assumed that the wave tip region 
is primarily affected by bed friction while the ideal-
fluid flow motion behind is mostly affected by inertial 
effects and the gravity force component. Further the 
development implies a mild bed slope because c = 1 
is assumed on the initial backward characteristic, and 
the backward characteristics are assumed straight 
lines in the ideal fluid flow region. 

A further approximation is some discontinuity of       
d x∂ ∂  and V x∂ ∂  at the transition between the wave 

tip region and the ideal fluid flow region, while the 
dimensionless bed shear stress f is discontinuous at 

both x=x1 and x=xs. Indeed the instantaneous 
distribution of the Darcy friction factor is: 

1

1

116 ,      

0,                         

s
uf x x x

d
f x x

α= ≤ ≤

= <
R                                 (24) 

, and the dimensionless boundary shear stress 
becomes infinite at the wave front (x = xs, d = 0). 

5. CONCLUSIONS 

New analytical solutions of the laminar dam break 
wave are proposed for a semi-infinite reservoir 
based upon the method of characteristics. The 
unsteady flow is analysed as a wave tip region where 
flow resistance is dominant, followed by an ideal-
fluid flow region where inertial effects and gravity 
effects are predominant. The solutions yield simple 
explicit expressions of the wave front location, wave 
front celerity and instantaneous free-surface profiles. 
The results compare well with experimental 
observations, although these are limited and 
sometimes affected by experimental shortcomings. 

The theoretical results yield explicit expressions that 
may be used to validate numerical solutions of the 
method of characteristics applied to the dam break 
wave problem. Dam break wave computations are 
indeed unstable next to the wave tip that is a flow 
singularity with zero water depth. Further the 
simplicity of the equations may allow some 
extension of the method to non-Newtonian fluid 
flows. 

Finally it is acknowledged that the present approach 
is limited to semi-infinite reservoir, rectangular 
channel and quasi-instantaneous dam break. 
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Fig. 1 - Sketch of dam break wave in a horizontal dry channel. 
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Fig. 2 - Wave front shape for a dam break wave in a dry horizontal channel - Comparison between Eq. (12) and 

experimental data (Debiane 2000, R = 4.73, t = 5620, So = 0). 
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(a) Instantaneous dimensionless free-surface profile (Eq. (17)) for R = 10 and α = 1 and 100. 
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(b) Instantaneous free-surface profile for R = 0.671 - Comparison between Debiane's data (t = 114) and         
Eq. (17) (for t = 9.1, α = 1, 10 and 100). 

Fig. 3 - Dimensionless free-surface profile solutions for laminar dam break wave (horizontal channel, zero 
initial motion). 
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Fig. 4 - Sketch of dam break wave in a sloping channel with initial flow motion. 
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Fig. 5 - Wave front shape for a dam break wave in a sloping channel - Comparison between Eq. (20) (Detailed 
solution), Eq. (12) (Simplified solution) and experimental data (Debiane 2000, R = 0.77, t = 298, So = 0.0523). 
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Fig. 6 - Wave front location for a dam break wave in a horizontal channel - Comparison between ideal fluid 
flow calculations (Ritter's solution), turbulent flow calculations (Whitham 1955), laminar flow calculations  
(Eq. (16)) and experimental data (Debiane 2000, R = 4.73, So = 0) 

 


