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ABSTRACT 

Vortex induced vibrations (VIV) are highly nonlinear due to three different frequencies involved in the process; 
fluid force frequency, vortex shedding frequency and oscillation frequency. It is computationally complex to 
solve such a chaotic fluid flow but recent progress in numerical algorithms, turbulence models and computer 
capabilities have made it easier to approach the problem with a nonlinear approach. These developments have 
paved the way to approach the problem with the simple equation of motion of Newton’s law and when coupled 
with URANS, which is a commonly used method in solving problems related to fluid flow, the highly nonlinear 
problem of vortex induced vibrations become solvable. The existing literature computationally can only handle 
flows for ܴ݁ > 10,000 − 12,000 but the numerical methodology adopted in this study furthers this limitation. 
The numerical algorithm is first tried for a stationary cylinder and the boundary layer separation is investigated 
for higher ܴ݁. The generated results are found to be satisfactory to proceed solving for VIV at high ܴ݁. The 
solution strategy is tested in a wide range of Reynolds number with different springs and damping coefficients. 
Satisfactory agreement is found with the experiments for a cylinder in VIV. The shortcomings of the 
computational work and why these limitations arise are tried to be explained using the experimental results and 
the existing mathematical models. 

Keywords: VIV; Flow around cylinder; Reduced velocity; Oscillation frequency; Spring stiffness. 

NOMENCLATURE

A  amplitude 
*A  non-dimensional amplitude 

c  damping,  

lC  lift coefficient 

D  diameter of the cylinder 
F  fluid force 

sf  strouhal frequency 

,n vf  nat. freq. in vacuum,  

,n wf  nat. freq. in still water,  

oscf  oscillation frequency 
*f  non-dimensional frequency 

k  spring stiffnes 
L  length of the cylinder 
m  oscillating mass 

am  added mass 

dm  displaced mass 
*m  mass ratio 

t  time 
t  time step size 

*
vU  reduced velocity in vacuum 

*U  reduced velocity 
y  displacement of the body 
y  vertical velocity of the body 
y  vertical acceleretion of the body 
  damping coefficient,  

v  damping coefficient in vacuum,  

  fluid density 
  phase difference 

 

Abbreviations 

2D two dimensional 
3D three dimensional 
CFD Computational fluid dynamics 
CFL Courant-Friedrich-Lewy 
DOF Degree-of-freedom 
FSI Fluid-structure interaction 
FIM Flow-induced motions 
PTC Passive turbulence control 
Re Reynolds number 
SST Shear stress transport 
TrSL Transition shear layer 
URANS Unsteady Reynolds-averaged Navier-
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Stokes Eqns. 
VIV Vortex-induced vibrations 

VIVACE Vortex-induced vibration for aquatic 
clean energy 

1. INTRODUCTION 

Engineering structures with bluff cross-sections, 
such as cylinders or slender structures and hydrofoils, 
airfoils, may originate alternating or oscillatory lift in 
uniform flows. When these structures are extensible 
or firm but mounted on flexible support, and have one 
or more natural frequencies of vibration in the range 
of frequencies of the oscillatory lift, significant flow-
structure interaction (FSI) phenomena may be 
actuated (Blevins 2001 and Paidoussis et al. 2011). 
FSI are typically damaging phenomena in 
engineering applications. The potential destructive 
forces that can result from the interaction between a 
moving fluid and a structure were stunningly 
displayed in 1940 with the collapse of the Tacoma 
Narrows Bridge. In this manner, it has to be kept 
away from them by design or suppressed using 
excessive damping or appendages. If they are rather 
enhanced, flow-structure interaction may result in 
robust flow-induced motions (FIM) of the body. But 
then, bluff bodies such as circular cross-section 
cylinders may expose many forms of FIM that have 
been studied extensively but are still not well 
understood for suppression or enhancement. In its 
broadest sense, FIM can be divided into five. These 
are vortex-induced vibration (VIV) (Bearman 1984, 
Bernitsas et al. Gabbai and Benaroya 2005, Kumar et 
al. 2008, Sarpkaya 1979, Williamson and Govardhan 
2004), galloping (Richardson et al. 1965, Chang et 
al. 2001), coexistence of VIV and galloping (Kim et 
al. 2013, Park et al. 2013, 2014), buffeting (Blevins 
2001) and gap-flow in multi-body interaction (Assi 
et al. 2006 and 2010, Zdravkovich 1988, 
Zdravkovich and Medeiros 1991). This paper deals 
with only VIV of FIM. 

The fluid separates from the body and an unsteady 
wake is originated as a fluid moves past a bluff body 
such as cylinder. This stimulates vortices to detach 
and shed from both sides of the body and be 
convected downstream by the flow. These shedding 
vortices generate periodic forces on the body.  
Generally, these forces are sufficiently strong to 
initiate the body into oscillatory motion. Such 
behavior is known as vortex-induced vibrations 
(VIV) and an immense number of structures are 
prone to VIV.  

The studies regarding vortex induced vibrations of 
circular cylinders is very wide-ranging, and new 
conceptions are developed ceaselessly by using 
experiments (Klamo et al. 2005, Carberry 2001, 
Raghavan and Bernitsas 2011, Kim and Bernitsas 
2016), field tests (Sumer and Fredsoe 1997), and 
numerical simulations (Williamson and Govardhan 
2004, Juan et al. 2015, Ding et al. 2016, Kinaci et al. 
2016a and b, Steven et al. 2016, Chung 2016, Jiang 
et al. 2016). Vortex-induced vibrations are highly 
nonlinear phenomena. The nonlinearity of the flow 
complicates mathematical models and it is harder to 
obtain results with high accuracy. Most of the 

research in this field involved experimental science 
before common access to high speed computers 
became widespread. On the other hand, the swift 
technological progress in computational field has 
increased the capability of approaching the problem 
computationally in the last two decades. Some 
specific computational studies about latest research 
on VIV are investigated below. 

Ding et.al (2016) investigated FIM of a single, rigid, 
circular cylinder on end-springs for 30,000 < ܴ݁ <110,000 . For harnessing marine hydrokinetic 
energy, passive turbulence control (PTC) in the form 
of roughness strips is applied to enhance FIM and 
raise the efficiency of the converter system named 
VIVACE (Vortex Induced Vibration for Aquatic 
Clean Energy). Numerical simulations are carried out 
by using a solver for two-dimensional Unsteady 
Reynolds-Averaged Navier-Stokes (2D-URANS) 
equations. The results are in partial agreement with 
experiments. Amplitude and frequency responses of 
the cylinder are in satisfactory accordance for all 
branches. In Kinaci et al. (2016a), selective local 
roughness is applied to the surface of a smooth 
circular cylinder to passively control the flow 
kinematics around the cylinder in a steady uniform 
flow. This method of changing the flow is called the 
Passive Turbulence Control (PTC). Application of 
PTC as a step on the cylinder returned satisfactory 
results with CFD in the TrSL3 flow regime. On the 
contrary, CFD results for smooth cylinders agree 
with experiments for lower Reynolds numbers only 
as Park et al. (2014) suggested although a subsequent 
study of Kinaci et al. (2016b) have shown that it is 
also possible to obtain good accordance with 
experimental results at even higher Reynolds 
numbers. Steven et al. (2016) investigated the flow 
around an elastically mounted cylinder using Large-
Eddy Simulation (LES). 1DOF analysis of the 
heaving and torsional motions is carried out under a 
free vibration. Various characteristics of the flow-
field at lock-in are discussed. Consequently, a 
divergence-free synthetic inflow generation 
approach is employed to analyze the effects of the 
free-stream turbulence on the bridge response. 

Two-degree-of-freedom vortex induced vibration 
(VIV) of a low-mass zero-damping circular cylinder 
horizontally placed near a free surface at ܴ݁ =  100 
is numerically studied with an adaptive Cartesian cut-
cell/level-set method in Chung (2016)’s study. The 
results show that the Froude number affects the 
critical normalized submergence depth and possible 
physical mechanisms are proposed. Jiang et al. 
(2016) investigated numerically VIV phenomena 
related to self-excited energy harvesters consisting of 
square cylinders by using the Bhatnagar–Gross–
Krook (BGK) incompressible lattice Boltzmann 
method. The numerical results of the periodical and 
non-periodical oscillations and the frequency content 
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of the longitudinal and lateral forces acting on the 
square cross section harvester are discussed and 
validated by computing the flow around a fixed 
cylinder. The results are compared favorably with the 
results obtained by CFD methods. Juan et al. (2015) 
investigated numerically VIV on a circular cylinder 
with low mass-damping and low Reynolds number as 
basis for applications on dynamics of risers used in 
the offshore oil and gas industry. The results indicate 
the strong effect of the Reynolds number on the 
response amplitude, lift coefficient, and response 
frequency for a low mass-damping parameter. The 
upper branch of the response amplitude curve is only 
received when the Reynolds number varies 
proportionally to reduced velocity. Kinaci et al. 
(2016b) studied the effects of tip-flow on VIV 
experimentally and computationally. Computational 
results for VIV at these relatively high Reynolds 
numbers (up to 1.2 x 105) in the TrSL3 flow regime 
are not satisfactory. Their investigations showed that 
the tip-flow reduces the lift force exerted on the 
cylinder and narrows down the range of 
synchronization. As the Reynolds number increases, 
2D computational simulations become inadequate to 
hold the effects of the tip-flow for a cylinder in VIV. 

Considering the flow around a cylinder, either 
stationary or in VIV, free shear layers are formed 
close to the cylinder. Along the free shear layers, 
there are three phases of transition. The first one is 
the development of transition waves named TrSL1 
(350 − 400 < ܴ݁ < 1,000 − 2,000). The other is 
the formation of transition eddies named TrSL2 
( 1,000 − 2,000 < ܴ݁ < 20,000 − 40,000 ). The 
last one of these phases is the turbulence phase 
named TrSL3 ( 20,000 − 40,000 < ܴ݁ <100,000 − 200,000 ). At the end of TrSL2, the 
finalization of the shortening of eddy formation 
region is accompanied by the disappearance of 
transition eddies in free shear layers. These incidents 
show the beginning of TrSL3. The transition to 
turbulence is reduced to a burst in free shear layers 
around the cylinder. The transition region comes out 
reluctant to progress upstream with increasing Re in 
TrSL3. The quasi-invariable nature of the flow in this 
regime is in sharp contrast to a continuous variation 
of the flow through all other flow regimes. The short 
eddy formation region produces a wide near wake. 
This displaces the free shear layers into the free 
stream and causes the acceleration of stream close to 
this near wake (Zdravkovich 1997).  

Current research in this field is limited to flows that 
are ܴ݁ < 10,000  for a cylinder in VIV and some 
works from the literature were briefly mentioned in 
the following sections. This paper focuses on a 
thorough URANS application of the problem for 
flows that are ܴ݁ > 10,000  for smooth cylinders. 
The mathematical background, the implemented grid 
structure, the boundary conditions, the selection of 
turbulence model and the calculation of time step size 
were explained in detail. Numerical results were 
validated at TrSL2 flow regime first. Then the results 
were extended to cover TrSL3 flow regime for higher 
Re, making comparisons with experiments in a 
circulation channel to assess the suitability of the 
addressed numerical methodology. 

2. MATHEMATICAL MODEL 

The vibration equation of a cylinder attached with 
springs subjected to a fluid flow is given as; 

my cy ky F         (1) 

where ݉ represents the mass of the cylinder and 1/3 
of the spring mass, ܿ represents the total mechanical 
damping and ݇ the spring stiffness. ܨ in equation (1) 
is the fluid force applied on the cylinder due to 
periodic vortex shedding from both sides of the 
cylinder surface. 

The displacement ݕ of the cylinder in time domain 
may be numerically solved at each time step 
discretizing ݕ௧ାଵ. It is given as; 

1 1t t ty y y t         (2) 

where ݕሶ  is the velocity of the cylinder and it is 
numerically represented as; 

1 1t t ty y a t          (3) 

Taking the first and second derivatives of the 
displacement ݕ  to obtain the velocity ݕሶ  and the 
acceleration ݕሷ , one can obtain the following equation 
to calculate the displacement versus time: 

 21
1

t t t
t t t t

F cy ky
y y y t y t

m




         
 

     (4) 

Force ܨ  in equations (1-4) is calculated by the 
URANS approach at each time step. The calculated 
force is imposed on the cylinder to make a vertical 
displacement at that specific time step and this 
movement disturbs the flow in return. So it may be 
said that the computational approach to represent 
VIV involves a two-way fluid structure interaction 
(FSI) problem. The details of the computational 
approach are given in (Kinaci, 2016). 

3. ANALYTICAL APPROACH 

The linear mathematical model allows calculation of 
the lift coefficient exerted on the cylinder by the 
fluid; given the amplitude and the oscillation 
frequency. Algebraic transformation of equation (1): 

c k
m y y y F

m m
    
 
       (5) 

Introducing the damping coefficient ߞ௩  and natural 
frequency ݂,௩  (both in vacuum), the equation 
becomes:  

 2
, ,4 4v n v n vm y f y f y F          (6) 

The force exerted on the cylinder is assumed to be 
sinusoidal in the linear approach. Taking into account 
the phase difference ߶ between the fluid force ܨ and 
the oscillation frequency of the body ݂௦, the force 
exerted on the body by the fluid may be represented 
by: 

21
sin(2

2 l oscF DLU C f t        (7) 
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Fig. 1. Computational domain and its details. 

 
 

Table 1 Boundary conditions of the computational domain 
Boundary Dimensions Boundary condition Moving? Deforming? 

Cylinder ܦ in diameter Wall Yes No 

Inlet 14ܦ in length Velocity Inlet No No 

Outlet 14ܦ in length Pressure Outlet No No 

Top Wall 35ܦ in length Wall No No 

Bottom Wall 35ܦ in length Wall No No 

Non-deforming region 17ܦ ×  Dynamic mesh Yes No ܦ6

Deforming region 
(Whole domain) 

-(Nonde ݂ orming region) 
Static mesh No Yes 

 

 
Assuming that the cylinder moves harmonically 
inside the fluid the displacement may be written as: 

sin(2 )oscy A f t      (8) 

where ܣ  denotes the maximum amplitude in one 
cycle of oscillation. Solution of equation (6) with 
contributions from equations (7) and (8) will return 
two equations with two unknowns, ܥ and ߶: 

3 * * *2

*2

2 (1 )
cos( )l

v

A m f
C

U

 
      (9a) 

3 * * *

*2

4
sin( ) v

l
v

A m f
C

U

 
      (9b) 

With this linear approach, which is extensively given 
in (Khalak and Williamson, 1999), the fluid force 
exerted on the cylinder and the phase difference 
between the oscillation and the fluid force can 
analytically be calculated with inputs provided by 
experiments. In this paper, evaluation of numerical 
results will be made by experiments where the lift 
coefficient on the cylinder is calculated analytically. 

4. NUMERICAL APPROACH AND 
VALIDATION 

The solution strategy implemented in this study along 
with the grid structure and turbulence model is 
briefly explained in this section. There is a validation 

of the numerical approach with an experiment at 
TrSL2 flow regime which is regarded as a benchmark 
in the field of CFD applications in VIV. 

All numerical simulations whose results are 
presented in this study are for 2D flows. 

4.1. Grid Structure 

The computational domain used in this study is 
briefly explained in this section and it is visually 
provided in fig. 1. A relatively old software Gambit 
2.4.6 was used in setting up the grid system in the 
fluid domain which is considered to provide 
flexibility during meshing process. 

The fluid domain consists of a two-dimensional 
rectangular block of dimensions 35ܦ × ܦ14 . The 
center of the cylinder of diameter ܦ is taken as the 
origin. The cylinder is surrounded by a non-
deforming grid region of dimensions 5ܦ ×  with ܦ6
quad elements to reduce the number of elements and 
to obtain higher quality elements close to the cylinder 
boundaries. The same is applied to the wake region 
of dimensions 12ܦ ×  and these two regions with ܦ6
non-deforming elements move together with the 
cylinder inside the deforming grid region. The 
deforming grid region covers the whole fluid domain 
except the two non-deforming grid regions and 
consists of triangular elements. The elements in this 
region are being re-meshed at each time step with 
respect to the cylinder’s motions. The boundary 
conditions of the fluid domain are given in table 1. 
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4.2. Solution Strategy 

The numerical approach implemented in this study 
uses Unsteady RANS (URANS) method, which is 
available in ANSYS Fluent 15.0, to solve the flow 
induced motion of a circular cylinder which is only 
free to move in the vertical direction. A rectangular 
box around the cylinder has an O-type structured grid 
which moves together with the cylinder inside the 
flow as explained in the previous section. Dynamic 
mesh system is implemented in the flow field which 
allows deformation of the unstructured grid system 
outside of the rectangular box surrounding the 
cylinder. There are a total of 12,000 elements in the 
domain initially but this number is prone to changes 
due to deformation of elements. While conducting 
the numerical simulations, it was noticed that at some 
cases, the number of elements reached 50,000 
elements due to remeshing. 

The steady flow around the stationary cylinder at the 
intended Re is solved first to maintain good initial 
values to start the transient flow. In the steady and the 
stationary cylinder case, there are no grid 
deformations so at this stage of the simulation, the 
elements are non-deforming throughout the whole 
fluid domain. This helps decreasing the required time 
for the simulations to converge. Then, a first order 
implicit transient formulation is selected to solve for 
the time-dependent nature of vortex-induced 
vibrations. SIMPLE algorithm is selected for the 
pressure-velocity coupling. Momentum, turbulent 
kinetic energy and specific dissipation rate all use the 
first order upwind scheme. A second order upwind 
scheme is also available but this scheme demands 
greater grid resolution and therefore a larger 
computer memory. It is considered to be practical to 
select the first order upwind scheme. 

The selected dynamic meshing strategy forms the 
core of these types of simulations. An incompatible 
selection might lead to generation of nonphysical 
results. The dynamic mesh system implemented in 
this study works as follows: 

- When the cylinder moves, the elements in the 
deforming grid region are compressed (or 
decompressed depending on their location in the 
domain) first. This stage is called smoothing. 

- If the compression (or the decompression) of the 
elements are greater than a prescribed value, 
there is a risk that these elements might have 
skewness. This would corrupt the generated 
results and therefore they are detected at this 
stage. 

- The detected elements that have the risk to have 
high skewness are divided into two (or 
sometimes more until the skewness is 
eliminated). This stage is called remeshing. 

The time step size selection is based on the CFL 
condition and a minimum of 10 seconds of flow 
simulation is enough to achieve convergence of 
quantitative data like lift, drag, amplitude etc. It 
should be noted that in experiments 10 seconds of 
flow is insufficient to grasp the nature of the flow as 
the usual convention is to take measurements for at 

least 60 seconds. However due to the implicit 
transient formulation, 10 seconds of the flow around 
the cylinder in VIV is not real-time. It is just needed 
to achieve convergence and due to the nature of 
URANS (the details of the turbulent fluctuations are 
not resolved), aspects like amplitude or lift do not 
deviate at each oscillation period. So when the 
numerical simulations implementing RANSE with 
implicit transient formulation reaches convergence, 
the achieved oscillation will continue forever. It is 
important to keep the residuals low at each time step 
to resolve the flow near the boundaries, so iterations 
per time step is selected to be 50. 

A ݇ − ߱ ܵܵܶ  turbulence model is selected to 
introduce turbulent flow characteristics in the 
simulated flow. This turbulence model is considered 
to be the most suitable model for simulating flows 
around bluff bodies (Kinaci, 2016). The details of the 
turbulence model is presented in the next section. 

ܓ .4.3 −  ܂܁܁ Turbulence Model 

The ݇ − ߱ ܵܵܶ model (Menter, 1994) implemented 
in this study can be regarded as an advanced ݇ −  ߝ
turbulence model. It is a hybrid model which also 
makes use of  the standard ݇ − ߱ turbulence model 
by transforming ߝ  into ߱ by substituting ߝ = ݇߱ in 
the vicinity of wall boundaries to better resolve the 
boundary layer. Standard ݇ − ߱ turbulence model is 
prone to producing large turbulence levels at the inlet 
and the outlet; therefore, initial values of ݇  and ߱ 
have to be well specified. To overcome this problem, ݇ − ߱ ܵܵܶ  model switches to the standard ݇ −  ߝ
outside the boundary layer. For further reading on the 
model, please refer to (Menter, 1994) and (Versteeg 
and Malalasekera, 2007). 

By making use of both ݇ − ݇ and ߝ − ߱ turbulence 
models, ݇ − ߱ ܵܵܶ  model serves as a very useful 
option to solve for the adverse pressure gradients that 
a cylinder in VIV is very inclined to have. Due to the 
bluff geometry that the cylinder has, the boundary 
layer is somewhat curved and ݇ − ߝ  model shows 
poor performance in these conditions (Versteeg and 
Malalasekera, 2007). The adverse pressure gradients 
that is expected at the rearside of the cylinder cannot 
be modeled accurately by this model. On the other 
hand, to be able to fully take advantage of the ݇ −߱ ܵܵܶ model, grid resolution in the boundary layer 
region must be increased. Although this increases the 
computational load of the method, it is considered 
that the boundary layer separation on the cylinder 
will better be approximated.  

4.4. Experimental Validation 

Before moving on to present the generated results at 
higher Reynolds numbers (Re), the numerical 
approach is first validated with the experiments of 
Khalak and Williamson (1996) that is widely used as 
a benchmark in evaluating the validity of the 
computational studies. The results presented in 
(1996) are in low Re which covers the TrSL2 regime. 
Although the flow characteristics in this regime are 
inherently different than TrSL3 (which is the target 
flow regime in this study), it provides a good 
understanding of the level of the numerical accuracy 
implemented. 
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The results provided in fig. 2 are generated by 
implementing URANS with ݇ − ߱ ܵܵܶ  turbulence 
model which is considered to be the most suitable 
model for simulating flows around bluff bodies 
(Kinaci, 2016). This model is a combination of ݇ −  ߝ
and ݇ − ߱ turbulence models and makes use of both 
models in appropriate places of the fluid domain. The 
details of the turbulence model was given in previous 
sections. 

 

 
Fig. 2. Numerical results in comparison with 

experiments given in (Khalak and 
Williamson, 1996). 

 

The numerical results generated in this study seem 
compatible with the experimental results of Khalak 
and Williamson (1996). The initial branch starts at ܷ∗ = 4 with a sudden jump in amplitude response at ܷ∗ = 5  both computationally and experimentally. 
The high amplitudes happening in the upper branch 
at 5 < ܷ∗ < 7 are not very well captured with the 
numerical method implemented in this study which 
seems to be the major deficiency in the current 
approach. However; capturing the high amplitudes in 
the upper branch troubled the researchers working in 
this field for some time (Kinaci, 2016) and except a 
few exceptional studies (Wanderley et al., 2008; Wu 
et al., 2014) that partially capture the upper branch 
for some case studies, there is not a significant 
progress. The transition from the upper branch to 
lower branch is intermittent in Khalak and 
Williamson’s experiments but this transition is 
smoother computationally and results in a linear 
decrease in the amplitudes. There is a similar 
behavior in the desynchronization regime 
computationally as the decrease in the amplitude 
response continues linearly while it is sharper 
experimentally. 

Vortex induced vibrations are highly non-linear and 
hard to approach with two-dimensional (2D) 
assumptions due to the chaotic nature of the flow. 
This complexity in the flow increases as the Re of the 
flow increases; therefore at these relatively high Re 
that is covered in this study, the validity of 2D 
numerical solutions decrease. Tip flow, cross flows 
and cellular shedding complicate the flow induced 
motions of the cylinder resulting in low accuracy of 

the 2D simulations. This topic is investigated in detail 
in (Kinaci et al., 2016b) and a numerical 
approximation to approach highly 3D flows with a 
2D flow assumption is presented. 

On the other hand, it is possible to approximate 2D 
flows in labs by extending the cylinder to the extents 
of the circulating channel as much as possible. It is of 
course impossible to fully make 2D experiments in 
labs, as the moving cylinder would be in touch with 
the walls of the lab setup which would disturb the 
flow induced motions. In this study, experimental 
results of a lab setup that approximates 2D flows will 
be used to compare the computational work carried 
out in this study (Lee and Bernitsas, 2011) in the next 
section. The distance between the tip of the cylinder 
and the channel walls is only 2% of the length of the 
cylinder and can be considered as a large end plate 
that enhances 2D flows. 

5. STATIONARY CYLINDER CASE AT 
HIGH REYNOLDS NUMBERS 

A stationary cylinder at a relatively high ܴ݁  is 
investigated in this section as a preliminary study 
before moving on to solve the flow around a cylinder 
in oscillation. In some studies such as (Ding et al., 
2013; Wu et al., 2014; Park et al., 2014), it has been 
suggested that the boundary layer separation on a 
fixed cylinder at ܴ݁ > 10000~12000  (some 
references say ܴ݁ > 20000 ) cannot be predicted 
accurately which results in the failure of simulating 
numerically the smooth cylinders in VIV. Although 
this may partly be correct, it has been shown in this 
section that there is satisfactory accordance with 
experiments until the cylinder experiences drag crisis 
in the critical (near ܴ݁ > 3 ∙ 10ହ ) and the super-
critical (around 3 ∙ 10ହ < ܴ݁ < 10) regions. 

The drag coefficient of a stationary cylinder between 10ସ < Re < 10ହ is given in fig. 3 on the left. The 
experimental results of (Achenbach, 1968) suggest 
nearly a constant value for the drag coefficient at this 
flow regime which is around CD ≅ 1 − 1.05 . The 
results generated computationally in this study 
suggest a monotonic decrease of the drag coefficient 
and they digress from the experimental results as the Re increases. The reason of this digression relies on 
the boundary layer separation point on the cylinder 
which starts diverging from the experiments given in 
fig. 3 on the right. It should be noted here that the 
computationally suggested boundary layer separation 
point on the cylinder is calculated by spotting the first 
reversed flow vector just over the cylinder surface. 

The comparison of the wall shear stress distribution 
along the cylinder is given in fig. 4. Investigation of 
the wall shear stress distribution is a different way of 
assessing the boundary layer separation point but the 
results are in accordance with the separation points 
calculated by the first reversed flow vector. In fig. 4, 
the boundary layer separation point on top of the 
cylinder is given at ߠ = 89 and ߠ = 255 at the 
bottom. Fig. 3 suggests the boundary layer separation 
at ߠ = 96  but this is a mean result of the 
separation. Due to the vortex shedding on the 
cylinder, the boundary layer separation point actually  

U*
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Fig. 3. Comparison of the drag coefficient obtained computationally in the present study and 

Achenbach’s experimental results (Achenbach, 1968) (left). Boundary layer separation point calculated 
computationally in contrast with (Achenbach, 1968) (right). Image taken and reproduced from 

(Sumer and Fredsoe, 1997). 
 

 

moves between 88 < ߠ < 104 so it may be said 
that the wall shear stress distribution given in fig. 4 is 
just taken after the vortex at the bottom of the 
cylinder is shed. The new vortex at the top of the 
cylinder just starts forming at this moment of the 
flow. 

 

 
Fig. 4. Comparison of wall shear stress 
distribution with Achenbach (1968) for ࢋࡾ = . 

 

Figure 4 reveals that there is accordance with the 
experimental results of (Achenbach, 1968) except 
the wake region. The separation points 
experimentally are about ߠ = 75  and ߠ =280  which is ߠ = 89  and ߠ = 255 
computationally and the stress distribution along 
the top and the bottom of the cylinder are in 
accordance. (It should also be noted here that we 
do not know for which specific moment in the flow 
Achenbach (1968) prepared this graph. The 
separation point moves back and forth on the 
cylinder with respect to periodic vortex shedding 
on the cylinder.) However the stress distribution in 
the wake region deviates from the experimental 
results but this is an expected result since it is 

already known that URANS methods are 
insufficient to capture the wake mechanism of the 
cylinder (Sarpkaya, 2004). To better approximate 
the wake mechanism and the vortex structures 
forming in the fluid domain, Sarpkaya (2004) 
suggests more advanced numerical algorithms like 
LES. 

Although the computational results get poorer with ܴ݁ increasing as fig. 3 suggests, it cannot be said 
that the whole flow solution generated numerically 
overshoots the actual flow. To confirm this, a 
stationary cylinder at ܴ݁ = 10  is numerically 
solved and the results are compared with the 
numerical results obtained by (Catalano et al., 
2003) at the same ܴ݁. Catalano et al. (2003) solved 
this flow with RANS, URANS and LES and made 
a comparison of these methods in terms of the 
pressure coefficient distribution on the cylinder 
given in fig. 5 on the left. They have stated that 
RANS fails to capture the pressure distribution on 
the cylinder so they suggest using URANS and 
LES to simulate the flow around a cylinder. The 
computational results of the present study are 
given in fig. 5 on the right and there is a 
satisfactory agreement with (Catalano et al., 2003) 
except 170 < ߠ < 180. 

The streamwise velocity distribution of (Catalano et 
al., 2003) obtained by URANS and LES and by 
URANS in the present study are given in fig. 6. The 
results of (Catalano et al., 2003) suggest a shorter 
vortex length by LES and a longer one by URANS. 
The results of the present study show a similar 
behavior to the computational results generated by 
LES of (Catalano et al., 2003). 

6. RESULTS AND DISCUSSION 

Using the numerical approach whose mathematical 
background is given in previous sections, the 
amplitude and frequency responses of the circular 
cylinder are calculated. The details of the grid 
dimensions and time step size are given in table 2.  
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Fig. 5. Pressure coefficient distribution along the cylinder. Results of Catalano et al. (2003) by several 

computational methods (left). Present study obtained by URANS (right). ࢋࡾ = . 

 

    
Fig. 6. Streamwise velocity distribution. Catalano et al. (2003) by URANS and LES (above). Present 

study by URANS (below). ࢋࡾ = . 
 

 

Table 2 Details of the grid and time step size. 

Property Unit Value 

Cylinder diameter m 0.0889 

First cell length m 0.0028 

First cell thickness m 0.0003 

Time step size s 0.0025 

 

 
Fig. 7. Comparison of experimental (Lee & 

Bernitsas, 2011) and computational results of 
amplitude ratio vs. ࢁ ,∗ࢁ, and ࢋࡾ for  =ૡ /ࡺ and ࢚࢚ࣀ = . . 

The mass ratio considered in this study is ݉∗ =1.565. Amplitude ratios versus current velocity (ܷ), 
reduced velocity and ܴ݁ for constant ݇ and ߞ௧௧  are 
given in fig. 7. The spring stiffness ݇  and the 
harnessed damping ratio ߞ are constant and they 
are 800ܰ/݉  and 0  respectively. The structural 
damping, however, is not equal to zero and it is taken 
as a constant as per (Lee and Bernitsas, 2011). It is 
taken as ߞ௦௧ = 0.02  to be compatible with the 
experiments of (Lee and Bernitsas, 2011). It can be 
seen that three main branches are available in this 
situation. The experimental results reveal that the 
initial branch occurs between 5 < ܷ∗ < 6 while the 
numerical approach predicts earlier excitation of the 
cylinder which happens between 4 < ܷ∗ < 5. The 
range of synchronization is wider computationally 
with a gradual change in the amplitude response 
while the experimental results show that there is a 
sharp increase in the amplitudes in the upper branch 
although the range of synchronization is narrower. 
The high amplitudes occurring in the experiments are 
not captured computationally as there is about 30% 
deficiency in the numerically generated results. This 
result is in accordance with the results obtained at 
lower ܴ݁ in the previous section and is accounted to 
the simplifications in the turbulence models that 
URANS uses. Random behavior of the flow and its 
chaotic character plays an important role in getting 
the high amplitudes in the upper branch but URANS 
averages these random behaviors of the flow; 
restricting the maximum achieved amplitude. On the 
other hand the range of synchronization generated 
computationally and experimentally are compatible.  
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Fig. 8. Computationally generated amplitude response of the cylinder at different flow speeds vs. the 
fluid force. 

 

 

This is accounted to the simplifications in the 
turbulence models that URANS uses. The lower 
branch which happens in the TrSL2 regime at lower ܴ݁ is completely overtaken by the upper branch in 
the experiments. This is explained in detail in 
(Raghavan and Bernitsas, 2011) and is accounted to 
the ܴ݁  effect on VIV. Computational results also 
suggest the nonexistence of the lower branch as there 
is a linear decrease in the generated amplitudes after 

the upper branch. Both the results of the CFD and the 
experiments show that the oscillating cylinder goes 
into de-synchronization with the flow after ܷ∗ > 12.  

The time versus force and displacement at various 
reduced velocities were investigated to understand 
the nature of VIV at different flow speeds and make 
sense of what all these branches identify. Fig. 8 
presents the amplitude response of the cylinder 
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versus the force applied on the cylinder by the fluid 
at; 

- ܷ∗ = 5 which is the end of the initial branch, 
- ܷ∗ = 6 which is the start of the upper branch, 
- ܷ∗ = 8 which is the at the upper branch, 
- ܷ∗ = 10 which is the end of the upper branch, 
- ܷ∗ = 12  and ܷ∗ = 14  which are at the de-

synchronization regime. 

The force generated by the fluid on the cylinder is the 
highest at ܷ∗ = 5 although the achieved amplitude is 
not the highest. This is a typical response of the initial 
branch and at these flow speeds the high fluid force 
starts exciting the cylinder. The fluid force drops at 
the upper branch as can be seen at ܷ∗ = 6 and even 
more at ܷ∗ = 8 but the amplitude is higher compared 
to the initial branch. The fluid force is in 
synchronization with the cylinder oscillation at all 
these reduced velocities; however starting from ܷ∗ =10 , they are not working together anymore. This 
reflects as a slight decrease in the amplitude response 
at ܷ∗ = 10 and the amplitudes continue to decline at ܷ∗ = 12 and ܷ∗ = 14 which can be seen in fig. 7. 
The fluid force and the cylinder is in 
desynchronization at ܷ∗ = 12 and ܷ∗ = 14 but the 
reason of lower achieved amplitude compared to ܷ∗ = 10  is due to the higher fluid force which 
absorbs the oscillation of the cylinder. 

Figure 8 partially reveals the increase in the 
frequency response with respect to increasing flow 
speed. The frequency response versus the reduced 
velocity is shown in fig. 9. The frequency ratio curve 
of the present numerical results shows a clear 
increasing trend as the flow velocity increases in the 
range 30000 <  ܴ݁ <  114000.The computational 
results follow a similar trend with the experiments 
although they are somewhat higher. 

 

 
Fig. 9. Comparison of experimental (Lee & 

Bernitsas, 2011) and computational results of 
frequency ratio vs. ࢁ ,∗ࢁ, and ࢋࡾ for   = ૡ /ࡺ and ࢚࢚ࣀ = . . 

 

As is apparent in figs. 8 and 9, there is a lock-in 
region between 5 − 6 < ܷ∗ < 12 which is partially 
captured numerically. The lift force provided by the 
fluid works together with the oscillation of the 
cylinder, supporting it to achieve higher amplitudes. 
Outside of this range, the cylinder is not totally in 
synchronization with the lift force and the amplitudes 
are limited. This phase difference between the 
oscillation and the lift force marks the boundaries of 
the branches in VIV which is extensively 
investigated in (Govardhan and Williamson, 2000). 

 

 
Fig. 10. Computationally generated amplitude 
ratios for ࢚࢚ࣀ = .  for various values of . 

 

 
Fig. 11. Computationally generated frequency 
ratios for ࢚࢚ࣀ = .  for various values of . 

 
Figure 10 and fig. 11 reveal the amplitude and 
frequency response of the cylinder in VIV, 
highlighting the effect of spring stiffness. Higher 
spring stiffness results in higher natural frequency in 
still water (please refer to nomenclature for the 
equation). As ݇  or ݂,௪  increases, computational 
results suggest that the excitation (or in other words; 
the initial branch) starts earlier. The range of 
synchronization and the maximum achieved 
amplitude are not affected that much with the change  
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Fig. 12. Experimentally (left) (Lee and Bernitsas, 2011) and numerically (right) generated ∗ vs. ࢁ ,∗ࢁ, 

and ࢋࡾ for  = ૡ /ࡺ and various values of ࢚࢚ࣀ. 
 
 

in the spring stiffness; although experimental results 
in (Lee and Bernitsas, 2011) suggest otherwise. This 
is one of the drawbacks of the computational model 
as some flow characteristics are not well captured 
with the suggested numerical simulation. Higher 
spring stiffness also results in higher frequency of the 
cylinder as presented in the frequency response of the 
cylinder in VIV in fig. 11. 

Figure 12 presents the damping effect on VIV 
experimentally and numerically. The additional 
damping introduced to a cylinder in VIV suppresses 
the motions and restricts the amplitude. Both results 
show a decrease in the amplitude response at all 
reduced velocities. Another effect of damping is that 
it narrows down the range of synchronization. The 
upper branch occurs between 6 < ܷ∗ < 11  for ߞ௧௧ = 0.02  while it is only happening at around ܷ∗ ≈ 8  for ߞ௧௧ = 0.18 . These results are in 
accordance with the linear mathematical theory. Fig. 
13 is reproduced from the book by French (1971) and 
it shows the change in the amplitude response with 
the change in the damping. In that figure, horizontal 
axis is a form of frequency while the vertical axis is 
a form of the amplitude. ܳ is a term related to the 
inverse of the damping and named as “quality”. 
Lower ܳ  means higher damping and therefore, the 
graphs given in fig. 12 and figure 13 are considered 
to be in accordance. For a better explanation on how 
the graph given in fig. 13 is obtained, please refer to 
(French, 1971). 

The frequency response with a change in the 
damping is given in fig. 14. In that figure, it is directly 
noticeable that the computationally derived 
frequencies are higher when compared to the 
experimentally derived results. Other than the 
difference in the digital values between the 
computations and experiments, the general trends of 
the curves agree. Higher damping results in lower 
frequency before mid-upper branch while it is vice 
versa after the mid-upper branch. Experimental 

results suggest that after ܷ∗ < 9 , lower damping 
results in lower frequency while computationally this 
happens after ܷ∗ < 7. 

 

 
Fig. 13. Mathematically derived amplitude 

response showing the effect of damping with a 
linear approach taken from (French, 1971). 

 

The final investigation in this paper is on what the 
computational method misses to show good 
agreement with the experiments. To understand what 
happens, fluid force applied on the cylinder is 
investigated at each ܷ∗ and this is given in fig. 15. 
The numerical results are derived from CFD while 
for the experimental results linear mathematical 
approach, which is presented in Section 3, is used. 
The graph helps understanding why, in fig. 2, the 
initial branch starts earlier computationally when 
compared with the experiments. The lift coefficients 
calculated by CFD make peak earlier when compared 
with the experiments and this results in earlier  
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Fig. 14. Experimentally (left) (Lee and Bernitsas, 2011) and numerically (right) generated ࢌ∗ vs. ࢁ ,∗ࢁ, 

and ࢋࡾ for  = ૡ /ࡺ and various values of ࢚࢚ࣀ. 
 

 

excitation of the cylinder. Another discrepancy is that 
the computationally generated lift coefficients are 
lower at the upper branch which explains why the 
computational results are smaller with respect to the 
experimental results. 

 

 
Fig. 15. Comparison of lift coefficients on the 

cylinder obtained computationally and 
experimentally (via linear mathematical 

approach) from (Lee and Bernitsas, 2011). 
 

7. CONCLUSIONS 

In this paper, an URANS based approach was 
presented to solve for the vortex induced vibrations 
of a circular cylinder. The numerical approach was 
first validated at TrSL2 flow regime of which many 
numerical and experimental results are available in 
the literature. Before extending for the TrSL3 regime, 
a stationary cylinder case at ܴ݁ > 10,000  was 
investigated to evaluate if the solution strategy 
followed in this paper was able to capture the 

boundary layer separation accurately. The results for 
the stationary cylinder was in accordance with the 
experimental and the other computational results that 
were already available in the literature. Then, the 
results were extended for higher Reynolds numbers 
to cover TrSL3 flow regime where the numerical 
results are limited. Many flow characteristics were 
captured with the numerical approach like the initial 
branch, range of synchronization, the 
desynchronization regime and the frequency and the 
amplitude responses of the cylinder. However, some 
other aspects like the high amplitudes occurring at 
the upper branch or the frequencies in the whole flow 
regime were not well calculated. The deficiencies 
and the limitations of the method were tried to be 
explained using the existing experiments in the 
literature or available linear mathematical models to 
set the scope of the suggested approach. These 
shortcomings of the method are expected to be solved 
in future studies with flow visualization tools offered 
by CFD softwares and making comparisons with 
experiments. 
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