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ABSTRACT 

The stability problem of conducting fluid flow in a square duct with perfectly conducting walls is investigated. 
A homogeneous and constant static magnetic field is applied along the vertical direction of the flow. Nonmodal 
linear stability analysis is performed on this problem for the first time and the effect of the imposed magnetic 
field is also taken into account. The amplification and distribution of primary optimal perturbations are obtained 
by solving iteratively the direct and adjoint governing equations with respect of perturbations. Four modes of 
perturbations with different symmetries in the space are investigated. Computational results show that, the 
MHD duct flow is stable at either small or large Hartmann number, but unstable at moderate one. The primary 
optimal perturbations are in the form of streamwise vortices, which are located inside the thin sidewall layers 
parallel to the magnetic field. The size of the vortices is decreased with the growing of Hartmann number Ha, 
meanwhile the amplification of the perturbations is reduced due to the magnetic damping effect. The Hartmann 
layer perpendicular to the magnetic field seems to be irrelevant to the stability of the MHD duct flow. The most 
unstable perturbation is in the form of Mode I, which having co-rotating vortices at opposite sidewalls and the 
vortices tend to enhance each other.  
 
Keywords:  Nonmodal stability analysis; Optimal perturbation; Hartmann layer; Sidewall layer; Conducting 
walls. 

NOMENCLATURE 

B0 magnetic flux density      
B0 magnetic flux density vector 
E kinetic energy of perturbations 
e unit vector 
G energy amplification factor 
Ha Hartmann number 
j  electric current density 
L width of channel       
P pressure of mean flow 
p pressure of perturbations 
Rem magnetic Reynolds number 
Re Reynolds number 
T time instant 
t time zone (forward) 
U streamwise velocity of mean flow 
u velocity vector 
u streamwise velocity of perturbations 
V spanwise velocity of mean flow 
v spanwise velocity of perturbations 
W vertical velocity of mean flow 
w vertical velocity of perturbations 
x streamwise direction 
y spanwise direction  
z vertical direction 

α streamwise wavenumber  
δ thickness of boundary layer  
ζy grid stretching coefficient in y-axis 
ζz grid stretching coefficient in z-axis 
η, θ uniformly distributed grid points in  
ρ density of fluid 
σ electrical conductivity of fluid 
τ time zone (backward) 
υ kinematic viscosity of fluid 
 electric potential  
 
superscript 
n nth time step  
+ complex conjugation 
^ primitive variables 
~ adjoint variables 
 
subscript 
B base flow 
HL Hartmann layer 
max maximum  
opt optimal 
p perturbation 
SL sidewall layer 
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1. INTRODUCTION 

Utilizing magnetic field to control the flow of 
conducting fluid has wide applications in the 
designing of heat exchanger, MHD pump, cooling 
blanket of fusion reactor and in the electromagnetic 
processing of material (Morley ET AL. 2000; Kadid 
ET AL. 2011; Prasad ET AL. 2015). The magnetic 
field has double-side effects on the stability of the 
flow considered, on one hand, the mean flow can be 
modified by the imposed magnetic field in such a 
way as to create jets, shear layers and inflection 
points thus rendering the flow unstable. On the other 
hand, a magnetic field tends to suppress the growth 
of perturbations and make them align with the 
magnetic field (Davidson 2001). Thus, stability and 
transition of MHD flows become complicated and 
difficult to predict (Zikanov ET AL. 2014).  

Here the linear stability of an electrically 
conducting and incompressible MHD flow in a 
square duct with perfectly conducting walls is 
investigated in the presence of a constant and 
homogenous magnetic field. Albeit simple, the 
configuration is an archetype of several 
engineering applications, such as cooling blanket 
of nuclear reactor, MHD pump, MHD generator, 
MHD flowmeter, etc. There are two types of 
boundary layers developed simultaneously at the 
walls in the cross section of the mean flow, one is 
the Hartmann layers (Hartmann and Lazarus 1937) 
perpendicular to the magnetic field, and the other is 
the sidewall layers, also called Shercliff layers 
(Shercliff 1953), parallel to the magnetic field. 
Unfortunately, previous studies on instability and 
transition of MHD flows are almost limited to 
channel rather than duct, i.e., either the stability of 
Hartmann layer or that of sidewall layer is 
investigated for simplicity. The interactions 
between the two types of boundary layer have been 
rarely considered and discussed in detail (Kinet and 
Knaepen 2009). Linear stability of sidewall layers 
with electrically insulating walls has already been 
investigated by Pothérat (2007) with quasi-two-
dimensional approximations and the critical 
Reynolds number Rec was found to be much higher 
than that in experiments (Reed and Picologlou 
1989). Similar mismatch between theoretical 
prediction based on conventional normal mode 
stability theory and experimental result is also 
encountered when the stability of Hartmann layer 
is concerned. Recently, a well-designed experiment 
on annular duct revealed that the critical value was 
around 380Ha (Moresco and Alboussière 2004). 
However, a prediction value around 48250Ha was 
reported in the reference by investigating the 
stability of Hartmann layers in the channel flow 
(Lingwood and Alboussière 1999).  

Recent developments on nonmodal stability theory 
reveal that even all the infinitesimal perturbations 
decay eventually if they are considered with 
conventional normal mode stability theory; some of 
them actually get amplified before decaying (Schmid 
and Henningson 2001). The mean flow can be 
modified dramatically by the amplified perturbations 
thus it becomes unstable, and transition may occur in 

subcritical parameter regime. Based on a reasonable 
hypothesis of bypass transition to turbulence, 
Krasnov ET AL. (2004) performed linear optimal 
nonmodal stability analysis to find the optimal mode 
in the MHD channel flow and ran Direct Numerical 
Simulation (DNS) to observe the transition by 
imposing 3D background noises into the flow field. 
The critical parameter is found to be around 350Ha, 
which was very close to the one 380Ha found in the 
experiment carried out by Moresco and Alboussière 
(2004). 

As is well known, the conductivity of the duct walls 
also play an important role in the stability issue of 
the MHD flows (Priede ET AL. 2010, 2012, 2015). A 
typical example is the Hunt’s flow, which is in a duct 
with two electrically insulating walls perpendicular 
to magnetic field and the other two electrically 
conducting walls align to the field (Hunt 1965).  The 
critical Reynolds number for the Hunt’s flow is only 
91Ha1/2 (Priede ET AL. 2010). This low threshold 
value is related to the jets developed in the sidewall 
layers and the inflection points formed in the core 
region. In the present consideration of a MHD duct 
flow with perfectly conducting walls, weak jets are 
found to persist on the sidewall layers with moderate 
magnetic field thus influence the stability of the flow 
field. Similar work has been carried out by Priede ET 
AL. (2012) with normal mode stability analysis and 
a relationship has been established as Rec ~ 642Ha1/2 

+ 8900Ha-1/2. In the present study, we perform 
nonmodal stability analysis on this problem but 
mainly focus on the transient growth of perturbations 
and the flow structure of the most unstable mode 
(optimal mode) at moderate Reynolds number. This 
work can be viewed as a complementary and 
comparable study to the previous work completed by 
Priede ET AL. (2012), so as to get a better 
understanding of the mechanisms of instability and 
transition in MHD duct flows. 

The paper is organized as follows, the formulation of 
the problem is introduced in Section 2 and the results 
are presented in Section 3, which is followed by a 
conclusion in Section 4.  

2. FORMULATION OF THE PROBLEM 

2.1 Physical Model 

The flow of an incompressible and electrically 
conducting liquid in a square duct driven by a 
constant pressure gradient is investigated in the 
presence of a transverse homogeneous magnetic 
field. The walls of the duct are assumed perfectly 
electrically conducting and the magnetic field is 
aligning along the height of the duct, as shown in Fig. 
1. The Cartesian coordinates are employed and the 
axis x, y, z denotes the streamwise, spanwise and 
cross-flow direction, respectively.  

2.2 Governing Equations 

The problem is governed by the Navier-Stokes 
equations for velocity u and pressure p 

  2
0

1 1
,p

t


 


       


u
u u u j B             (1) 
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0, u                                                                 (2) 

 

 
Fig. 1. Diagram of flow in the duct with vertical 

magnetic field. 
 

where υ is the kinetic viscosity, ρ is the density, j is 
the induced electric current density and B0=B0e, e ≡ 
(0, 0, 1). The electric current density can be obtained 
by the Ohm’ law 

 0 ,   j = u B                                          (3) 

where � is the electric potential and σ is the electrical 
conductivity of the fluid. 

Combing Eq. (3) and the conservation law of electric 
charges, we derive the equation for the electric 
potential  

2
0( ).    u B                                                   (4)                                                                    

The non-dimensional governing equations become  

 

  

2

2

1

,

p
t Re

Ha

Re



     



     

u
u u u

e u e e

  (5)      

0, u                                                  (6)                                                  
2 ( ),    u e                                        (7)                                            

1,   0,y u v w                                            (8)                                           

1,  0,z u v w                                  (9)                                

with the maximum value of laminar base flow U, 
half width of duct L, L/U, ρU2, B0 and LUB0 as 
scales for characteristic velocity, length, time, 
pressure, magnetic field and electric potential, 
respectively. The problem is related to two non-
dimensional parameters: the Reynolds number Re 
= UL/υ and the Hartmann number Ha = 
LB0(σ/ρυ)1/2. 

The boundary condition at the wall for the velocity 
is no slip condition, as for electric potential it is φ = 
0, as shown above in Eq. (8) and Eq. (9). 

The model is rigorously valid when the magnetic 
Reynolds number Rem=μ0σUL<<1 (Davidson 2001). 

2.3 Nonmodal Stability Analysis 

Following traditional procedure in linear stability 
analysis, the flow field is decomposed into a base 

flow and three-dimensional perturbations,  

   
   
   

( , ) 1, 0, 0 , , ,

, , , ,

, , .

B p

B p

B p

U y z x y z

y z x y z

p P x p x y z

  

 

 

 

u u

                       (10) 

Then the evolution of infinitesimal perturbation is 
considered in forms of decoupled monochromatic 
Fourier modes                                 

 
 
 
 
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 

ˆ ,

ˆ ,

ˆ , exp ,

ˆ ,

ˆ ,

p

p

p

p

p

u y zu

v y zv

w w y z i x

y z

p p y z



 

  
  
  
      
  
  

      

                                     (11) 

where α is the streamwise wavenumber. The growth 
of any infinitesimal three-dimensional perturbation 
is governed by the linearized equations 

2 2
2 2

2 2

ˆ ˆ ˆ ˆi i

ˆ
ˆ ˆ 0,

B B
B

U U
Re U u + w+ v + p

t z y

             u Ha u +
z y y

 



          
    

            

(12) 
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ˆˆ i 0,

B

p
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                                          Ha v
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                  

  
(13) 

2 2
2

2 2

ˆ
ˆi

ˆ 0,

B

p
Re U w+

t z

w =
z y





        
  

     

                        (14) 

ˆ ˆ
ˆi 0,

v w
u+

y z
  

 
 

                                              (15) 

2 2
2

2 2

ˆˆ ˆi 0,
u

v + =
z y y

  
   

      
                     (16) 

with the boundary conditions 

ˆˆ ˆ ˆ1,   0,y u v w                                          (17) 

ˆˆ ˆ ˆ1,   0.z u v w                                          (18) 

In the present study, transient growth and spatial 
structures of perturbations are mainly concerned. To 
qualify the amplification of perturbations at any 
given time T, it is customary to define an energy 
norm, which is typically the kinetic energy of 
perturbation as follows, 

 ˆ ˆ ˆˆ ˆ ˆ( ) d dE t uu vv ww y z,                          (19) 

where the superscript ‘+’ denotes complex 
conjugation. Then the amplification factor G at any 
given time T is defined as E(T)/E(0). This quantity can 
be maximized over all possible initial perturbation 
profiles in [0, T] to give the maximum amplification 

x 

B 

U(y, z) 
z 

y 
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factor at time T among all the perturbations with 
specific wavenumber α and non-dimensional 
parameters Ha and Re. Searching for the most unstable 
mode, usually called the optimal mode, which provides 
the maximum amplification is one aim of our study. 
The optimization is constrained by: (i) the disturbance 
must satisfy the linear governing equation as well as 
the boundary condition during the complete time 
interval [0, T]; (ii) the disturbance energy at time t = 0 
is conveniently set to equal to unity. These constraints 
can be enforced with the help of Lagrangian multipliers 
(Schmid and Henningson 2001), which are the adjoint 
field of primitive variables in Eqs. (12-16). Following 
the standard procedure (Krasnov ET AL. 2010; Dong 
ET AL. 2012, 2015, 2016), the governing equations for 
the adjoint variables are  

2 2
2

2 2

2

i

i 0,

BRe U u u
z y

                      Ha u Re p - Re
y

 




              


  


 


 

        (20) 
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B
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z y

U p
Re u Ha v Re Re

y y
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



              
 

    
 

 
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        (21) 
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Re U w w
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Re u Re

z z

 


              
 

  
 

 


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i 0,
v w

u+
y z

  
 

 
                                                (23) 

2 2
2 2

2 2

2

i

0,

Re Ha v
z y

u
Ha =

y

  
  

     





 


                      (24) 

with the boundary conditions 

1,   0,y u v w                                            (25) 

1,   0,z u v w                                            (26) 

where τ ≡ -t. 

Then the amplification of perturbation G is obtained 
by an iterative scheme, which is illustrated below  

Direct

Adjo int

ˆ ˆ( , ,0) ( , , ),

( , ,0) ( , , ).

u y z   u y z T

u y z u y z T



 

 

                                       (27) 

Any given initial condition is firstly iterated forward 
in time by solving the Eqs. (12-16), followed by a 
backward iteration in time by solving the adjoint 
Eqs. (20-24), in which an initial condition is derived 
from the primitive variables at time T. After one 
integration step, an updated initial condition for the 
next iterative step is available. Convergence is 
reached when the initial condition satisfies an 

appropriately chosen criterion. The maximum 
energy amplification is then obtained by iterating the 
converged initial condition forward in time and 
computing E(T)/E(0). 

2.4 Numerical Method 

A finite-difference second order scheme is employed 
to solve this problem, and a collocated grid system is 
set up with velocity, electric current and pressure, 
electric potential defined at the same grid points 
(Krasnov ET AL. 2010; Dong ET AL. 2015, 2016). 
The grid is orthogonal and stretched in the wall 
normal y and z directions by applying transformation 
based on hyperbolic functions 

tanh( )
,

tanh( )
y

y

y =
 


                                                    (28) 

tanh( )
,

tanh( )
z

z

z =
 


                                                     (29)

 
in which coefficient ζy and ζz vary between 1 and 2, 
so as to maintain high resolution in the thin boundary 
layers. The governing equations are discretized on a 
uniform grid [-1, 1]*[-1, 1] in the variables (η, θ). 
Computations are then carried out on the grid system 
of up to 128 points in each direction.  

A standard explicit projection method is utilized to 
solve the discrete governing equations. First, the 
intermediate velocity field u* is computed 

* 1
13 4

2 ,
2

n n
n n

t


 

 


u u u
R R                            (30) 

where Rn and Rn-1 stand for the sum of nonlinear, 
viscous and Lorenz force terms. The solenoidal 
velocity field un+1 is then obtained through a 
correction step,  

1 * 12
,

3
n nt p    u u                                           (31) 

followed by solving the pressure and electric 
potential fields via the Poisson equation  

2 1 *3
,

2
np

t
  


u                                               (32) 

and 

 2 1 1 .n n     u e                                           (33) 

3 RESULTS AND DISCUSSIONS 

A steady laminar base flow, which is purely 
streamwise and independent of the streamwise 
coordinate, is firstly calculated for the linear stability 
analysis. The base flow is governed by 

2 2
2 B

2 2
1,B B

B

U U
Ha U

y z y

   
       

                  (34) 

2 2
B B
2 2

,BU

y z y

   
  

  
                                         (35) 
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with the corresponding boundary conditions 

B1, 0,By =      U                                            (36) 

B1, 0,Bz =      U                                             (37) 

where UB represents the base flow and �B is the 
corresponding electric potential. 
 

 
(a) 

 
(b) 
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 Asymptotic: U(0,0) ~0.81

 
(c) 
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U
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,z
)
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(d) 
Fig. 2. Mean velocity profile U(y, z) at Re = 5000 

with Ha = 0 (a) and Ha = 50 (b); Basic flow 
velocity profiles U(y, 0) at different Ha (c); Basic 
flow velocity profiles U(0, z) at different Ha (d). 
The arrow indicates the direction of the applied 

magnetic field. 

The velocity profiles of the mean flow at different 
Ha with Re = 5000 are shown in Fig. 2. The classic 
laminar velocity profile in the duct is presented in 
Fig. 2(a) with Re = 5000 and Ha = 0. When a strong 
magnetic field is imposed along the height of the 
duct, as illustrated in Fig. 2(b), the flow in the core 
region becomes flat with Hartmann layers and 
Shercliff layers developed respectively at the walls 
in the cross-flow section. The central velocity profile 
of U(y, z) in the y and z axis is shown in Fig. 2(c) and 
Fig. 2(d). The Hartmann layer becomes thinner with 
the increase of Ha, meanwhile the Shercliff layer 
develops and jet is formed near the wall parallel to 
the magnetic field. The thickness of Hartmann layer 
δHL scales as Ha-1, and that of sidewall layers δSL 
scales as Ha-1/2. The maximum value of the base flow 
velocity being taken as the characteristic velocity is 
due to the intrinsic unstable nature of the inflection 
points appeared in the velocity profile with a 
sufficiently strong magnetic field, as suggested in the 
reference (Priede ET AL. 2010, 2012, 2015). A weak 
jet is formed when Ha is greater than 10, and 
inflection points are found at the edge of the sidewall 
layer. The laminar Hartmann velocity profile is 
reproduced in Fig. 2(d). As Ha is increased, the 
asymptotic limit is reached, and our computational 
results fit well with this value U = 0.81 (Hunt 1965). 

The base duct flow is symmetric with respect to y = 
0 and z = 0 planes, thus perturbations with different 
parities in y and z can be decoupled from each other. 
Four mutually independent modes are  classified as 
(o, o), (o, e), (e, o) and (e, e) according to whether 
the y and z symmetry of w is odd or even, 
respectively, as shown in Table 1. This classification 
corresponds to the symmetries of Mode I-IV used by 
Tatsumi & Yoshimura (1990) and Uhlmann & 
Nagata (2006).  

 
Table 1 The (y, z) parities of disturbances for 

different Modes 

 I II III IV 

û (o, e) (o, o) (e, e) (e, o) 

v̂ (e, e) (e, o) (o, e) (o, o) 

ŵ (o, o) (o, e) (e, o) (e, e) 

 
3.1 Case I: Ha = 0 

The amplification factor G of perturbations in 
different symmetry and the corresponding 
streamwise wavenumber α as a function of time t is 
demonstrated in Fig. 3, with Re = 5000 and Ha = 0. 
Among all the possible perturbations, perturbations 
in the form of Mode I (in long time) and Mode III (in 
short time) are found to be more unstable. The 
optimal curve for G factor at different t obtained by 
Biau ET AL. (2008) is reproduced in Fig. 4 and our 
computational result coincides with it. The strongest 
amplification is contributed by the streamwise 
independent perturbation, i.e., α = 0. The spatial 
structures of perturbations in different modes at the 
corresponding optimal time are illustrated in Fig. 5. 
The optimal perturbation is in the form of four 

U(y, z) 

U(y, z) 
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centrally symmetric rolls at small time t, and two 
symmetric rolls at large time t.  
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Fig. 3. The amplification of perturbation G (a) 
and streamwise wavenumber α (b) as a function 

of time t for different modes at Ha = 0. 
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Fig. 4. The optimal curve of G as a function of t, 

is compared with the results of Biau ET AL. 
(2008). 

 
3.2 Case II: Ha = 10 

In this case, a weak magnetic field is imposed into 
the flow along the height of the duct, and Ha is 
maintained at 10. The orientation of the magnetic 
field results in a base velocity profile consisting of a 
nearly flat core region and thin boundary layers at the 
walls. Compared with the velocity profile of base 
flow at Ha > 10, there is no inflection points in the 
profile, see Fig. 2. The amplification factor G and the 
corresponding wavenumber α are presented in Fig. 6. 
Compared with the non-MHD case, the growth of 
perturbations in different modes is similar. In the 
presence of the magnetic field, the perturbation with 

α ≠ 0 dominates and the optimal α decreases with 
increasing t. The amplification is reduced 
significantly and the global maximum shifts toward 
shorter time.  

 

   
(a) 

 
(b) 

   
(c) 

   
(d) 

Fig. 5. Distributions of streamwise velocity 
component and velocity vectors of optimal 

perturbations with α = 0, Ha = 0 and Re = 5000: 
(a) t = 280, Mode I; (b) t = 180, Mode II; (c) t = 

180, Mode III; (d) t = 280, Mode IV. 
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Fig. 6. The amplification of perturbation G (a) 
and streamwise wavenumber α (b) as a function 

of time t for different modes at Ha = 10. 

 

 
(a) 

 
(b) 

Fig. 7. Distribution of streamwise velocity 
component of optimal perturbations in the form 

of Mode I (a) and Mode III (b) at t = 26 
with Ha = 10. 

 
The velocity profile of streamwise velocity 
component in the form of Mode I and Mode III is 
shown in Fig. 7. The perturbations are found to be 
localized inside the sidewall layers, but irrelevant to 
the Hartmann layers. The structures are 

inhomogeneous in the x-direction with α ≠ 0 and 
form complex patterns, which may be regarded as 
streak-likes structures (Krasnov ET AL. 2010). 

3.3 Case III: Ha = 30 

Compared with the case at Ha = 10, the base flow 
profile has been modified significantly by the 
imposed strong magnetic field and jets are fully 
developed in the sidewall layers at Ha = 30. The 
appearance of inflection points in the base flow 
profile normally indicates that the flow considered is 
unstable and transition may occur in subcritical 
regime. Exponential growth of perturbations in the 
form of Mode I is captured in the calculation and the 
corresponding wavenumber α is around 2.7, as 
shown in Fig. 8. As for perturbations in the same 
symmetry but with other streamwise wavenumber α, 
only transient behavior can be observed and reduced 
amplification is achieved at short time due to strong 
magnetic damping effect at Ha = 30.  
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Fig. 8. The amplification of perturbation G as a 
function of time t for different α in the form of 

Mode I at Ha = 30. 
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Fig. 9. The amplification of perturbation G (a) 

and streamwise wavenumber α (b) as a function 
of time t for different modes at Ha = 30. 
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 (a) 

  
(b) 

 
(c) 

  
(d) 
Fig. 10. Distribution of streamwise velocity 
component of optimal perturbations in the form 
of Mode I at different t with Ha = 30 and α = 2.7. 
(a) t = 6; (b) t = 20; (c) t = 100; (d) t = 200. 

 

The evolution of perturbations in other modes is also 
investigated and the maximum amplification with 
the corresponding optimal wavenumber at any given 
time t are demonstrated in Fig. 9. The behavior of 

exponential growth of perturbations is not captured 
in the calculation for all the parameters considered 
besides the perturbations in the form of Mode I with 
an appropriate wavenumber. As for perturbations in 
the form of Mode II and Mode IV, the behavior is 
similar and the optimal curve is nearly 
distinguishable. For perturbations in the form of 
Mode III, the strongest transient growth is provided 
by the non-streamwise perturbations, but with much 
lower amplification. In particular, the discontinuities 
in the slope of the amplification curve, corresponds 
to the changes of the optimal mode at t = 6 and t = 
20. 

The spatial structures of the perturbations at the 
optimal time t are shown in Fig. 10 and Fig. 11. For 
perturbations in the form of Mode I, the velocity 
profile at t = 6 is quite different from others at larger 
time. The optimal perturbations are mostly 
concentrated inside the Shercliff layers. As for 
optimal perturbations in other modes, they are no 
longer localized inside the sidewall layers, rather 
shift to the edge of the layers, where is connected to 
the flat core region and inflection points appear. The 
optimal perturbation in the form of Mode I at larger 
time t, which grows exponentially, seems to be able 
to extract sufficient energy from the shear layer of 
the jets and get amplified by the mean flow. 
Although its growth rate is extremely low and 
significant amplification can be only achieved at 
rather large time t, the mean flow is considered to be 
unstable according to the conventional definition of 
flow instability. This finding coincides with the 
marginal instability curve found by Priede ET AL. 
(2012) at moderate Reynolds number. 

For perturbations in other forms of symmetry, the 
similar structures at short time and long time are 
observed. The absence of exponential growth of 
perturbations with specific wavenumber may be due 
to the symmetry property of the velocity profile of 
optimal perturbations, and the orientation of the 
magnetic field is also very important to the stability 
of MHD flows. An odd distribution of vortices along 
the magnetic field is more stable than the even 
counterpart. Co-rotating vortices in the same 
direction at the opposite walls enhance the vorticity 
strength of each other, while anti-rotating vortices in 
the opposite direction at the opposite walls weaken 
each other, see Fig. 11. 

As the increase of Ha from 30 to 50, the sidewall 
layer and the Hartmann layer become thinner and 
deeper. The base flow is found to be stable to any 
types of infinitesimal perturbations. The growth 
behavior of perturbations in different modes is 
similar to the case at Ha = 30, except that there is no 
evidence of exponential growth of perturbations in 
the form of Mode I with specific wavenumber, as 
shown in Fig. 12. This behavior is also observed by 
Priede ET AL. (2012), and the parameters are in the 
same range with theirs. With a strong magnetic field 
applied in the duct flow, perturbations in the form of 
Mode I with α ≠ 0 dominate, and grow transiently to 
the first peak at short time subsequently followed by 
the second peak with another optimal wavenumber. 
Similar trend is also observed for the growth of 
perturbations in the form of Mode III. As for 



S. Dong et al. / JAFM, Vol. 10, No.5, pp. 1293-1304, 2017.  
 

1301 

perturbations in the form of Mode II and Mode IV, 
they grow transiently and get amplified at short time 
with a nonzero wavenumber before eventually 
decaying without the appearance of a second peak. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. Distribution of velocity vectors for 
perturbations in different modes at t = 6 with 
Ha = 30 and α = 2.7. (a) Mode I; (b) Mode II; 

(c) Mode III; (d) Mode IV. 
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Fig. 12. The amplification of perturbation G (a) 
and streamwise wavenumber α (b) as a function 
of time t for perturbations in different modes at 

Ha = 50 and Re = 5000. 
 
3.4  Case IV: Ha = 50        
The distributions of optimal perturbations in 
different modes at the corresponding optimal time 
t are shown in Fig. 13. Obviously, some of them 
are concentrated inside the sidewall layer and are 
related to the stability of Shercliff layers. The 
other optimal perturbations are localized close to 
the duct center, where the maximum value of the 
mean flow and inflection points appear. The 
stability issue is then more concerned with the 
features of jets and inflection points. The 
nonexistence of exponential growth of 
perturbations may be due to the strong magnetic 
damping effect, which is also responsible for the 
reduction of amplification. The optimal 
perturbations are in the form of Mode I/III, with 
co-rotating/anti-rotating vortices at the opposite 
walls connected by a flat core flow across the 
vertical mid-plane. These perturbations are more 
unstable than those in the form of Mode II/IV with 
odd distribution of vortices along the magnetic 
field.  

4. CONCLUSION 

The energy amplification of primary perturbations in 
a MHD duct flow and their spatial structures are 
investigated in this study as well as the effects of an 
imposed magnetic field along the height of the duct. 
We focus on the stability of the MHD duct flow at 
moderate Reynolds number Re = 5000, and  change 
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(a) (b)                                  

 

 
(c)                                                                     (d) 

 

 
(e)                        (f) 

Fig. 13. Profiles of streamwise velocity component of optimal perturbations in different modes with 
Ha = 50: (a) Mode I, t = 3; (b) Mode III, t = 3; (c) Mode I, t = 15; (d) Mode II, t = 15 (e) Mode III, 

t = 15; (f) Mode IV, t = 15. 

 
 

the Hartmann number Ha from 0 to 50. The 
evolution of perturbations is calculated by solving 
the linearized governing equations with respect of 
infinitesimal perturbations and their 
corresponding adjoint governing equations by 
employing the Lagrange multipliers. Then the 
problem is solved by an iterative scheme 
combined with standard second order finite 
difference projection method performed on a non-
uniform collocated grid system. 

The mean flow is found to be stable without the 
magnetic field, and perturbations in the form of 
Mode I/III are most unstable. The optimal 
perturbations are streamwise vortices with different 
symmetry. When Ha is increased, the amplification 
is reduced and nonzero streamwise wavenumber 
dominates due to the damping effect of the imposed 

vertical magnetic field. The MHD duct flow is 
stable at either small or large Hartmann number, 
but unstable at moderate one (Ha = 30). 
Exponential growth of perturbations in the form of 
Mode I is captured in the calculation, although the 
growth rate is extremely low.  It is mainly due to 
the inflectional instability of the jet flow developed 
along the sidewall in the mean flow profile. When 
the imposed magnetic field is weak, the base flow 
is nearly flat without formation of jets and 
inflection points, thus it is stable at small Ha. As 
for a strong magnetic field, jet flow develops and 
inflection points can be found in the core region, 
but the growth of perturbations will be highly 
suppressed by the magnetic field via Joule 
dissipation. Only at moderate Hartmann number, 
perturbations in special form may extract energy 
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efficiently from the mean flow against the magnetic 
damping effect. Our results fit well with a recently 
published work using normal stability analysis. The 
optimal wavenumber and spatial distribution of 
perturbations is also in a good agreement with the 
reference work.  

One interesting feature of the MHD flow is the 
exponential distribution of the velocity profile of 
base flow along the magnetic field, which is 
unstable and subcritical. There is another type of 
flow, asymptotic suction boundary layer, which 
has similar base flow profile and instability 
properties (Fransson & Corbett 2003; Levin ET 
AL. 2005), and even spatial flow structures for the 
two types of flow are similar in the transitional and 
turbulent regimes (Dong ET AL. 2016). This 
viewpoint is also supported by the fair agreement 
in the critical local Reynolds numbers (Krasnov 
ET AL. 2004; Levin ET AL. 2005). It would be 
interesting to investigate further these similarities 
in later works.  
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