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ABSTRACT 

In the present paper, the energy gradient method is implemented to study the instability of 2-D laminar 
backward-facing step (BFS) flow under different Reynolds numbers and expansion ratios. For this purpose, 
six different Reynolds numbers (50 ≤ Re ≤ 1000) and two various expansion ratios of 1.9423 and 3 are 
considered. We compared our results of the present study with existing experimental and numerical data and 
good agreement is achieved. To study of fluid flow instability, we evaluated the distributions of velocity, 
vorticity and energy gradient function K. The results of our study show that as the expansion ratio decreases 
the flow becomes more stable. We also found that the origin of instability in the entire flow field is located on 
the separated shear layer nearby the step edge. In addition, we approved that the inflection point on the profile 
of velocity corresponds to the maximum of vorticity resulted to the instability. 

Keywords: Energy gradient; Instability; Backward-facing step flow. 

NOMENCLATURE 

BFS backward-facing step u velocity component in x -direction
D  hydraulic diameter avgU  averaged velocity

E total mechanical energy maxU maximum of inlet velocity 

FDM Finite Difference Method v velocity component in y -direction 

i
h  inlet height X  coordinate of x -direction 

s
h  step height 1X  main recirculation region 

h  half of the inlet height 2X  detachment length on the upper wall 

H channel height at downstream of the step 3X reattachment length on the upper wall 

LH  energy lost Y  coordinate of y -direction 

K dimensionless parameter of energy gradient method 

cK critical value of K  angle of streamline related to x -direction 

IL  inflow length miny  finest grid 

oL  outflow length   dynamic viscosity 

n coordinate in transverse direction  kinematic viscosity
P static pressure of flow field   density 

Re  Reynolds number   stream function 
s coordinate in stream-wise direction   vorticity 

1. INTRODUCTION

Backward-facing step (BFS) flow is a classical 

issue in fundamental fluid mechanics. This flow 
geometry is a significant prototype to investigate of 
flow separation, flow reattachment and recirculation 
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bubbles. The phenomenon of flow separation is 
common in engineering applications, such as the 
water flow past the hydrofoil, the airflow past the 
blades of compressor and turbine, suddenly 
expanding pipes, combustors etc. (Rajasekaran 
2011). The BFS geometry is also an important 
problem for understanding the instability of a 
separated flow.  

In the literature, it is possible to find many 
numerical and experimental studies on the flow 
over a BFS. For example, Armaly et al. (1983) 
presented an experimental study on laminar, 
transitional and turbulent flows over the two-
dimensional BFS in the Reynolds numbers range 
of 70 < Re < 8000. Their experimental results 
show that the separation length at different 
Reynolds numbers specifies different flow 
regimes. Kaiktsis et al. (1991) performed a 
numerical investigation on the three-dimensional 
turbulent flow over a BFS. They indicated that 
Armaly et al. (1983) underestimated the 
recirculation lengths for Reynolds number above 
600. In another study, Kaiktsis et al. (1996) 
claimed that the local convective instabilities 
produce the instability in BFS flow. Fortin et al. 
(1997) investigated the stability of the 2D steady 
incompressible flow over a BFS up to Re=1600. 
Their results show that the flow over a BFS is 
stable close to Reynolds number of 1600. Barkley 
et al. (2002) reported that the flow remains linearly 
stable to two-dimensional perturbations up to a 
Reynolds number of 1050. In addition, their results 
show no evidence of any nearby two-dimensional 
bifurcation up to Re=748. Beaudoin et al. (2004) 
simulated a three dimensional basic flow for 
understanding the origin of instabilities of the flow 
over a BFS. Their results show that, the vicinity of 
the reattached flow and outside the recirculation 
bubble are locations that have the most potential to 
being unstable.  

Recently, several numerical and experimental 
studies in the field of BFS flow over various step 
angles (Bayraktar 2014), control of the 
reattachment length of a transonic 2D BFS flow 
(Bolgar et al. 2015), simulation of a gently curved 
BFS (Asgari and Tadjfar 2017), simulation of 
turbulent flows over a BFS by using a modified 
partially averaged Navier-Stokes model (Huang et 
al. 2017), heat transfer and fluid flow 
characteristics of separation and reattachment flow 
over a BFS (Xie and Xi 2017) and high intensity 
turbulent flow over a BFS (de la Torre et al. 2017) 
are conducted by scholars. For comparison 
between the cited works and to identify the novelty 
of current study, we present a summary of the cited 
works in Table 1. 

As may be seen in Table 1, to our best of 
knowledge, the previous researchers did not 
consider the effect of the expansion ratios at 
different Reynolds numbers on the onset of 
instability in a BFS flow. In addition, the local 
positions in a BFS flow where the instability is 
originated from there, is not specified. Therefore, 
our goal in the present study is to investigate the 

instability (i.e. onset of instability and local 
positions in the BFS flow where the instability is 
originated from there) of 2D flow between 
parallel plates over a BFS under different 
Reynolds numbers and expansion ratios by using 
the energy gradient method (Dou 2004; Dou 
2006). For this purpose, different Reynolds 
numbers ranging from 50 to 1000 and expansion 
ratios of 1.9423 and 3, are considered. The results 
of our investigation show that the onset of 
instability in a two-dimensional BFS flow is 
originated on the separated shear layer in the 
nearby the step edge. 

2. PHYSICAL MODEL AND THE 

NUMERICAL METHOD 

Figure 1 (a) shows the schematic of fully 
developed plane Poiseuille flow between parallel 
plates behind the BFS. The wake behind the BFS 
may be distinguished into six main regions 
namely, (I) separated shear layer, (II) corner eddy, 
(III) backflow zone or recirculation zone, (IV) 
reattachment zone, (V) redeveloping near-wall 
flow and (VI) relaxing outer layer shear 
(Rajasekaran 2011). Fig. 1 (b) also shows the 
schematic of intended computational domain for 
the BFS flow. 

2.1 Governing Equations 

 In the present study, we consider a two-
dimensional steady and laminar flow over a BFS. 
The incompressible and steady vorticity transport 
equation in Cartesian coordinates is: 

2 2

2 2
.u v

x y x y

    


    
        

                        (1) 

Where,  ,  , u , v and are density, dynamic 

viscosity, velocity component in x -direction, 
velocity component in y -direction and the 
vorticity, respectively. We define the stream 
function and the vorticity function as: 

v
x


 

   
(2) 

u
y





                     (3) 

The definition of vorticity is: 

.
v u

x y
 

 
 

                      (4) 

So, combining Eqs. (2-4), we obtain: 

2 2

2 2
.

x y

   
  

 
                       (5) 

By substituting Eq. (2) and Eq. (3) into the vorticity 
transport equation (Eq. (1)), we obtain the 
following expression:  
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Table 1 Summary of the cited works in the field of BFS flows. 

Evaluated criteria Conditions Technique Author 

velocity profile 
detachment & reattachment lengths 

70 < Re < 8000 
ER*= 1.9423 

experimental 
& numerical 

Armaly et al. (1983) 

detachment and reattachment lengths 
100 < Re < 800 

ER= 1.9423 
numerical Kim and Moin (1985) 

stream function and vorticity 
velocity profile 
pressure distribution 

Re =800 
ER= 1.9423 

numerical Gartling (1990) 

stream function and vorticity 
velocity profile 

50 < Re < 800 
ER= 1.9423 

numerical Kaiktsis et al. (1991) 

velocity profile 
stability analysis by using linear stability 
method 

700 < Re < 2500 
ER= 2 

numerical Kaiktsis et al. (1996) 

stability analysis through the study on the 
localization of Hopf bifurcations 

100 < Re < 1500 
ER= 2 

numerical Fortin et al. (1997) 

velocity profile 
detachment & reattachment lengths 

100 < Re < 1000 
ER= 1.9423 

numerical Chiang and Sheu (1999) 

detachment & reattachment lengths 
stability analysis by using linear stability 
calculations 

450 < Re < 1050 
ER= 2 

numerical Barkley et al. (2002) 

detachment & reattachment lengths 
stability analysis through the study the onset
of 2D instability by using generalized 
Rayleigh discriminant 

50 < Re < 500 
ER=1.11 

experimental 
& numerical 

Beaudoin et al. (2004) 

pressure loss 
detachment & reattachment lengths 
velocity profile and streamlines 

0 < Re < 500 
ER=1.9423, 2.5 and 

3 
numerical Biswas et al. (2004) 

stability analysis through the study the onset
of asymptotic instability by using linear 
perturbations 

0 < Re < 500 
ER= 2 

numerical Blackburn et al. (2008) 

velocity profile   
detachment & reattachment lengths 

100 < Re < 3000 
ER=1.9423 

numerical Erturk (2008) 

stream-wise vortex 
detachment & reattachment lengths  

Re=180000 experimental Bolgar et al. (2015) 

velocity profile   
detachment & reattachment lengths 

5×103 <Re< 64×103 
ER=1.28, 2, 3.27 

numerical Li et al. (2017) 

velocity profile   
pressure coefficient and fluctuation 
detachment & reattachment lengths 

Re=13700 numerical Asgari and Tadjfar (2017) 

pressure loss and skin friction 
detachment & reattachment lengths 
velocity profile and streamlines 

Re = 5000 numerical Huang et al. (2017) 

temperature fields and Nusselt number 
detachment & reattachment lengths 
velocity profile and streamlines 

400 < Re < 1000 
ER=1.5, 2 and 2.5 

numerical Xie and Xi (2017) 

velocity profile 15×103<Re<64×103 experimental de la Torre et al. (2017) 
* ER=expansion ratio 

 
 

2 2

2 2
.

y x x y x y

      


      
          

           (6) 

We discretized equations (Eqs. (2 - 6)) by using the 
finite difference method (FDM). In addition, the 
Reynolds number may be defined 

as  . /
avg

Re D U  , where avg
U , D  and   are the 

average velocity at the inlet, hydraulic diameter and 
kinematic viscosity, respectively. In the present 
study, the hydraulic diameter of the inlet channel 
( D ) is equivalent to twice the inflow channel 

height ( 2
i

D h ). 

2.2 Energy Gradient Method 

Dou (2006) proposed the energy gradient method 
based on Newtonian mechanics to investigate of the 
flow instability. This theory has two laws. First law 
of energy gradient state that, if a material system is 
static, when the energy gradient in some direction is 
larger than a critical value, the system will become 
unstable and the phase change or flow would occur. 
Second law of energy gradient is also express that,  
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(a) 

 

 
(b) 

Fig. 1. (a) Flow characteristics behind the BFS, (b) Schematic of the BFS flow, length scale and 
definition of three computational sections. 

 

 

if a material system flows, when the ratio of the 
energy gradient in the transverse direction and that 
in the stream-wise direction is larger than a critical 
value, the system will become unstable (Dou 2004; 
Dou 2006).  

In energy gradient method, to investigate of fluid 
flow stability, Dou et al. (2006) proposed a 
dimensionless parameter K as (Dou 2004) 

.
L

E
nK

H
s







                                  (7) 

Where, 
E

n


  and L
H

s




are representative of 

energy gradient in transverse (or cross-stream) 
direction and energy gradient in stream-wise 
direction, respectively. In addition, 

2
0.5E P U  is the total mechanical energy per 

unit volumetric fluid ( P is static pressure of flow 

field and U is total velocity ( 2 2
U u v  )). 

Moreover, L
H , n  and s  are energy lost, cross-

stream direction of the streamline and stream-wise 
direction along the streamline, respectively. Based 
on energy gradient method (Dou 2004; Dou 2006), 
energy gradient in transverse direction amplitude 
the instability, whereas, energy gradient in stream-
wise direction with role of viscosity friction decay 
the flow instability. Therefore, based on the energy 
gradient method (Dou 2004; Dou 2006), where K is 

greater than the critical parameter
c

K , fluid flow 

becomes unstable.  

In the case of BFS flow, Eq. (7) may be written as 

(Dou 2008): 
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Fig. 2. Geometrical schematic of stream-wise and 
cross-stream coordinates system. 

 
Substituting Eq. (9) into the Eq. (8), we obtain 

Figure 2 shows geometrical schematic of stream-
wise and normal coordinates system. According to 
Fig. 2, we obtain the following expressions (Dou 
and Ben 2015): 
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the following expression for dimensionless 
parameter K  as (Dou and Ben 2015): 

2 2 2 2

2 2 2 2

2 2 2 2
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2 2 2 2
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 
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      

              
                    (10) 

In order to investigate of flow instability in a BFS 
flow, we implement the following three-steps under 
considered Reynolds numbers and expansion ratios: 

Step1. Compute of velocity component, stream 
function and vorticity by using Eqs. (2-6). 

Step2. Calculate of dimensionless parameter of 
energy gradient method ( K ) by using Eq.(10) 
throughout of our computational domain.  

Step3. Plot the vorticity and K contours together 
with velocity, vorticity and K profiles and detect of 
critical local positions in the BFS domain with 
highest value of dimensionless parameter of energy 

gradient method (
max

K ). 

2.3 Geometric Model and Boundary 
Conditions 

Figure 1(b) shows the schematic of intended 
computational domain for the BFS flow and it is in 
accordance with the experimental setup of Armaly 
et al. (1983). As may be seen in Fig.1 (b), the 
coordinate system is located in the down corner and 
its axes are parallel to the channel sides.  

The expansion ratio is defined by /
i

H h , which is 

the ratio of channel height at downstream of the 

step ( H ) per height of the inflow channel (
i

h ). In 

the current study, we consider two expansion ratios 
of 1.9423 and 3. All of the geometrical length scales 
in the computational domain are dimensionless 

according to the channel height (
i

h ). We set the 

large enough channel length at the upstream and 
downstream for minimizing the impressions of the 
outflow boundary on the upstream zones (Biswas et 
al. 2004; Kosma 2005). Channel length at the 

upstream and downstream are equal to 5
I i

L h  

and 30
O i

L h , respectively. Moreover, Fig. 1 (b) 

presents the length of the main recirculation region 

(
1

X ) and the detachment and reattachment 

locations of the first recirculation region on the 

upper wall (i.e.
2

X and
3

X ). 

We consider a standard parabolic velocity 

profile
 

max 2
4( ) i

i

y h y
u U

h
y


  with maximum 

inflow velocity of 
max

1.5
avg

U U and an average 

inflow velocity of 1
avg

U   at upstream of the 

backward facing step flow. We use zero diffusion 
flux and no-slip fixed wall boundary conditions for 
the outlet and on the walls of our computational 
domain, respectively (Li et al. 2017). 

2.4 Mesh Sensitivity Analysis and 
Validation Study 

We conduct an extensive mesh sensitivity analysis 
to investigate that our computed results are grid 
independent. For this purpose, in the present 
section, grid independency tests for Re=100, 
Re=800 and Re=1000 at expansion ratio of 

/ 1.9423
i

H h  are presented. For mesh sensitivity 

analysis, seven different structured meshes from 

finest grid (
min

0.002y  ) to coarsest grid 

(
min

0.15y  ) are tested. We select the length of 

the main recirculation region per step height 

(
1

/
s

X h ) to validate our results with Armaly et al. 

experiment data (Armaly et al. 1983). Fig. 3 shows 
that our results are in good agreement with the 
result of Armaly et al. experimental data (Armaly et 
al. 1983).  
 

 
Fig. 3. Grid independence tests based on the 

length of the main recirculation region 1 sX / h  

for expansion ratio of 
i

H / h = 1.9423 and 

Reynolds numbers 100, 800 and 1000. 
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Table 2 Detachment and reattachment lengths of the flow under different Reynolds numbers ranging 

from 50 to 1000 at 
i

H / h = 1.9423  

Reynolds number 
Case 

1000 800 500 300 100 50 

14.521 13.120 8.422 6.125 2.765 1.750 present study 
X1 

13.267 11.983 9.437 6.659 2.878 - Erturk (2008) 

9.281 8.115 7.538 0 0 0 present study 
X2 

10.592 9.646 8.314 0 0 - Erturk (2008) 

21.680 18.250 11.020 0 0 0 present study 
X3 

24.275 19.992 12.504 0 0 - Erturk (2008) 

 

 
Table 3 Detachment and reattachment lengths of the flow under different Reynolds numbers ranging 

from 50 to 1000 at
i

H / h = 3  

Reynolds number 
Case 

1000 800 500 300 100 50 

14.355 13.825 10.810 9.685 6.365 3.865 present study 
X1 

- - - 10.744 6.277 3.766 Biswas et al. (2004) 

9.929 8.780 8.250 7.325 0 0 present study X2 

22.650 19.125 14.125 16.625 0 0 present study X3 

 
 

According to Fig. 3, 
min

0.01y  is selected due to 

convergence of our results after this grid density. 
Based on this selected grid, we achieved relative 
error between our numerical results with 
experiment data (Armaly et al. 1983) equal 
to 3.8% , 5.3%  and 7.1%  in respective for Re=100, 
Re=800 and Re=1000. 

3. RESULTS AND DISCUSSION 

Numerical results of detachment and 
reattachment lengths of the flow under different 
Reynolds numbers ranging from 50 to 1000 and 

expansion ratios at / 1.9423
i

H h  and 3 are 

reported in Tables 2 and 3, respectively. To 
measure the detachment and reattachment 
lengths, we shift the coordinate system to lower 
corner of the step. In addition, in Tables 2 and 3, 
we compare our results with existing numerical 
data (Biswas et al. 2004; Erturk 2008). Based on 
Table 2, the comparison of our results with the 
Erturk (2008) data shows that there is a 
reasonable agreement for the detachment and the 
reattachment lengths. Table 3 shows that the 

main recirculation region (
1

X ) is in good 

agreement with the result of Biswas et al. (2004) 
numerical data. By comparing Table 2 with Table 
3, we also find that the greater expansion ratios 
lead to larger detachment and reattachment 
lengths. 

Figure 4 displays the distribution of vorticity under 

different Reynolds numbers ranging from 50 to 
1000 and expansion ratios of 

/ 1.9423
i

H h  and / 3
i

H h  . As shown in Fig. 4, 

the formation of separated shear layer and eddies in 
the backflow zone occur as soon as flow separation 
takes place at the step edge of the BFS flow. 
Moreover, Fig. 4 shows that the opposite wall 
boundary layer as defined in  Fig. 1(a) is visible for 
Reynolds number above 300 at both expansion 

ratios of / 1.9423
i

H h  and / 3
i

H h  . Fig. 4 also 

shows that the increase of expansion ratio leads to 
growth in the size of separated shear layer. 

Figure 5 presents the contour of dimensionless 
parameter K (the parameter that indicates the onset 
of instability) under different Reynolds number 
ranging from 50 to 1000 and both expansion ratios 
of 1.9423 and 3. As shown in Fig. 5, the distribution 
of K contour at the upstream flow complies with 
the data of Dou et al. (2008) study using the energy 
gradient method (Dou 2008). Fig. 5 also shows that 
the maximum values of K are located in the 
separated shear layer for Reynolds numbers ranging 
from 50 to 1000 and expansion ratios of 

/ 1.9423
i

H h  and / 3
i

H h  . Based on this result, 

we expect the onsets of initial instabilities at shear 
layer. This observation is consistent with the 
process of vortex roll up and the pairing mechanism 
in the separated shear layer which is reported by 
Troutt et al. (1984). In addition, Fig. 5 shows that 
the maximum values of K increase with an increase 
in the expansion ratio. 
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Re 
/

i
H h  

1.9423 3 

50 

 

100 

 
 

300 

 

500 

 
 

800 

 
 

103 

 
Fig. 4. Distribution of vorticity under different Reynolds numbers ranging from 50 to 1000 and 

expansion ratios of 
i

H / h = 1.9423 and
i

H / h = 3 . 
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Re 
/

i
H h  

1.9423 3 

50 

 
 

100 
 

 
 

300 

 
 

500 
 

 
 

800 

 
 

103 

 
 

Fig. 5. Distribution of K under different Reynolds numbers ranging from 50 to 1000 and expansion 

ratios of 
i

H / h = 1.9423 and
i

H / h = 3 . 

 
 

As may be seen in Fig.1 (b), we consider three 
different sections along our computational domain, 
sections 1, 2 and 3 which are located at X=2.5, 
X=7.5 and X=17.5, respectively. 

Figurs 6 and 7 display the distribution of velocity, 

vorticity and dimensionless parameter K  at section 1 
(X=2.5) under different Reynolds numbers ranging 
from 50 to 1000 and expansion ratios 

of / 1.9423
i

H h  and / 3
i

H h  , respectively. As 

shown in Fig.6, the maximum values of K  at  
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R
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0 

 

R
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R
e=

10
00

 

 
velocity ( U ) vorticity ( ) K 

Fig. 6. Distribution of velocity, vorticity and K at section 1 under different Reynolds numbers ranging 

from 50 to 1000 and expansion ratio of
i

H / h = 1.9423 . 

 

 

expansion ratio of / 1.9423
i

H h   occur at 1.772Y   

and 1.192Y  . Fig. 7 shows that the maximum values 

of K  at expansion ratio of / 3
i

H h   are located 

at 2.830Y   and 2.253Y  . Also, our results related 
to the locations of the maximum values of K which 
are extracted from Figs. 6 and 7 are in good agreement 
with the results of Nishioka et al. experimental data 

(Nishioka et al. 1975) and Farahbakhsh et al. (2014) 
numerical data (it should be noted that origin of Y-

coordinate in our study is 0.5
s i

h h  compared to 

Nishioka et al. (1975) experiment and Farahbakhsh et 
al. (2014) numerical data).  

Moreover, as may be seen in Fig.6 and Fig.7, 
growth of Reynolds number resulted to increase of  
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Fig. 7. Distribution of velocity, vorticity and K at section 1 under different Reynolds numbers ranging 

from 50 to 1000 and expansion ratio of / 3
i

H h  . 
 

 

the maximum of K value. By comparison between 
Fig.6 and Fig.7, similar trends in velocity, vorticity 
and K is observable. The reason of this fact is 
related to same value of inflow height and similar 
upstream plane Poiseuille flow for both expansion 

ratios of / 1.9423
i

H h   and / 3
i

H h  . Also, it is 

found that the minimum of K value is located 
where the maximum of velocity profile is in 
correspondence to zero value of vorticity.  
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Fig. 8. Distribution of velocity, vorticity and K at section 2 at different Reynolds numbers ranging 

from 50 to 1000 and expansion ratio of
i

H / h = 1.9423 . 
 

 

Moreover, maximum of K value occurs at the 
position with inflection point in velocity profile and 
maxima of vorticity.   

Based on K  contour in Fig.5, we found that K at 

the corner eddy and recirculation zone is 
remarkably low. This means that the corner eddies 
and recirculation zone have no impression on the 
flow instability. To better understanding of this 
phenomenon, Figs. 8 and 9 present the distribution  
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Fig. 9. Distribution of velocity, vorticity and K at section 2 at different Reynolds numbers of ranging 

from 50 to 1000 and expansion ratio of
i

H / h = 3 . 
 

 

of velocity, vorticity and dimensionless parameter 
K  at section 2 (X=7.5) at different Reynolds 
numbers ranging from 50 to 1000 and expansion 

ratios of / 1.9423
i

H h  and / 3
i

H h  , 

respectively. As may be seen from Figs. 8 and 9, we 
found that the maximum values of K  are located in 
the position of inflection point for Reynolds 
numbers ranging from 50 to 1000 and both  
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Fig. 10. Distribution of velocity, vorticity and K at section 3 at different Reynolds numbers ranging 

from 500 to 1000 and expansion ratio of 
i

H / h = 1.9423 . 

 

 

expansion ratios of / 1.9423
i

H h  and / 3
i

H h  . 

By comparing between Figs. 8 and 9 with Fig.5, 
one can be concluded that, parameter K has highest 
value at the shear layer. However, parameter K has 
low value at corner eddies and recirculation zones is 
low. So, chance of onset of instability in corner 
eddies and a recirculation zone is negligible.  Also, 
it is found that, for all Reynolds number, the 
maximum of K  is located at the position of 
inflection point. Indeed, we have maximum of K , 
where the second derivative of velocity is zero 
corresponding with maxima of vorticity. 

To detail investigation on the fluid flow behavior at 
the redeveloping near-wall flow and relaxing outer 
layer shear, we present Figs. 10 and 11 to show the 
distribution of velocity, vorticity and dimensionless 
parameter K at section 3 (X=17.5) at different 
Reynolds numbers ranging from 500 to 1000 and 

expansion ratios of / 1.9423
i

H h  and / 3
i

H h  , 

respectively. By comparison between the K contour 
in Fig.5 with Figs.10 and 11, one can be concluded 
that, maximum of K value is located in the position 
where two separating shear layers at upper and 
lower of downstream are interacted together. In 
addition, as may be seen from Figs.10 and 11, the 
maximum values of K corresponds the position of 
inflection point. This phenomenon is also reported 
by Dou and Ben (2015). The reason of this 
phenomenon is related to maximum of 2D vorticity 

that occur at 
2 2

2
0z

v u

x y yy

  
 

   
 , where due to low 

value of 
2v

x y



 
in case of BFS, we can approximate 

z

y




 by 

2

2
0

u

y




 . Here, 

2

2
0

u

y




  is representative of 

inflection point in the velocity profile. 

Table 4 presents the value of 
max

K and its position, 

in XY-coordinates as defined in Fig.1 (b), in the 
entire flow field at different Reynolds numbers 
ranging from 50 to 1000 and expansion ratios 

of / 1.9423
i

H h  and / 3
i

H h  . 

As may be seen from Table 4, for Re 100 , as the 
expansion ratio increases, the values of 

max
K become greater. Therefore, one can concluded 

that, in the positions with
max

K , the energy gradient 

in cross-stream direction is significantly larger than 
energy gradient in stream-wise direction (i.e. 
viscosity friction). Table 4 also shows that the 

position of 
max

K is located nearby the edge for 

Reynolds numbers ranging from 50 to 1000 and 

expansion ratios of / 1.9423
i

H h  and / 3
i

H h  . 

The physical reason of this happen is related to 
enhancement of pressure drop with increase of  
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Fig. 11. Distribution of velocity, vorticity and K at section 3 at different Reynolds numbers of ranging 

from 500 to 1000 and expansion ratio of 
i

H / h = 3 . 
 

Table 4 Position and value of maxK under different Reynolds numbers ranging from 50 to 1000 and 

expansion ratios of 
i

H / h = 1.9423 and
i

H / h = 3  

Reynolds number 
case 

1000 800 500 300 100 50 

12551.800 9930.330 5995.670 3599.850 1153.490 679.736 
max

K  
/ 1.9423

i
H h   7.612 5.425 6.883 5.133 5.599 5.279 X 

1.029 1.029 1.029 1.00 1.00 1.00 Y 

15119.500 11421.800 6021.440 3976.010 1327.880 596.478 
max

K  
/ 3

i
H h   9.362 5.716 7.00 5.308 5.337 5.395 X 

2.220 2.130 2.099 2.099 2.099 2.069 Y 

 

 

expansion ratio (Biswas et al. 2004). As a results, 
according to Eqs.(7) and (8), by increase of pressure 
drop, we have larger energy gradient in transverse 
(or cross-stream) which leads to increase of K 
value. 

4. CONCLUSION 

We investigated the hydrodynamic instability of 2D 
BFS flow at six different Reynolds numbers 
ranging from 50 to1000 and two expansion ratios of 
1.9423 and 3 by using energy gradient method. We 
compared our results with existing experimental 
and numerical data and good agreement is obtained. 
Three main conclusions of the present study are 

deduced as follows: 

(1) As the expansion ratio decreases, the value of 

max
K  decreases, therefore, we expect that by 

reducing the expansion ratio, flow become 
more stable. 

(2) Value of energy gradient function K at the 
corner eddy and recirculation zones is 
significantly low and therefore, these regions 
aren’t the candidate of the onset instability in a 
BFS flows. 

(3) We found that the values of 
max

K occur on the 

separated shear layer nearby the step edge and 
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therefore, the origin of instability in the entire 
flow field of a two-dimensional backward 
facing step is located on the separated shear 
layer nearby the step edge. 

One can be concluded that, energy gradient method 
has remarkable capability to study of flow filed 
stability. In addition, the current research merits 
further study in future. Investigation of the 
hydrodynamic instability of 3D BFS flow by using 
energy gradient method can be considered in future 
works. 
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