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ABSTRACT

In the present paper, the energy gradient method is implemented to study the instability of 2-D laminar
backward-facing step (BFS) flow under different Reynolds numbers and expansion ratios. For this purpose,
six different Reynolds numbers (50 < Re < 1000) and two various expansion ratios of 1.9423 and 3 are
considered. We compared our results of the present study with existing experimental and numerical data and
good agreement is achieved. To study of fluid flow instability, we evaluated the distributions of velocity,
vorticity and energy gradient function K. The results of our study show that as the expansion ratio decreases
the flow becomes more stable. We also found that the origin of instability in the entire flow field is located on
the separated shear layer nearby the step edge. In addition, we approved that the inflection point on the profile
of velocity corresponds to the maximum of vorticity resulted to the instability.

Keywords: Energy gradient; Instability; Backward-facing step flow.

NOMENCLATURE

BFS  backward-facing step u velocity component in X -direction

D hydraulic diameter U averaged velocity

E total mechanical energy U maximum of inlet velocity
FDM Finite Difference Method v velocity component in Y -direction

h| inlet height X coordinate of X -direction

hS step height X, main recirculation region

h half of the inlet height X, detachment length on the upper wall

H channel height at downstream of the step X, reattachment length on the upper wall

H_ energy lost Y coordinate of Y -direction

K dimensionless parameter of energy gradient method

Ke critical value of K a angle of streamline related to X -direction
L inflow length AY i finest grid

Lo outflow length u dynamic viscosity

n coordinate in transverse direction v kinematic viscosity

P static pressure of flow field P density

Re Reynolds number v stream function

S coordinate in stream-wise direction ® vorticity

1. INTRODUCTION issue in fundamental fluid mechanics. This flow

geometry is a significant prototype to investigate of

Backward-facing step (BFS) flow is a classical flow separation, flow reattachment and recirculation
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bubbles. The phenomenon of flow separation is
common in engineering applications, such as the
water flow past the hydrofoil, the airflow past the
blades of compressor and turbine, suddenly
expanding pipes, combustors etc. (Rajasekaran
2011). The BFS geometry is also an important
problem for understanding the instability of a
separated flow.

In the literature, it is possible to find many
numerical and experimental studies on the flow
over a BFS. For example, Armaly et al. (1983)
presented an experimental study on laminar,
transitional and turbulent flows over the two-
dimensional BFS in the Reynolds numbers range
of 70 < Re < 8000. Their experimental results
show that the separation length at different
Reynolds numbers specifies different flow
regimes. Kaiktsis et al. (1991) performed a
numerical investigation on the three-dimensional
turbulent flow over a BFS. They indicated that
Armaly et al. (1983) underestimated the
recirculation lengths for Reynolds number above
600. In another study, Kaiktsis et al. (1996)
claimed that the local convective instabilities
produce the instability in BFS flow. Fortin et al.
(1997) investigated the stability of the 2D steady
incompressible flow over a BFS up to Re=1600.
Their results show that the flow over a BFS is
stable close to Reynolds number of 1600. Barkley
et al. (2002) reported that the flow remains linearly
stable to two-dimensional perturbations up to a
Reynolds number of 1050. In addition, their results
show no evidence of any nearby two-dimensional
bifurcation up to Re=748. Beaudoin et al. (2004)
simulated a three dimensional basic flow for
understanding the origin of instabilities of the flow
over a BFS. Their results show that, the vicinity of
the reattached flow and outside the recirculation
bubble are locations that have the most potential to
being unstable.

Recently, several numerical and experimental
studies in the field of BFS flow over various step
angles (Bayraktar 2014), control of the
reattachment length of a transonic 2D BFS flow
(Bolgar et al. 2015), simulation of a gently curved
BFS (Asgari and Tadjfar 2017), simulation of
turbulent flows over a BFS by using a modified
partially averaged Navier-Stokes model (Huang et
al. 2017), heat transfer and fluid flow
characteristics of separation and reattachment flow
over a BFS (Xie and Xi 2017) and high intensity
turbulent flow over a BFS (de la Torre et al. 2017)
are conducted by scholars. For comparison
between the cited works and to identify the novelty
of current study, we present a summary of the cited
works in Table 1.

As may be seen in Table 1, to our best of
knowledge, the previous researchers did not
consider the effect of the expansion ratios at
different Reynolds numbers on the onset of
instability in a BFS flow. In addition, the local
positions in a BFS flow where the instability is
originated from there, is not specified. Therefore,
our goal in the present study is to investigate the
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instability (i.e. onset of instability and local
positions in the BFS flow where the instability is
originated from there) of 2D flow between
parallel plates over a BFS under different
Reynolds numbers and expansion ratios by using
the energy gradient method (Dou 2004; Dou
2006). For this purpose, different Reynolds
numbers ranging from 50 to 1000 and expansion
ratios of 1.9423 and 3, are considered. The results
of our investigation show that the onset of
instability in a two-dimensional BFS flow is
originated on the separated shear layer in the
nearby the step edge.

2. PHYSICAL MODEL AND THE
NUMERICAL METHOD

Figure 1 (a) shows the schematic of fully
developed plane Poiseuille flow between parallel
plates behind the BFS. The wake behind the BFS
may be distinguished into six main regions
namely, (I) separated shear layer, (II) corner eddy,
(III) backflow zone or recirculation zone, (IV)
reattachment zone, (V) redeveloping near-wall
flow and (VI) relaxing outer layer shear
(Rajasekaran 2011). Fig. 1 (b) also shows the
schematic of intended computational domain for
the BFS flow.

2.1 Governing Equations

In the present study, we consider a two-
dimensional steady and laminar flow over a BFS.
The incompressible and steady vorticity transport
equation in Cartesian coordinates is:

W00, oo _pldle do "
x oy plaxt oy )

Where, p, ft,u,vand ware density, dynamic

viscosity, velocity component in X -direction,

velocity component in Yy -direction and the

vorticity, respectively. We define the stream
function i and the vorticity function @ as:
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The definition of vorticity is:

ov au
=

ox oy B @

So, combining Egs. (2-4), we obtain:
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By substituting Eq. (2) and Eq. (3) into the vorticity

transport equation (Eq. (1)), we obtain the
following expression:
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Table 1 Summary of the cited worksin thefield of BFS flows.

Author Technique Conditions Evaluated criteria
experimental| 70 <Re <8000 |velocity profile
Armaly etal. (1983) & numerical ER’=1.9423 detachment & reattachment lengths
. . . 100 <Re < 800
Kim and Moin (1985) numerical ER= 1.9423 detachment and reattachment lengths
Re =800 stream function and vorticity
Gartling (1990) numerical _ velocity profile
ER=1.9423 R
pressure distribution
o . 50 <Re <800 |[stream function and vorticity
Kaiktsis et al. (1991) numerical ER= 1.9423 velocity profile
velocity profile
Kaiktsis et al. (1996) numerical 700 <E11§e:<22500 stability analysis by using linear stability
method
. . 100 <Re < 1500 [stability analysis through the study on the
Fortin et al. (1997) numerical ER=2 localization of Hopf bifurcations
. . 100 <Re < 1000 |velocity profile
Chiang and Sheu (1999) | numerical ER=1.9423 detachment & reattachment lengths
detachment & reattachment lengths
Barkley et al. (2002) numerical 450 <E1I§e=<2 1050 stability analysis by using linear stability
calculations
detachment & reattachment lengths
. experimental| 50 <Re <500 |stability analysis through the study the onset
Beaudoin et al. (2004) & numerical ER=1.11 of 2D instability by using generalized
Rayleigh discriminant
0<Re <500 [pressure loss
Biswas et al. (2004) numerical | ER=1.9423, 2.5 and|detachment & reattachment lengths
3 velocity profile and streamlines
0 < Re < 500 stability analysis through the study the onset
Blackburn et al. (2008) numerical ER=2 of asymptotic instability by using linear
perturbations
. 100 <Re <3000 |velocity profile
Erturk (2008) numerical ER=1.9423 detachment & reattachment lengths
. _ stream-wise vortex
Bolgar et al. (2015) experimental Re=180000 detachment & reattachment lengths
. . 5x103 <Re< 64x103|velocity profile
Lietal. (2017) numerical ER=1.28, 2, 3.27 |detachment & reattachment lengths
velocity profile
Asgari and Tadjfar (2017)| numerical Re=13700 pressure coefficient and fluctuation
detachment & reattachment lengths
pressure loss and skin friction
Huang et al. (2017) numerical Re = 5000 detachment & reattachment lengths
velocity profile and streamlines
temperature fields and Nusselt number
Xie and Xi (2017) numerical 409 < Re <1000 detachment & reattachment lengths
ER=1.5,2 and 2.5 . .
velocity profile and streamlines
de la Torre et al. (2017) | experimental| 15x103<Re<64x103| velocity profile

* ER=expansion ratio

2 2
Qv oo Oy oo _p 0w 0o ©)
ox oy ploxt oy

We discretized equations (Egs. (2 - 6)) by using the
finite difference method (FDM). In addition, the
Reynolds number may be defined

asRe=(DU, )/v whereU,,, D and v are the

average velocity at the inlet, hydraulic diameter and
kinematic viscosity, respectively. In the present
study, the hydraulic diameter of the inlet channel
(D) is equivalent to twice the inflow channel
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height (D = 2h ),

2.2 Energy Gradient Method

Dou (2006) proposed the energy gradient method
based on Newtonian mechanics to investigate of the
flow instability. This theory has two laws. First law
of energy gradient state that, if a material system is
static, when the energy gradient in some direction is
larger than a critical value, the system will become
unstable and the phase change or flow would occur.
Second law of energy gradient is also express that,
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Fig. 1. (a) Flow characteristics behind the BFS, (b) Schematic of the BFS flow, length scale and
definition of three computational sections.

if a material system flows, when the ratio of the
energy gradient in the transverse direction and that
in the stream-wise direction is larger than a critical
value, the system will become unstable (Dou 2004;
Dou 20006).

In energy gradient method, to investigate of fluid
flow stability, Dou et al. (2006) proposed a
dimensionless parameter K as (Dou 2004)

OE
on

ToH
0s

OE oH, .
Where, on and o Are representative of

energy gradient in transverse (or cross-stream)
direction and energy gradient in stream-wise
direction, respectively. In addition,

(M

E=P+0.50U”is the total mechanical energy per
unit volumetric fluid ( Pis static pressure of flow

field and U is total velocity (u=+u’+v’)).
Moreover, H , N and S are energy lost, cross-
stream direction of the streamline and stream-wise
direction along the streamline, respectively. Based
on energy gradient method (Dou 2004; Dou 2006),
energy gradient in transverse direction amplitude
the instability, whereas, energy gradient in stream-
wise direction with role of viscosity friction decay
the flow instability. Therefore, based on the energy
gradient method (Dou 2004; Dou 2006), where K is

greater than the critical parameter K , fluid flow

becomes unstable.

In the case of BFS flow, Eq. (7) may be written as
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(Dou 2008):
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Fig. 2. Geometrical schematic of stream-wise and
Cross-stream coor dinates system.

Substituting Eq. (9) into the Eq. (8), we obtain

Figure 2 shows geometrical schematic of stream-
wise and normal coordinates system. According to
Fig. 2, we obtain the following expressions (Dou
and Ben 2015):
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cosq = 5’ sing :5 upstream and downstream are equal to L =5h
~ and L =30h, respectively. Moreover, Fig. 1 (b)
n .
m = (—sm a,cosa ) presents the length of the main recirculation region
n
) (X ) and the detachment and reattachment
cosa sinar) locations of the first recirculation region on the
‘ S‘ upper wall (i.e. X and X ).
ov ou -
w7 = x —5, U x & = Voo, U, ) We consider a standard parabolic velocity
y\h -y
profileu( y)=4U ( ) with maximum
the following expression for dimensionless

parameter K as (Dou and Ben 2015):

55/ [82\/ jcosa ;{62U+82u}ina
x
on_
T oH
/55 y[@(2+ay2]sina+y(§;+§u}
— N, Sine — pua, cos o
Ju du

Jsmoﬁ [8)(2 +ay2jcosa
(10)

In order to investigate of flow instability in a BFS
flow, we implement the following three-steps under
considered Reynolds numbers and expansion ratios:

{5

Stepl. Compute of velocity component, stream

function and vorticity by using Egs. (2-6).

Step2. Calculate of dimensionless parameter of
energy gradient method (K) by using Eq.(10)
throughout of our computational domain.

Step3. Plot the vorticity and K contours together
with velocity, vorticity and K profiles and detect of
critical local positions in the BFS domain with
highest value of dimensionless parameter of energy

gradient method (K ).

2.3 Geometric Model and Boundary
Conditions

Figure 1(b) shows the schematic of intended
computational domain for the BFS flow and it is in
accordance with the experimental setup of Armaly
et al. (1983). As may be seen in Fig.1 (b), the
coordinate system is located in the down corner and
its axes are parallel to the channel sides.

The expansion ratio is defined by H / h , which is
the ratio of channel height at downstream of the
step ( H ) per height of the inflow channel (h ). In

the current study, we consider two expansion ratios
0f 1.9423 and 3. All of the geometrical length scales
in the computational domain are dimensionless

according to the channel height (h). We set the

large enough channel length at the upstream and
downstream for minimizing the impressions of the
outflow boundary on the upstream zones (Biswas et
al. 2004; Kosma 2005). Channel length at the
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inflow velocity of U ~=1.5U_and an average

inflow velocity of U_ =1 at upstream of the

backward facing step flow. We use zero diffusion
flux and no-slip fixed wall boundary conditions for
the outlet and on the walls of our computational
domain, respectively (Li et al. 2017).

24 Mesh Sensitivity Analysis and
Validation Study

We conduct an extensive mesh sensitivity analysis
to investigate that our computed results are grid
independent. For this purpose, in the present
section, grid independency tests for Re=100,

Re=800 and Re=1000 at expansion ratio of
H / h =1.9423 are presented. For mesh sensitivity
analysis, seven different structured meshes from
=0.002) coarsest

finest to

(Ay,,
the main recirculation region per step height

(X, /'h)) to validate our results with Armaly et al.

experiment data (Armaly et al. 1983). Fig. 3 shows
that our results are in good agreement with the
result of Armaly et al. experimental data (Armaly et
al. 1983).

grid

.....

=0.15) are tested. We select the length of

—#— Present Study (Re=1000)
—— Armaly et al. (1983) (Re=1000)
--@-- Prasent Study (Re=800)

----- Armaly et al. (1983) (Re=800)
—O— Present Study (Re=100)

— — Armaly etal. (1983) (Re=100)

xyhy

D.l;75 Drl 0‘1‘25 D.;S
A min
Fig. 3. Grid independence tests based on the

length of the main recirculation region X, / h

o 0.025 0.05 0.173

for expansion ratioof H / h = 1.9423and
Reynolds number s 100, 800 and 1000.
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Table 2 Detachment and reattachment lengths of the flow under different Reynolds numbersranging
from50t01000at H / h =1.9423

Case Reynolds number
50 100 300 500 800 1000
X, present study 1.750 2.765 6.125 8.422 13.120 14.521
Erturk (2008) - 2.878 6.659 9.437 11.983 13.267
% present study 0 0 0 7.538 8.115 9.281
Erturk (2008) - 0 0 8.314 9.646 10.592
X present study 0 0 0 11.020 18.250 21.680
Erturk (2008) - 0 0 12.504 19.992 24.275

Table 3 Detachment and reattachment lengths of the flow under different Reynolds numbersranging
from50t01000atH / h =3

Reynolds number
Case
50 100 300 500 800 1000
< present study 3.865 | 6.365 | 9.685 | 10.810 | 13.825 | 14.355
1
Biswas et al. (2004) | 3.766 | 6.277 | 10.744 - - -
X2 present study 0 7.325 | 8.250 | 8.780 | 9.929
X3 present study 0 16.625 | 14.125 | 19.125 | 22.650

According to Fig. 3, Ay = 0.01is selected due to

convergence of our results after this grid density.
Based on this selected grid, we achieved relative
error between our numerical results with
experiment data (Armaly et al. 1983) equal
t03.8% ,5.3% and 7.1% in respective for Re=100,
Re=800 and Re=1000.

3. RESULTSAND DISCUSSION

Numerical results of detachment and
reattachment lengths of the flow under different
Reynolds numbers ranging from 50 to 1000 and

expansion ratios at H/h =19423and 3 are

reported in Tables 2 and 3, respectively. To
measure the detachment and reattachment
lengths, we shift the coordinate system to lower
corner of the step. In addition, in Tables 2 and 3,
we compare our results with existing numerical
data (Biswas et al. 2004; Erturk 2008). Based on
Table 2, the comparison of our results with the
Erturk (2008) data shows that there is a
reasonable agreement for the detachment and the
reattachment lengths. Table 3 shows that the

main recirculation region (X ) is in good

agreement with the result of Biswas et al. (2004)
numerical data. By comparing Table 2 with Table
3, we also find that the greater expansion ratios
lead to larger detachment and reattachment
lengths.

Figure 4 displays the distribution of vorticity under

different Reynolds numbers ranging from 50 to
1000 and expansion ratios of

H/h =19423andH / h =3. As shown in Fig. 4,

the formation of separated shear layer and eddies in
the backflow zone occur as soon as flow separation
takes place at the step edge of the BFS flow.
Moreover, Fig. 4 shows that the opposite wall
boundary layer as defined in Fig. 1(a) is visible for
Reynolds number above 300 at both expansion

ratios of H/h =1.9423andH / h =3. Fig. 4 also

shows that the increase of expansion ratio leads to
growth in the size of separated shear layer.

Figure 5 presents the contour of dimensionless
parameter K (the parameter that indicates the onset
of instability) under different Reynolds number
ranging from 50 to 1000 and both expansion ratios
of 1.9423 and 3. As shown in Fig. 5, the distribution
of K contour at the upstream flow complies with
the data of Dou et al. (2008) study using the energy
gradient method (Dou 2008). Fig. 5 also shows that
the maximum values of Kare located in the
separated shear layer for Reynolds numbers ranging
from 50 to 1000 and expansion ratios of

H/h =19423andH / h = 3. Based on this result,

we expect the onsets of initial instabilities at shear
layer. This observation is consistent with the
process of vortex roll up and the pairing mechanism
in the separated shear layer which is reported by
Troutt et al. (1984). In addition, Fig. 5 shows that
the maximum values of K increase with an increase
in the expansion ratio.
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Fig. 4. Distribution of vorticity under different Reynolds numbersranging from 50 to 1000 and

expansion ratiosof H / h =19423andH / h =3.

247




H. Nowruzi et al. / JAFM, Vol. 11, No.1, pp. 241-256, 2018.

Re '
1.9423 3
2
- F
A B
50 "y 5 10 15 20 % 30 oE
x EH
X
0 468082 7.00224 165807 453.157
0 1ASTS7 GOB248 131832 530203
! B
ER % >
00 |7 M
5 [ 15 0 25 0
X
|
0 371799 985892 128166 115349 | S |
0 TT7EOOR 145448 52 1R1E A70438
-
300
0104478 108874 33.9878 280678 — -
-
500
0 330791 23.9942 168084 46633
0 252604 537974 189382 443585
-
800
>
103
||
o B013@T 108351 167 GDE B3ETAT
0 295347 948356 551666 111407

Fig. 5. Distribution of K under different Reynolds numbersranging from 50 to 1000 and expansion
ratiosof H /h =19423andH / h =3.

As may be seen in Fig.1 (b), we consider three
different sections along our computational domain,
sections 1, 2 and 3 which are located at X=2.5,
X=7.5 and X=17.5, respectively.

Figurs 6 and 7 display the distribution of velocity,
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vorticity and dimensionless parameter K at section 1
(X=2.5) under different Reynolds numbers ranging

from 50 to 1000 and expansion ratios
ofH /h =19423andH / h =3, respectively. As

shown in Fig.6, the maximum values of K at
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Fig. 6. Distribution of velocity, vorticity and K at section 1 under different Reynolds numbersranging
from 50 to 1000 and expansion ratioof H / h = 1.9423.

expansion ratio of H / h =1.9423 occur atY =1.772
and Y =1.192. Fig. 7 shows that the maximum values
of K at expansion ratio of H/h =3 are located

atY =2.830 and Y =2.253. Also, our results related
to the locations of the maximum values of K which
are extracted from Figs. 6 and 7 are in good agreement
with the results of Nishioka et al. experimental data
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(Nishioka et al. 1975) and Farahbakhsh et al. (2014)
numerical data (it should be noted that origin of Y-

coordinate in our study is h +0.5h compared to

Nishioka et al. (1975) experiment and Farahbakhsh et
al. (2014) numerical data).

Moreover, as may be seen in Fig.6 and Fig.7,
growth of Reynolds number resulted to increase of
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Fig. 7. Distribution of velocity, vorticity and K at section 1 under different Reynolds numbersranging
from 50 to 1000 and expansion ratioof H / h =3.

the maximum of K value. By comparison between
Fig.6 and Fig.7, similar trends in velocity, vorticity
and Kis observable. The reason of this fact is
related to same value of inflow height and similar
upstream plane Poiseuille flow for both expansion
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ratios of H/h =1.9423 and H /h =3. Also, it is

found that the minimum of K value is located
where the maximum of velocity profile is in
correspondence to zero value of vorticity.



H. Nowruzi et al. / JAFM, Vol. 11, No.1, pp. 241-256, 2018.

2.0

1.5

0.5

0.0

Re=50

2.0

1.5 r

1.0 |

0.0 T
0.5

Re=100

1.5

2.0

15 |

0.5

0.0 T

Re=300

20

10

0.5

0.0 T

Re=500

2.0

1.5

10

03 |

0.0 T

Re=800

20

1.5

1.5 r

10 |

-
05 F

0.0 .
0 05
velocity (U )

Re=1000

1.5

e
-]

” /
1.0
)
05
-8 T
2 1 0 1 2
b )
o
0.3
—80—— T
2 1 0 1 2
5 ;’)
1.0
o
—o:0 \ T
-4 2 0 2 4
)
T T T T
8 6 4 2 0 2 4 6 8
1.5 /
0
=
0.5 Y
T T a-s \ T T T
8 6 4 -2 0 2 4 o6 8
15 /
0 F
-
0.5 \
T T 3[3 \ T T T
84 6 4 -2 0 2 4 6 B

vorticity (@)

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.3

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

20

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

=]

10 20 30 40 50 60 70

=

100 200 300 400 500

=]

500 1000 1500

0

500 1000 1500 2000

0 1500

3000 4500

0 1500 3000 4500 6000

K

Fig. 8. Distribution of velocity, vorticity and K at section 2 at different Reynolds numbersranging

Moreover, maximum of K value occurs at the
position with inflection point in velocity profile and

maxima of vorticity.

Based on K contour in Fig.5, we found that K at

the corner
remarkably low. This means that the corner eddies

eddy

from 50 to 1000 and expansion ratioof H / h = 1.9423.

and

recirculation zone is

and recirculation zone have no impression on the
flow instability. To better understanding of this
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phenomenon, Figs. 8 and 9 present the distribution
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Fig. 9. Distribution of velocity, vorticity and K at section 2 at different Reynolds numbers of ranging
from 50to 1000 and expansion ratioof H / h = 3.

of velocity, vorticity and dimensionless parameter respectively. As may be seen from Figs. 8 and 9, we
K at section 2 (X=7.5) at different Reynolds found that the maximum values of K are located in
numbers ranging from 50 to 1000 and expansion the position of inflection point for Reynolds
ratios of H/h=19423andH / h =3, numbers ranging from 50 to 1000 and both
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from 500 to 1000 and expansion ratioof H / h = 1.9423.

expansion ratios of H / h = 1.9423andH / h =3.

By comparing between Figs. 8 and 9 with Fig.5,
one can be concluded that, parameter K has highest
value at the shear layer. However, parameter K has
low value at corner eddies and recirculation zones is
low. So, chance of onset of instability in corner
eddies and a recirculation zone is negligible. Also,
it is found that, for all Reynolds number, the
maximum of K is located at the position of
inflection point. Indeed, we have maximum of K,
where the second derivative of velocity is zero
corresponding with maxima of vorticity.

To detail investigation on the fluid flow behavior at
the redeveloping near-wall flow and relaxing outer
layer shear, we present Figs. 10 and 11 to show the
distribution of velocity, vorticity and dimensionless
parameter K at section 3 (X=17.5) at different
Reynolds numbers ranging from 500 to 1000 and

expansion ratios of H/h =19423andH /h =3,

respectively. By comparison between the K contour
in Fig.5 with Figs.10 and 11, one can be concluded
that, maximum of K value is located in the position
where two separating shear layers at upper and
lower of downstream are interacted together. In
addition, as may be seen from Figs.10 and 11, the
maximum values of K corresponds the position of
inflection point. This phenomenon is also reported
by Dou and Ben (2015). The reason of this
phenomenon is related to maximum of 2D vorticity
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2 2

that occur at 9%, _ ov _oJu_ 0 » Where due to low
oy oy oy

value of 9V in case of BFS, we can approximate

oxoy

2 2
00, by a_‘j —- Here, 6_2’ _( is representative of
oy oy

inflection point in the velocity profile.

Table 4 presents the value of K and its position,

in XY-coordinates as defined in Fig.1 (b), in the
entire flow field at different Reynolds numbers
ranging from 50 to 1000 and expansion ratios

of H/h =1.9423andH / h =3.

As may be seen from Table 4, for Re > 100 , as the
expansion ratio increases, the values of

KmX become greater. Therefore, one can concluded

that, in the positions with K___, the energy gradient

in cross-stream direction is significantly larger than
energy gradient in stream-wise direction (i.e.
viscosity friction). Table 4 also shows that the

position of K_ is located nearby the edge for
Reynolds numbers ranging from 50 to 1000 and
expansion ratios of H / h =1.9423andH / h =3.

The physical reason of this happen is related to
enhancement of pressure drop with increase of
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Fig. 11. Distribution of velocity, vorticity and K at section 3 at different Reynolds numbers of ranging

from 500 to 1000 and expansion ratioof H / h = 3.

Table4 Position and valueof K __ under different Reynolds numbersranging from 50 to 1000 and

expansion ratiosof H / h =19423andH / h =3

Reynolds number
case
50 100 300 500 800 1000
K 1679736 | 1153.490 | 3599.850 | 5995.670 | 9930.330 | 12551.800
H/h=19423 | ¥ 5.279 5.599 5.133 6.883 5.425 7.612
Y 1.00 1.00 1.00 1.029 1.029 1.029
K ]596.478 | 1327.880 | 3976.010 | 6021.440 | 11421.800 | 15119.500
H/h=3 X 5.395 5.337 5.308 7.00 5.716 9.362
Y 2.069 2.099 2.099 2.099 2.130 2.220

expansion ratio (Biswas et al. 2004). As a results,
according to Eqs.(7) and (8), by increase of pressure
drop, we have larger energy gradient in transverse
(or cross-stream) which leads to increase of K
value.

4. CONCLUSION

We investigated the hydrodynamic instability of 2D
BFS flow at six different Reynolds numbers
ranging from 50 to1000 and two expansion ratios of
1.9423 and 3 by using energy gradient method. We
compared our results with existing experimental
and numerical data and good agreement is obtained.
Three main conclusions of the present study are
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deduced as follows:
(1) As the expansion ratio decreases, the value of
K

reducing the expansion ratio, flow become
more stable.

. decreases, therefore, we expect that by

(2) Value of energy gradient function K at the
corner eddy and recirculation zones is
significantly low and therefore, these regions
aren’t the candidate of the onset instability in a
BFS flows.

3)

We found that the values of K__occur on the

separated shear layer nearby the step edge and
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therefore, the origin of instability in the entire
flow field of a two-dimensional backward
facing step is located on the separated shear
layer nearby the step edge.

One can be concluded that, energy gradient method
has remarkable capability to study of flow filed
stability. In addition, the current research merits
further study in future. Investigation of the
hydrodynamic instability of 3D BFS flow by using
energy gradient method can be considered in future
works.
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