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ABSTRACT 

This paper deals linear and weak nonlinear stability analysis of double-diffusive convection in an anisotropic 
porous layer with internal heat source saturated by viscoelastic fluid. For linear stability analysis we use normal 
mode technique and obtained the expression for oscillatory thermal Rayleigh number which is used to plot 
neutral stability curve for oscillatory case. For nonlinear analysis truncated representation of Fourier series upto 
two terms is used. The system of time dependent nonlinear equation is solved numerically and plot the curve 
for heat transfer and mass transfer with respect to time for different parameters. Effect of thermal anisotropy 
parameter, mechanical anisotropy parameter, relaxation parameter, retardation parameter, internal heat source 
parameter, solute Rayleigh number, diffusivity ratio, Darcy-Prandtl number on the onset of convection, heat 
and mass transfers have been discussed. We also draw the stream lines, isotherms, isohalines at different times. 
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NOMENCLATURE 

a Wave number 
d depth of the fluid layer 
Da Darcy number  
G acceleration due to gravity K௫ permeability in x-direction K௭ permeability in z-direction 
Nu Nusselt number 
P reduced pressure 
Pr Prandtl number Pr஽ Darcy-Prandtl number  
Q internal heat source Ra். Thermal Rayleigh number Raௌ Solute Rayleigh number 
Ri internal heat source parameter 
S solute concentration 
S solute difference across the porous layer 
Sh Sherwood number  
T temperature 
T temperature difference across the porous 

layer 
t time 
x, y, z space Co-ordinates ߚௌ coefficient of solute expansion ்ߚ coefficient of thermal expansion 

λ1 relaxation time 
λ2 retardation time 
η thermal anisotropy parameter 

ξ mechanical anisotropy parameter 
κS solutal diffusivity ߢT κTx(ii + jj) + κTz(kk) ߢT୶ effective thermal diffusivity in x-

direction ߢT୸ effective thermal diffusivity in z-
direction 

τ diffusivity ratio 
µ dynamic viscosity of the fluid 
 porosity 
ν kinematic viscosity 
ρ fluid density 
ψ stream function 

Other symbols 

2
1

2 2

2 2x y

 


 

2  
2

2
1 2z


 



Subscripts 
b basic state 
c critical 
0 reference value 

superscripts 
′ perturbed quantity  
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∗ dimensionless quantity  
F finite amplitude 

Osc  oscillatory  
St stationary 

 
 

1. INTRODUCTION 

Enough research papers are available on convection 
in porous media due to its wide range of application 
in filtration, bio-remediation, petroleum engineering, 
electrochemistry, geo-physical systems, Earth’s 
mantle convection. Review in this area is collected 
and presented in a progressive way by Nield and 
Bejan (2013), Ingham and Pop (2005), Vadász 
(2008), Vafai (2005). Due to growing research in 
porous media, double-diffusive convection in porous 
media attracts many researchers in recent years 
because of its applications in atmospheric science, 
seawater flow, earth’s mantle convection, 
solidification of binary alloys. The work of Nield 
(1968) provide a base in this area and was continued 
by Griffiths (1981), Rudraiah et al. (1982), 
Poulikakos (1986), Murray and Chen (1989), 
Mulone and Straughan (2006). 

Study related to Newtonian fluid are large however 
viscoelastic fluid attracts less attention of researchers. 
Now in days viscoelastic fluids are highly used in 
modern industries, carbon dioxide geologic 
sequestration. Stability of viscoelastic fluid in densely 
packed porous layer saturated has been investigated by 
Rudraiah et al. (1989), Wang and Tan (2008) analysed 
linear stability of Maxwell fluid, Zhang et al. (2008) 
studied linear and nonlinear stability analysis of 
Oldroyd-B fluid in horizontal porous layer, 
Shivakumara and Sureshkumar (2007) studied the 
stability analysis of Oldroyd-B binary fluid with 
quadratic drag and throughflow, Narayana et al. (2012) 
investigated the linear and nonlinear stability analysis 
of binary Maxwell fluid including cross diffusion 
effect, Malashetty et al. (2009) analyses stability of 
binary viscoelastic fluid in an anisotropic porous layer, 
Malashetty and Kulkarni (2009) studied the thermal 
instability for viscoelastic fluid by taking Darcy-
Brinkman-Maxwell and thermal non-equilibrium 
model and found that the first convective instability is 
oscillatory instead of stationary, Sekhar and Jayalatha 
(2010) analysed elastic effect on Rayleigh-Bénard 
convection with temperature dependent viscosity, 
Kang et al. (2011) has been studied the effect of 
rotation for the viscoelastic fluid by considering the 
Darcy-Maxwell-Jeffrey model and they found that the 
effect of rotation is to reduce the heat transfer capacity 
for stationary as well as for overstable convection 
modes, Narayana et al. (2013) studied the effect of 
magneto convection on the viscoelastic fluid of type 
Oldroyd-B by using Lorenz system. 

Most of the study in relevant area are mainly dealt with 
isotropic porous media, however there are many 
physical situations where thermal and mechanical 
anisotropy exists in porous matrix, one of such example 
is our geothermal environment. Anisotropy is generally 
a consequence of preferential orientation of 
asymmetric geometry of porous matrix or fibres and is 
in fact encountered in numerous systems in industry 
and nature, also in artificial porous matrix anisotropy 

can be made deliberately according to applications. 
There are large number of practical situations in which 
convection is driven by internal heat source. The 
internal heating of the earth creates a temperature 
gradient between the interior and the exterior of the 
earth’s crust which causes convection in the earth crust 
also application of internal heat source may be found 
in radioactive decay of unstable isotopes, metal waste 
form development for spent nuclear fuel, weak 
exothermic reaction which can take place within 
porous materials moreover internal heat source is the 
main energy source of celestial bodies which is 
generated by radioactive decay and nuclear reaction. 
Earlier work related to internal heat source in porous 
media are given by Tveitereid (1977) obtained the 
steady solution in the form of hexagons and two 
dimensional rolls for convection in a horizontal porous 
layer with internal heat source, Bejan (1978) studied 
analytically the buoyancy induced convection with 
internal heat source. Later Parthiban and Patil (1995) 
found that the internal heat source advances the on-set 
of convection under the effect of non-uniform 
boundaries temperatures, Alex et al. (2001) studied the 
thermal instability in porous media by taking variable 
gravity with internal heat source and found that the 
stationary longitudinal mode is favourable mode for 
the onset of convection, Hill (2005) studied the linear 
and nonlinear effect of concentration based internal 
heat source on the stability for double diffusive 
convection by using Darcy model, Saravanan (2009), 
Cookey et al. (2010) found that the internal heat source 
parameter destabilizes the onset of stationary 
convection in a low Prandtl number, Nouri-Borujerdi 
et al. (2007) analyses the effect of uniform heat source 
for the thermal nonequilibrium model, Nouri-Borujerdi 
et al. (2008) studied the instability with uniform heat 
generation and including the Brinkman term, Capone 
et al. (2011) studied the penetrative convection in the 
presence of internal heat source in an anisotropic 
porous layer with a constant through flow via internal 
heat source. Bhadauria et al. (2011) studied the effect 
of internal heat source in rotating anisotropic porous 
layer, Bhadauria (2012) investigated the effect of 
internal heat source on double diffusive convection in 
anisotropic porous layer, Bhadauria et al. (2013) 
analyses the effect of internal heat source in their 
nonlinear gravity modulation analysis and re-ported 
that internal heat source increases heat trans-port, 
Gaikwad and Kouser (2013) studied the effect of 
internal heating on the onset of convection for binary 
viscoelastic Oldroyd-B fluid using Darcy Brinkman 
model for isotropic porous media, Altawallbeh et al. 
(2014) has been studied the linear and nonlinear effect 
of internal heat source by taking anisotropic porous 
media and Soret effect, Srivastava et al. (2014) studied 
the linear and nonlinear effect of internal heat source 
for couple stress fluid saturated anisotropic porous 
layer, Gaikwad and Kouser (2014) analyses the internal 
heat source effect on the couple stress fluid, Bhadauria 
(2016) analyses the chaotic convection for viscoelastic 
fluid in the presence of heat source. To the best of 
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authors knowledge there is no available article which 
deals the linear and nonlinear stability analysis for the 
double diffusive convection in an anisotropic porous 
media saturated with viscoelastic fluid of type 
Oldroyd-B. 

Viscoelastic fluids finds its application in modern 
industries, paint and auto-mobile industries, enhanced 
oil recovery, geothermal reservoirs, also some 
biological fluid falls in this category. Internal heat of the 
earth causes convection in earth’s mantle, also in the 
solidification of metals there is a temperature difference 
between upper and lower layer which is caused by 
internal heat source. Double diffusive convection 
occurs very commonly in nature and many engineering 
problems and in the present context, is of interest in the 
study of extraction of metals from ores where a mushy 
layer is formed during solidification of a metallic alloy, 
to understand the geothermal processes, and in some 
biological applications where convection is driven by 
internal heat source. Further, most of the earlier studies 
kept porous medium as a isotropic porous medium, 
however in nature, the permeability of the porous 
medium is anisotropic. Therefore, in this paper we 
consider the effect of internal heat source for double 
diffusive convection in an infinitely extended horizontal 
anisotropic porous layer saturated with viscoelastic 
fluid. 

2. GOVERNING EQUATIONS 

We consider an infinite horizontal anisotropic porous 
layer saturated by viscoelastic fluid confined 
between the planes z = 0 and z = d with internal heat 
source, which is heated and salted from be-low. We 
choose Cartesian frame of reference as, origin in the 
lower boundary and the z-axis in vertically upward 
direction. The gravity force is acting in vertically 
downward direction, we consider only free-free 
boundaries. We consider laminar flow, under steady-
state flow conditions, homogeneous fluid, isotherm 
and incompressible, fluid phase and solid phase are 
in local thermal equilibrium. It is assumed that the 
mechanical properties and thermal properties in x 
and y directions are same. Uniform adverse 
temperature gradient ∆T/d and concentration 
gradient ∆S/d are maintained across the surfaces. 
Further the density variation is considered under 
Boussinesq approximation. The governing equations 
under the above considerations are given by 
 

 
Schematic of the flow configuration. 
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The thermal and solutal boundary conditions are 
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which satisfy the following equations 
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The solution of the Eq. (9), subject to the boundary 
conditions (6), is given by 
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Also by solving the Eq. (10) has been solved 
subjected to the boundary conditions (7), we get 

0 1b
z

S S S
d
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 

                                            (14) 

We use following transformations for non-
dimensionalization: 

   
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d
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      (15) 

Introducing the stream function in the form  

 , , ,0,u v w
z x

       
 in Eqs. (2-4) then, taking 

curl to eliminate pressure term from Eq. (2) and then 
nondimensionlizing the resulting equations by using 
transformations given by Eq. (15). Finally we set γ = 
1 and get the set of following equations 
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where 
Pr

PrD Da


 is Darcy-Prandtl number 
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   is relaxation parameter, 2 22
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retardation parameter, S
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 is diffusivity ratio, 

x

z

K

K
   is mechanical anisotropy parameter, 

Tx

Tz


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  is thermal anisotropy parameter.  

The stress free, isothermal, isohalines boundary 
conditions are given by 

2
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3. LINEAR STABILITY ANALYSIS 

We linearise the Eqs. (16-18) by taking the Jacobian 
term equal to zero. To solve the eigenvalue problem 
defined by Eqs. (16-18), subject to the boundary 
conditions given by Eq. (19) by taking time periodic 
disturbance in horizontal plane, for the fundamental 
mode, we have 
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where a is the horizontal wave number and σ= σr + 
iσi is growth rate and in general a complex quantity. 
Substituting Eq. (20) in Eqs. (16-18) and setting the 
Jacobian term equal to zero, we obtained the non 
trivial solution in the form of the thermal Rayleigh 
number as follows: 
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Where 
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For neutral stability state σr = 0, whereas for σr < 0 
system is always stable and for σr > 0 system is 
always unstable. 

3.1   Stationary State 

The expression of thermal Rayleigh number for the 
onset of stationary convection at the marginally 
stable steady state, for which the exchange of 
stabilities are valid correspond to the = 0(i.e r = 0 
and i = 0) becomes 
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3.2   Oscillatory State 

To obtain the expression of thermal Rayleigh number 
for oscillatory convection at the marginal state we 
have to substitute σ = iσi (since the real part of σ for 
marginal oscillatory state is zero i.er = 0) in Eq. 
(21) and clearing the complex quantity from 
denominator. After some simple simplification we 
have 
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For oscillatory onset of convection, we have ∆2 = 0 
(since RaT is a physical quantity therefore it must be 
real, also σ ≠ 0 for oscillatory convection) this 
condition gives a biquadratic equation in σ 

   22 2 0f g h                                        (26) 
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4. WEAK NONLINEAR ANALYSIS 

Though linear stability analysis is significant, but some 
important physical quantities like value of convection 
amplitude, heat transfer, mass transfer cannot be 
calculated using linear stability analysis, thus we need 
to do nonlinear stability analysis of the system. 
Nonlinear stability analysis provides useful information 
which help to describe the physical mechanism of 
convective flow with minimum amount of mathematics. 

Nonlinear effect is to distort the temperature and 
concentration fields through the interaction of ψ and 
T, and ψ and S respectively, consequently a 
component of the form sin (2πz) will be generated. 
We use minimal Fourier series representation to 
describe the finite amplitude in case of double-
diffusive convection, as 

     sin sin ,A t ax z                                  (31) 

         1 2cos sin sin 2 ,T B t ax z B t z    (32) 

         1 2cos sin sin 2 .S E t ax z E t z     (33) 

where the amplitudes A(t), B1(t), B2(t), E1(t) and 
E2(t) are functions of time and are to be deter-mined. 
Substituting above equations (31-33) in Eqs. (16-18), 
we get the following set of nonlinear autonomous 

differential equations 

   dA t
F t

dt
                                                   (34) 

 

   

   

   

2 2
1 2 1

2 2
1 1 1

1
1 12

1

1
1 12

1

1 Pr Pr

Pr

Pr
,

D D

D
T

D
S

dF t

dt

F t A t

dB t
aRa B t

dt

dE t
aRa E t

dt

  
    


 


 



 
    
 

 
  

 

 
  

 

     (35) 

 

         

1

2
2 2 1 2 ,i

dB t

dt

aA t B t R B t aFA t 



      
(36) 

         2 2
2 14 ,

2i
dB t a

R B t A t B t
dt

      
 

(37) 

         1 2
1 2 ,

dE t
aA t E t aA t E t

dt
         

(38) 

       2 2
2 14 .

2

dE t a
E t A t E t

dt

      
        (39) 

The above system of autonomous nonlinear 
differential equation is not suitable for analytical 
study. We use numerical method to solve the above 
set of nonlinear differential equation to find the 
amplitudes. After determining the amplitudes we can 
compute it to plot the graph for heat transfer, mass 
transfer, streamlines, isotherms, isohalines for un-
steady case. 

4.1   Heat and Mass Transports 

The quantification of heat and mass transport is very 
important for the study of convection in porous 
media. This is because the onset of convection, as 
Rayleigh number is increased is more readily 
detected by its effect on the heat and mass transport. 
However in the basic state, heat and mass transfer is 
by conduction alone. 

The Nusselt number and Sherwood number are de-
fined by 

2

0
2

0 0

1 ,
a

ba
z

T
dx

zNu
dT

dx
dz







 
 

  
 
 
 




                                  (40) 

2

0
2

0 0

1 ,
a

ba
z

S
dx

zSh
dS

dx
dz







 
 

  
 
 
 




                                  (41) 
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Substituting the value of T , Tb, S and Sb in Eq. (40, 
41), we get 

 
22

1 ,
coti i

B
Nu

R R


                                    (42) 

21 2 .Sh E                                                           (43) 

5. RESULTS AND DISCUSSION 

In this section, we discuss the effect of parameters on 
the onset of convection, heat trans-port, mass 
transport. From linear stability analysis we plot 
neutral stability curve for the different values of 
parameters from the expression of thermal Rayleigh 
number. However from nonlinear analysis section, 
we solve the set of differential equations numerically 
and result is used to plot the curve for heat and mass 
transport with respect to time. We show the 
behaviour of heat and mass transport for the different 
values of parameter graphically more-over we made 
a comparison for the case with and without internal 
heat source for viscoelastic fluid. We also draw 
stream lines, isotherms and isohalines for unsteady 
case. 

Figures (1-7) shows the neutral stability curve for 
different values of parameters. Figure (1) shows 
the effect of stress relaxation parameter on the 
onset of convection, we observe that the stress 
relaxation parameter advances the onset of 
convection for its increasing values. Figure (2) 
represents the effect of strain retardation 
parameter and from the graph it is clear that the 
strain retardation parameter delays the onset of 
convection for its increasing values. Figure (3) 
shows the effect of mechanical anisotropic 
parameter on the onset of convection and is 
observed from the graph that the mechanical 
anisotropic parameter advances the onset of 
convection for its increasing values it means that, 
if we fix the permeability in vertical direction and 
increase the permeability in horizontal direction or 
decrease the permeability in vertical direction and 
fix the permeability in horizontal direction the 
critical Rayleigh number decreases hence 
advances the onset of convection. Figure (4) 
shows the variation of thermal Rayleigh number 
for the different values of thermal anisotropic 
parameter and is clear from the graph that the 
thermal anisotropic parameter delays the onset of 
convection for its increasing values which means 
that if we fix the thermal diffusivity in vertical 
direction and increase the thermal diffusivity in 
horizontal direction or we decrease the thermal 
diffusivity in vertical direction and fix the thermal 
diffusivity in horizontal direction, the onset of 
convection delays. Figure (5) shows the variation 
of thermal Rayleigh number for the different value 
of internal heat source parameter and is found that 
internal heat source parameter advances the onset 
of convection for its increasing value that is if we 
increase the strength of the internal heat source the 
onset of convection advances starts early. Figure 
(6) shows the effect of Darcy-Prandtl number and 
is observe that Darcy-Prandtl advances the onset 

of convection for its increasing value this means 
that if we fix the Darcy number and increase the 
Prandtl number or we decrease the Darcy number 
and fix the Prandtl number the onset of convection 
advances. From Fig. (7) we observe that solute 
Rayleigh number delays the onset of convection 
for its increasing value. Figure (8) shows that the 
diffusivity ratio delays the onset of convection for 
its increasing value this indicates that, if we fix the 
solutal diffusivity and increase the thermal 
diffusivity in vertical direction or decrease the 
solutal diffusivity and fix the thermal diffusivity in 
vertical direction the onset of convection 
delays. 

 

 
Fig. 1. Oscillatory neutral stability curves for 

different values of stress relaxation 
parameter λ1. 

 

 
Fig. 2. Oscillatory neutral stability curves for 

different values of strain retardation 
parameter λ2. 

 

 
Fig. 3. Oscillatory neutral stability curves for 

different values of mechanical anisotropy 
parameter ξ. 
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Fig. 4. Oscillatory neutral stability curves for 

different values of thermal anisotropy 
parameter η. 

 

 
Fig. 5. Oscillatory neutral stability curves for 

different values of internal heat source 
parameter Ri. 

 

 
Fig. 6. Oscillatory neutral stability curves for 

different values of Darcy-Prandtl number PrD. 

 

 
Fig. 7. Oscillatory neutral stability curves for 

different values of solute Rayleigh number RaS. 
 

 
Fig. 8. Oscillatory neutral stability curves for 

different values of diffusivity ratio τ. 
 

Variation of Nusselt number with respect to time for 
the different values of parameter is shown in the 
Figs. (9-16), initially Nusselt number oscillates with 
time and as time increases it became steady. Figure 
(9) shows the effect of stress relaxation parameter 
and is clear from the graph that the heat transport 
increases for the increasing value of stress relaxation 
parameter, moreover isotropic case is the extreme 
case, From Fig. (10) it is clear that the heat transport 
decreases for the increasing value of the strain 
retardation parameter, Fig. (11) shows the effect of 
mechanical anisotropic parameter on heat transport 
and is found that heat transport decreases for the 
increasing value of mechanical anisotropic 
parameter, that is, if we fix the permeability in the 
vertical direction and increase the permeability in 
horizontal direction heat transport de-creases or fix 
the permeability in horizontal direction and decrease 
the permeability in vertical direction heat transport 
decreases. Figure (12) shows the effect of thermal 
anisotropic parameter and is clear from the graph that 
the heat transport increases for the increasing value 
of thermal anisotropic parameter, that is, if we fix 
thermal diffusivity in vertical direction and increase 
the thermal diffusivity in horizontal direction heat 
transport increases or fix the thermal diffusivity in 
horizontal direction and decrease the thermal 
diffusivity in vertical direction heat transport 
increases. Figure (13) shows the effect of internal 
heat source and is found that the heat transport 
increases for the increasing value of internal heat 
source parameter that is if we increase the strength of 
internal heat source heat transfer increases. Figure 
(14) revealed that for the increasing value of Darcy-
Prandtl number heat transport increases, this means 
if we increase the Prandtl number or decrease the 
Darcy number the heat transfer increases by keeping 
one of them fixed in the Darcy-Prandtl number. It 
should be mentioned here for the fixed value of 
varying parameter, heat transport is greater in 
isotropic case than anisotropic case, moreover when 
internal heat source is present, the heat transport is 
greater than the case when internal heat source is 
absent, from Fig. (15) we observe that for the 
increasing value of solute Rayleigh number the rate 
of heat transfer increases. From Fig. (16) we found 
that heat transfer decreases to increase in the 
diffusivity ratio it means that, if we fix thermal 
diffusivity in vertical direction and increase the 
solutal diffusivity the heat transfer decreases or fix 
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solutal diffusivity and increase the thermal 
diffusivity in vertical direction heat transfer 
increases. 

 

 
Fig. 9. Variation of Nusselt number with time for 

different values of λ1. 

 

 
Fig. 10. Variation of Nusselt number with time 

for different values of λ2. 

 

 
Fig. 11. Variation of Nusselt number with time 

for different values of ξ. 
 

 
Fig. 12. Variation of Nusselt number with time 

for different values of η. 

 
Fig. 13. Variation of Nusselt number with time 

for different values of Ri. 

 

 
Fig. 14. Variation of Nusselt number with time 

for different values PrD. 

 

 
Fig. 15. Variation of Nusselt number with time 

for different values RaS. 

 

 
Fig. 16. Variation of Nusselt number with time 

for different values τ. 
 

Variation of Sherwood number with respect to 
time for the different values of parameter is shown 
in the Fig. (17-24), initially Sherwood number 



A. Srivastava and A. K. Singh / JAFM, Vol. 11, No.1, pp. 65-77, 2018.  
 

73 

oscillates with time and as time increases it 
became steady. Figure (17) revealed the effect of 
stress re-laxation parameter and is observed from 
the graph that the mass transport increases for the 
increasing value of stress relaxation parameter, 
From Fig. (18) it is noted that the mass transport 
decreases for the increasing value of strain 
retardation parameter. Figure (19) shows the effect 
of mechanical anisotropic parameter on mass 
transport and is found that mass transport 
decreases for the increasing value of mechanical 
anisotropic parameter, if we fix the permeability in 
the vertical direction and increase the permeability 
in horizontal direction mass transport decreases or 
fix the permeability in horizontal direction and 
decrease the permeability in vertical direction 
mass transport decreases. Figure (20) shows the 
effect of thermal anisotropic parameter and is 
observed from the graph that the mass transport 
increases for the increasing value of thermal 
anisotropic parameter It means that if we fix 
thermal diffusivity in vertical direction and 
increase the thermal conductivity in horizontal 
direction mass transport increases or if we fix the 
thermal conductivity in horizontal direction and 
de-crease the thermal diffusivity in vertical 
direction mass transport increases. Figure (21) 
shows the effect of internal heat source and is 
found that the mass transport decreases for the 
increasing value of internal heat source parameter, 
it means that if we increase the strength of internal 
heat source mass transfer decreases. Figure (22) 
presents the effect of the Darcy-Prandtl number 
and is found that for the increasing value of Darcy-
Prandtl number mass transport increases that is if 
we fix the Darcy number and increase the Prandtl 
number or decrease the Darcy number and fix the 
Prandtl number the mass transfer increases. It 
should be mentioned here for the fixed value of 
varying parameter mass transport is greater in 
isotropic case than anisotropic case, from Fig. (23) 
we found that for the increasing value of solute 
Rayleigh number the mass transfer increases. 
From Fig. (24) we see that mass transfer decreases 
for the increase in the diffusivity ratio, this 
indicates that if we fix thermal diffusivity and 
decreases the solutal diffusivity the mass transfer 
increases or we fix the solutal diffusivity and 
increases the thermal diffusivity mass transfer in-
creases. 

 

 
Fig. 17. Variation of Sherwood number with 

time for different values λ1. 

 
Fig. 18. Variation of Sherwood number with 

time for different values λ2. 

 

 
Fig. 19. Variation of Sherwood number with 

time for different values ξ. 

 

 
Fig. 20. Variation of Sherwood number with 

time for different values η. 

 

 
Fig. 21. Variation of Sherwood number with 

time for different values Ri. 
 

Variation of stream lines, isotherms, isohalines at 
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different instant of time is shown graphically in 
Figs. (25–27) for the fixed value of parameters Ri 
= 2, λ1 = 0.8, λ2 = 0.3, ξ = 0.5, η = 0.5, RaS = 100, 
 = 0.5, PrD = 10. Fig. (25a-25c) revealed that the 
magnitudes of stream lines increases as time 
increases, Figs. (26a-26c) shows the variation of 
isotherms for the different instant of time and if 
clear that from the graph initially isotherms are flat 
and parallel shows the heat transport is only by 
conduction and as time increases isotherms starts 
oscillating and then forms contour showing that as 
time increases convection contributes in heat 
transport, similar behaviour is observed for 
isohalines in Figs. (27a-27c). 

 

 
Fig. 22. Variation of Sherwood number with 

time for different values PrD. 

 

 
Fig. 23. Variation of Sherwood number with 

time for different values RaS. 

 

 
Fig. 24. Variation of Sherwood number with 

time for different values τ. 
 

 
 

 
Fig. 25. Variation of stream lines with time. 

 

6. CONCLUSIONS 

We investigated the onset of convection for double 
diffusive convection with internal heat source in an 
infinite horizontal anisotropic porous layer which is 
heated and salted from below saturated with 
viscoelastic fluid. We also investigated the behaviour 
of heat and mass transfer and compare our result with 
isotropic case and Newtonian fluid. The following 
conclusions has been made from our analysis, for the 
increasing values of parameter 

1. Relaxation parameter λ1: advances the onset of 
convection, heat transfer increases, mass 
transfer increases. 

2. Retardation parameter λ2: delays the onset of 
convection, heat transfer decreases, mass 
transfer decreases. 

3. Internal heat source parameter Ri: advances 
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the onset of convection, heat transfer in-
creases, mass transfer decreases. 

4. Mechanical anisotropic parameter ξ: advances 
onset of convection, heat transfer decreases, 
mass transfer decreases. 

5. Thermal anisotropic parameter η: delays on-set 
of convection, heat transfer increases, mass 
transfer increases. 

6. Darcy-Prandtl number PrD: advances onset of 
convection, heat transfer increases, mass 
transfer increases. 

7. Diffusivity ratio number τ: delays onset of 
convection, heat transfer decreases, mass 
transfer decreases. 

8. Solute Rayleigh number RaS: delays onset of 
convection, heat transfer increases, mass 
transfer increases. 

 

 
 

 
Fig. 26. Variation of isotherms with time. 

 
 

 
Fig. 27. Variation of isoconcentrations with time. 
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