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ABSTRACT 

The present paper deals with a numerical method for prediction of cavitation damage level and location on 
dam spillways. A method was applied to predict the intensity of cavitation damage to spillways, using the 
fuzzy k-nearest neighbor algorithm. Five levels of damage intensity were considered to predict cavitation 
damage in the spillway of Karun-1 Dam in Iran. According to the results, the proposed model could properly 
predict the location and intensity of damage in comparison with the actual damage reports of past floods. 
According to the Pearson's correlation coefficient, mean absolute error, coefficient of residual mass, and 
normalized root mean square error, the fuzzy k-nearest neighbor model is efficient and suitable. 
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NOMENCLATURE 

C number of Classes 
k number of Nearest Neighbors  
n number of attributes  
P reference flow pressure 
PV water vapor pressure 
V reference flow velocity 
X training set samples 

Y test data set 

μ the membership degree 
θ spillway angle to horizontal axis 
ρ fluid density 
σ cavitation index 
σi cavitation inception index 
σ(x) standard deviation 

1. INTRODUCTION

Spillways are important hydraulic structures, 
designed for frequent use in conveying both normal 
and flood releases. They are used to prevent dam 
overtopping and provide adequate stability and 
safety during floods (Chow, 2009). Surface 
irregularities and high-flow velocities on spillways 
can cause low pressure, result in cavitation, and 
induce damage over time. Cavitation damage on the 
structure surface is usually predicted using 
cavitation index (Eq. (1)). For prevention of damage 
on a hydraulic structure, σ>σi is required 
everywhere on the structure (Falvey, 1990 and 
Khatsuria, 2005). 
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Where σ is cavitation index, σi is cavitation 
inception index,  ߩ is the water density, ௩ܲ is the 
water vapor pressure, ܲ is the reference flow 
pressure, andܸ is the reference flow velocity. 

As cavitation damage has been one of the major 
engineering concerns about dam spillways, many 
efforts have been made to verify the damage 
mechanism. Ramamurthy et al (1984), Nie (2001), 
Momber (2004), Dong et al. (2008), Fufeng and 
Deming (2011) and Frizell et al. (2013) have 
investigated cavitation damage occurrence on dam 
spillways using experimental modeling under 
controlled laboratory conditions. Moreover, 
numerical modelling such as: Falvey (1990), Yuan 
and Schnerr (2003), Bilušn et al. (2007), Dular and 
Coutier-Delgosha (2009) and Luo et al. (2012) have 
successfully simulated and investigated flow 
characteristics and cavitation formation. 

Falvey (1990) introduced the WS-77 software to 
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Table 1 The Karun-1 dam characteristics 

Type 
Length  

(m) 
Height  

(m) 
Reservoir capacity 

(million m3) 
Type of 
spillway 

Maximum 
water level (m) 

Capacity of 
spillway (m3/s) 

Double curvature 
concrete 

380 200 3000 
Ski-chute with 

gate 
530 16500 

 

 

investigate the mechanism of cavitation damage on 
spillways. The measurements showed that for all 
surface irregularities, the cavitation inception index 
is between 0.076 and 1.2. Yuan and Schnerr (2003) 
proposed a new model to investigate the cavitating 
nozzle flow potent interaction with the beyond jet 
formation using the volume-of-fluid (VOF) method. 
Bilušn et al. (2007) presented a numerical 
cavitation model to investigate cavitating flows and 
bubbles formation process. The results obtained by 
the model were validated with experimental flow 
examples. Dular and Coutier-Delgosha (2009) 
examined the possibility of cavitation erosion 
detection in a hydrofoil using the CFD method. Luo 
et al. (2012) numerically investigated the aeration 
devices effect on cavitation formation in tunnel 
spillways using a segmentation algorithm.     

According to the past research on the cavitation 
phenomenon, a method which can predict the extent 
and location of cavitation damage on spillways is 
needed. In the present study, for predicting the level 
and location of cavitation damage to the spillways, 
a method is utilized using fuzzy k-nearest neighbor 
(kNN) algorithm. The results of this method are in 
agreement with the measures of cavitation damage 
in this phenomenon. 

2. FUZZY-KNN ALGORITHM  

In data mining and pattern recognition, kNN 
algorithm is a popular nonparametric instance-based 
machine learning algorithm (Li and Deogun, 2009). 
Keller et al. (1985) introduced a fuzzy standard 
kNN model by integrating the fuzzy set theory into 
the algorithm (fuzzy-kNN). Both fuzzy-kNN and 
kNN algorithms require the analysis of similarity 
between the labeled instances in the training set and 
a new query instance (unknown instance). By 
finding a set of kNNs and casting a vote on the 
query instance class, the unknown instance is 
categorized in a class through combining the votes 
(Roh et al., 2010 and Derrac et al., 2016). 

In the fuzzy-kNN approach, a fuzzy membership 
function of samples is assigned to different 
categories rather than individual classes (similar to 
the kNN algorithm) (Derrac et al, 2014). Let 
X=(x_1,x_2,…,x_n) is a training set composed of 
"n" samples which belong to C classes. For a new 
query instance Y, a cluster of kNN class attributes 
can be used to predict class confidence values, 
using the following equation (Keller et al., 1985): ݑ(ݕ) = ∑ ఓೕ(ଵ/ฮ௬ି௫ೕฮమ/(షభ))ೖೕసభ∑ (ଵ/ฮ௬ି௫ೕฮమ/(షభ))ೖೕసభ                             (2) 

where i=1,2,…,C and j=1,2,…, k. To increase the 
distance of query instances from the elements of the 

training dataset, the fuzzy strength parameter, m, is 
used. Its value can be selected as ݉ ∈ (1, +∞), 
which is usually 2 (Derrac et al, 2016). ฮݕ −  ฮ isݔ
the Euclidean distance of y from its jth nearest 
neighbor from the training data xj. In addition, ߤ is 
the membership degree of instance xj from the 
training set in class i, which satisfies the following 
relations: ߤ ∈ [0, 1]                                                         (3-a) 0 < ∑ ୀଵߤ < ݇                                               (3-b) ∑ ୀଵߤ = 1                                                    (3-c) 

where 1 ≤ ݅ ≤ and 1 ܥ  ≤ ݆ ≤  ݇ 

There are different techniques to define ߤ. In a 
crisp labeling, each instance has full membership in 
its determined class and non-membership in others. 
The kNNs of each training set data (xk) are 
determined in constrained fuzzy membership, and 
xk membership in each class can be evaluated with 
the following membership equation (Keller et al, 
1985): 

(ݔ)ߤ = ቐ 0.51 + ቀೕ ቁ ∗ 0.49,    ݂݅ ݆ = ݅ቀೕ ቁ ∗  ቑ      (4)  ݁ݏ݅ݓݎℎ݁ݐ             ,0.49

where nj represents the neighbor's number fitting the 
jth class. This fuzzy scheme causes no arbitrary 
assignments. Additionally, membership values of 
the vector should provide adequate assurance for 
outcome classification. 

3. MODEL PROCESSING AND 

APPLICATION 

Data from Karun-1 Dam spillway (Shahid 
Abbaspour) were used to examine the model. This 
dam is a double-curvature concrete dam on Karun 
River, Khuzesten, Iran. Table 1 indicates some of 
the dam characteristics. The dam chute spillway is 
comprised of 3 bays (width, 18.5 m), controlled by 
radial gates (dimension, 20m×15 m) (Mahab 
Ghodss, 2003). 

There are numerous reports of cavitation damage in 
the operation history of this spillway. In 1977, the 
first cavitation damage occurred in the spillway, 
causing damage to the ending spillway regions and 
flip-bucket. In 1993, the most important cavitation 
damage was reported in a flood of nearly 92 m3/s/m 
(Kiamanesh, 1996). 

According to numerical models, flow characteristics 
including pressure, velocity, and depth for various 
flow rates were determined along the spillway 
(Fadaei-Kermani and Barani 2014). The values of  



E. Fadaei Kermani et al. / JAFM, Vol. 11, No. 2, pp. 323-329, 2018.  
 

325 

 
Fig. 1. The values of piezometric pressure for different flow rates. 

 

 
Fig. 2. The profiles of average flow velocity for different flow rates. 

 

 
Fig. 3. The values of cavitation index for different flow rates. 

 

 

piezometric pressure along the spillway and average 
velocity profiles for 8 different flow rates are shown 
in Fig. 1 and 2. The flow cavitation index can be 
calculated using Eq. (1), which is expressed as Eq. 
(5) on the spillway surface. 
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where atmospheric pressure (
ಲఊ ) is 10.33 m water 

height, 
ೡఊ  is water vapor pressure equal to 0.25 m 

water height at 20°C (2450 pascals), and θ is the 
chute horizontal angle. Figure 3 indicates the results 
of cavitation index along the spillway.  

4. RESULTS AND DISCUSSION 

The extent and location of cavitation damage on 
Karun-1 Dam spillway was predicted with a fuzzy-
kNN model. At the beginning of modeling, it is 
necessary to normalize the data to prevent bias 
towards an attribute. Using Eq. (6), all input data 
can be transformed to determine variables with 
standard deviation of 1 and mean of 0 (Xindung and 
Kumar, 2009). 
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                                                                     (6) 
where X' is the normalized value of the attribute, 
σ(x) represents the standard deviation, and x ̅ 
denotes the mean of attribute in the reference set. 
Overall, 5 levels of damage (from no damage to 
major damage) are determined using the 
cavitation index to identify the risk of damage to 
the spillway surface. The damage level intervals 
were characterized according to the cavitation 
damage intensity, and analyses were conducted 
on damage mechanisms in the spillway. Table 2 
shows the levels of cavitation damage (Kermani 
et al. 2013). 

 

Table 2 Cavitation damage level intervals 
(Fadaei-Kermani et al. 2013) 

level Cavitation damage risk cavitation index 

1 No cavitation damage σ > 1 

2 Possible cavitation damage 0.45 < σ ≤ 1 

3 Cavitation damage 0.25 < σ ≤ 0.45 

4 Serious damage 0.17 < σ ≤ 0.25 

5 Major damage σ ≤ 0.17 

 
Due to the results of numerical modeling, the flow 
pressure and velocity values for all flow rates were 
measured in every 0.5 m along the spillway length. 
Moreover, the cavitation index values were also 
calculated respectively. So the database consists of 
about 9648 data of the pressure, velocity and 
cavitation index values. Since the cavitation damage 
level intervals have been determined relying on 
cavitation index; so the model main attributes are 
the values of cavitation index for all different flow 
rates along the spillway. 

The model starts by calculating the distance 
between the attributes, sorting, and labeling each 
query. Then, the number of the closest neighbors 
(k parameter) is identified. Using n-fold cross-
validation, the best value of k parameter can be 
determined (Hastie et al. 2008). The k-value was 
measured with 3-fold cross-validation. The 
precision of the method is shown in Fig. 4, 
considering the sum of squared errors (SSEs). As 
it can be seen, k values equal to 15 and 18 
produced the lowest errors. Therefore, k=18 is 
chosen in the model, as larger values of k often 
minimize the overfitting risk. After calculating 
the number of k nearest neighbors, fuzzy kNN 
modeling can be applied to determine the 
intensity of cavitation damage to the spillway. 
Figure 5 shows the fuzzy kNN algorithm used to 
predict cavitation damage.  

 
Fig. 4. Threefold- cross validation error 

estimation. 
 

 
Fig. 5. The fuzzy kNN model algorithm for 

cavitation damage prediction. 
 

In this study, the fuzzy kNN algorithm was used to 
determine the risk of cavitation damage. The 
structure of spillway can be divided into 10 regions 
from 50 m beyond the crest of spillway to the end 
of flip bucket. Table 3 shows the predicted 
cavitation damage intensity and risk along the 
spillway. Conforming to the results of fuzzy kNN 
model, the spillway would face the risk of 
cavitation damage (most probably serious to major  

Start 

Numerical Modeling

Determine flow Characteristics (P, V and …)

Input flow Characteristics (P, V and …)

Calculate cavitation index (Eq. 5) 

Determine membership degree of the instance (Eq. 3)

3-fold cross validation (determine the value of K)

Determine the class memberships assigned to every 
region (Eq. 2)

Calculate distance between attributes 
Weighing, Sorting, Labeling the attributes

Evaluate the accuracy of the model 

Display cavitation damage level and 
location, statistical coefficients  

End
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Table 3 Cavitation damage risk predicted by the fuzzy kNN model 

Assigned membership to each cavitation damage level 
Region 

Level 5 Level 4 Level 3 Level 2 Level 1 

0.0000 0.0000 0.9925 0.0075 0.0000 
Region 1 

From ST. 50m to ST. 70m 

0.0000 0.0000 0.3225 0.6775 0.0000 
Region 2 

From ST. 70m to ST. 90m 

0.0000 0.2483 0.7517 0.0000 0.0000 
Region 3 

From ST. 90m to ST. 110m 

0.0262 0.7773 0.1965 0.0000 0.0000 
Region 4 

From ST. 110m to ST. 130m 

0.9338 0.0662 0.0000 0.0000 0.0000 
Region 5 

From ST. 130m to ST. 150m 

0.3447 0.6553 0.0000 0.0000 0.0000 
Region 6 

From ST. 150m to ST. 170m 

0.6136 0.3864 0.0000 0.0000 0.0000 
Region 7 

From ST. 170m to ST. 190m 

0.8200 0.1800 0.0000 0.0000 0.0000 
Region 8 

From ST. 190m to ST. 210m 

1.0000 0.0000 0.0000 0.0000 0.0000 
Region 9 

From ST. 210m to ST. 230m 

1.0000 0.0000 0.0000 0.0000 0.0000 
Region 10 

From ST. 230m to ST. 250m 
 

 

damages), and major damage to the ending regions 
of chute might happen (distance of 210 to 250 m 
from the crest of the spillway). Comparison of the 
fuzzy-kNN model with crisp labeling (Fadaei-
Kermani et al., 2015) showed that the present 
model provides more plausible predictions of 
damage to the spillway. According to reports of 
actual cavitation damage to Karun-1 Dam spillway 
in previous floods, the proposed model can 
reasonably predict the intensity and location of 
cavitation damage.  

Statistical coefficients including normalized root 
mean square error (NRMSE), Pearson's correlation 
coefficient (r), coefficient of residual mass (CMR), 
and mean absolute error (MAE) were measured to 
analyze the precision and efficiency of the model. 
The statistical coefficients were calculated as 
follows (Gelman et al, 2014). 
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where n represents the number of attributes, and xi 
and yi represent the values of ith measured and 
predicted attributes, respectively. Table 4 shows the 
calculated values of the coefficients. According to 
the results, the reasonable Pearson's correlation 
coefficient value indicates a strong association 
among variables. Moreover, the low values of 
CRM, MAE, and RMSE show low error and good 
precision of the fuzzy kNN model. 

5. CONCLUSION 

In the present paper, a method was introduced using 
the fuzzy-kNN algorithm for predicting cavitation 
damage intensity to the spillways.  Data from 
Karun-1 Dam spillway were collected to examine  
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Table 4 the fuzzy kNN model evaluation 
CRM NRMSE MAE r  

0.007 0.110 0.167 0.873 Fuzzy k-nearest neighbor model 

0.0087 0.1153 0.197 0.862 Crisp NN model (Fadaei-Kermani et al., 2015) 
 

 

the model. Pursuant to the results, the proposed 
model presents appropriate predictions of cavitation 
damage intensity and location in comparison with 
actual damage reports on the spillway in previous 
floods. The model accuracy and efficiency were 
evaluated and quantified using statistical 
coefficients. Appropriate values of Pearson's 
correlation coefficient (r, 0.873), MAE (0.167), 
NRMSE (0.110), and CRM (0.007) show that the 
fuzzy-kNN model is efficient and suitable. 
Therefore, the model results can be useful in design 
considerations of spillways and adoption of 
appropriate measures to deal with damages caused 
by this phenomenon. 
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