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ABSTRACT 

The present article purposes to investigate the solute dispersion through an annular pipe in the presence of 
heterogeneous chemical reactions among the species and wall of the annulus. The solute is considered to 
experience a kinetic reversible phase exchange with the inner wall layer and irreversible absorption into the 
wall. Two kinds of oscillatory flow (Poiseuille and Couette flow) are considered in order to track the complex 
interactions between the velocity distributions and the reaction parameters. The method of moments as 
proposed by Aris-Barton is used to determine the apparent dispersion coefficient. The moment equations has 
been solved by using a standard finite difference implicit scheme, valid for small as well as large times. 
Dispersion coefficient due to the combined effect of reversible and irreversible reactions has been discussed 
in a variety of flow situations. Dispersion coefficient may be enhanced owing to the reversible and 
irreversible heterogeneous reactions in the boundary. On the basis of flow characteristics, radius ratio 
provides a mixed behaviour of the dispersion coefficient. Dimensionless mass proves to be an increasing 
function of reversible and irreversible boundary reaction parameters. 

Keywords: Dispersion coefficient; Reversible reaction; Irreversible reaction; Phase exchange; Damköhler 
number. 

NOMENCLATURE 

D  molecular diffusivity 

cD apparent dispersion coefficient 

Da Damköhler number 
i  time index during navigation 
j space index  

P  Poiseuille number  
Pe Peclet number 
Q  mobile phase concentration 

Qs immobile phase concentration   

r  radial coordinate 

ir  internal radius  

or external radius  

Sc Schmidt number 
t  time 
u axial velocity

2  skewness 

3  kurtosis 

z  axial coordinate 
 kinematic viscosity

p frequency of pressure pulsation

w  frequency of wall oscillation

  irreversible reaction rate constant
  Dirac delta function

p amplitude of pressure pulsation

w amplitude of wall oscillation

q q-th order central moment

  phase exchange rate 
  density 
  aspect ratio  

1. INTRODUCTION

In solute transport processes, the dispersion is one 
of the mechanisms which is used to understand the 
transport of substances in a flowing stream. 

Because of its extensive applications in various 
filed of science and technology, the study of 
longitudinal dispersion of tracer is of considerable 
interest to the scientific community. Transport in 
presence of wall reactions is getting more attention 
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since it is essential to numerous industrial and 
physiological circumstances, e.g., chromatography, 
electrophoresis, human arteries, flow through 
fractures etc. The behaviour of the dispersion 
coefficient is significantly influenced by the 
pulsatile nature of stream, particularly, when mean 
pressure gradient is smaller than the amplitude of 
the pulsating pressure gradient. 

Taylor (1953) was the pioneer who carried out the 
first fundamental study on dispersion revealing the 
fact that, rate of broadening of species is due to the 
joint interactions among radial diffusion and 
velocity shear in the axial direction. Aris (1956) 
considered longitudinal diffusion for extension of  
Taylor's theory and developed the celebrated 
`method of moments' to examine the response of the 
statistical varience for large times. Barton (1983) 
then detect  certain errors in Aris’s  method of 
moments and established a new approach known as 
Aris-Barton method of moments which is true  for 
all time. 

The study on solute dispersion in a time-dependent 
Poiseuille and Couette flows have been covered by 
assuming pressure gradient fluctuation that can alter 
the flow  (Aris ( 1960); Mazumder and Das (1992);  
Sarkar and Jayaraman (2004)), whereas some have 
made the periodic movement of the boundary wall 
responsible for the flow (Bandyopadhyay and 
Mazumder (1999), Paul (2011)). Using self-
developed derivative expansion method, 
Sankarasubramanian and Gill (1973) studied the 
dispersion of solute under catalytic wall reaction. In 
a pulsatile flow through annulus, the consequences 
of wall absorption on dispersion has been discussed 
by Sarkar and Jayaraman (2004); Mazumder and 
Mondal (2005).  Further more, they have 
highlighted the application to their model in 
catheterized artery. A solution of convection-
diffusion equation in a two immiscible viscous fluid 
flowing between two parallel plates under chemical 
reaction has been derived analytically by Kumar, 
Umavathi and Basavaraj (2012). Utilizing a singular 
perturbation technique, the solute transport 
(reactive) via Newtonian fluid flowing across a thin 
or a long curved pipe has been studied by Marušić-
Paloka and Pažanin (2011). In a subsequent work of 
Pažanin (2013) also discussed the same under the 
consideration of a Micropolar fluid flowing through 
a circular pipe. In solute diffusion, Mikelić, 
Devigne and van Duijn (2006) investigated the 
dispersion in a model flow through a semi-infinite 
two-dimensional channel, for large Pe clet  and 
Damkohler  numbers. Rosencrans (1997) worked 
on Taylor dispersion in a curved channel and 
proposed that the effective diffusion can be 
minimalized by the consideration of curvature 
effects. Also, if we assume a straight channel 
boundary, it will increase the value of effective 
diffusion. By extending  homogenization technique, 
Wu and Chen (2014) studied the transverse 
variation of concentration for the scalar transport 
along a straight pipe. In a recent work of Wu, Fu 
and Wang, (2016), the configuration of the 
comprehensive spatial concentration distribution 
has been appropriately considered and it is reported 

that instead of the flat cross-sections, solute 
concentration develops uniformly dispersed across a 
family of fixed curved transverse surfaces. However 
these articles were commonly restricted only with 
first-order irreversible reactions. Using 
homogenization technique, Ng and Bai (2005) 
studied the transport of a reactive material under the 
presence of reversible sorptive phase exchange at 
the boundary of parallel plates where the flow 
pulsation occurred due to movement of upper plate. 
Studies exist in the literature where irreversible and 
reversible boundary reactions are considered while 
discussing the dispersion process ( Ng (2006);  Ng 
and Rudraiah, (2008)). 

More specifically, the present article considers the 
effect of pipe’s annularity and flow pulsation to 
explore the mechanism of dispersion by the 
combined impact due to kinetic reversible phase 
exchange as well as irreversible heterogeneous 
reactions between the species and inner wall. The 
prime scope of the present work is to make a 
comparative study between various kinds of 
reactions and flows which are of great importance 
in the spreading of tracers in environmental and 
biological processes.  

2. THE PROBLEM UNDER 

CONSIDERATION 

An incompressible viscous fluid is supposed to flow 
through an annular pipe having radii denoted as a  

and b ( )a b , where the flow is considered 
unsteady, fully developed, laminar and axi-
symmetric. The geometry of the annulus is fixed by 

its radius ratio  
b

a

 
 
 

 whereas its hydraulic 

diameter 2( )d a b   determines the region of 
flow.  Using a cylindrical coordinate system, the 
geometry of the annulus as depicted in Fig. 1, 
which indicates that radial and axial coordinates are 
represented by r and z respectively. The bars over 
each quantities meaning that they are dimensional.  
 

z

r

b

a
 

Fig. 1. Schematic diagram of the setup under 
consideration. 

 
In this investigation the aspect ratio is infinite 
because of the infinite axial extent of the system 
which is also a main reason for longitudinal 

dispersion. Thus the independence of velocity, u , 
of z  and   is confirmed. 

Following Schlichting (1979), the momentum 
equation which satisfies the velocity distribution in 
the longitudinal direction is, 
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1 1u p u
r

t z r r r



            

    (1) 

where   is the density,   is the kinematic 
viscosity and p  represents fluid pressure 
respectively.  

As dispersion is known to largely influence by the 
flow patterns, our aim is to capture the complex 
dependency between the dispersion coefficient and 
the reaction parameters in a variety of flow 
situations such as Poiseuille and Couette flows 
respectively. 

2.1   Convection-Diffusion Equation 

We have assumed that a Newtonian fluid is flowing 
through the annular gap of a pipe, also a chemical 
species is suspended into the solvent which is 
totally miscible. The species are involved with two 
different kinds of reactions, viz., kinetic reversible 
phase exchange and irreversible absorption at inner 
boundary of annulus. It has been observed that 
some part of substances stick to the wall of tube 
while the remaining particles flow along with fluid. 
Hence to recognize the type of chemical substance, 
two phases are considered in the modelling of 
species: mobile phase and immobile phase. Species 
that flows with fluid is known as mobile phase and 
that which is fixed at the wall is known as immobile 

phase. Let the Q  is taken as mobile phase 
concentration and the concentration of the immobile 

phase be sQ . If they are in equilibrium state, 

possess a constant ratio which is termed as partition 
coefficient, i.e., 

sQ

Q
   (2) 

where   is known as partition coefficient or a 
chemical specific constant. If it is impossible to 
reach the equilibrium state, the following first-order 
kinetics describes the exchange of the two phases 
(Ng (2006); Ng and Rudraiah, (2008)): 

( )s
s

Q
K Q Q

t


  


 

(3) 

here K  is rate constant of  reversible reaction. 

The transport equation that governs the 

concentration ( , , )Q t r z  is  

2

2
( , )

Q Q Q D Q
u r t D r

t z r r rz

     
         

 
(4) 

where D  considered as constant molecular 
diffusivity of the solute. 

The initial condition is supposed that 

(0, , ) ( ) ( ),Q r z G r z b r a                    (5) 

The boundary conditions for the above transport 
equation is given by (Ng (2006); Ng and Rudraiah, 
(2008)) 

( ) ats
s

QQ
D Q K Q Q r b

r t


       

 
  (6) 

0      at
Q

r a
r


 


                                 (7) 

where ( )G r  taken as function of r , ( )z  
considered as Dirac delta function. Eq.(6) represents 
absorbing and reflecting boundary conditions at the 
inner boundary of the annulus such that both the 
processes (wall absorption and retention) are not 
dependent on each other and it is possible to 
prescribed their rates individually. If we assume the 
nature of the chemical species is of inert in type w.r.t 
the wall material ( 0)   and there is no storage on 

the inner wall ( 0)sQ  , the above system reduces to 

the conventional convection-diffusion equation with 
simple impermeable boundary conditions, a case 
extensively studied in the literature ( Mazumder and 
Mondal (2005); Paul and  Mazumder (2008)). 

The dimensionless quantities proposed for the 
present problem are listed below.   

0 0

2

2

, , , ,

, , ,

, ,

s
s

QQ r z
Q Q r z

Q dQ d d

t ud Kd
t u Da

Dd

d
Sc

D d D







    



   

 

     


            (8) 

Utilizing Eq. (8), the above system of equations can 
be rewritten as, 

2

2

1 1
( , )

Q Q Q
u r t r

t z

Q

Sc r r r z

                 
 

(9) 

with the conditions 

o(0, , ) ( ) ( ), ( )iQ r z G r z r r r    (10) 

( ) at is
Q

Q Da Q Q r r
r


      


 
(11) 

o0 at
Q

r r
r


 


 

(12) 

Here o ( 1 / (1 ))r    and ( / (1 ))ir    are the 

outer and inner radius of the annular pipe in 
dimensionless form. Sc is known as Schmidt 
number measures the dominance among viscous 
diffusion and molecular diffusion in mass transfer 
processes. 

The concentration of the immobile phase, sQ  

mentioned in Eq. (11) can be obtained from 

( , ) [ ( , , ) ( , )]s i s
Da

Q z t Q z r t Q z t
t Sc


  


 

(13) 

with ( ,0) 0s zQ  . 

The parameters aD ,   and  represent the 
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heterogeneous reactions at the inner boundary of the 
annular tube. They respectively are the Damkohler  
number ( when 1Da  , it indicates that rate of 
reaction is higher than rate of diffusion),  
irreversible absorption parameter (if 1  , 
depletion of huge portion of mass at very short 
duration) and phase partition ratio or retention 
parameter (if 1  , indicates that partition occur 
more quickly within phases while reverse will be 
considered for 1  ).  

2.2   Poiseuille Flow 
Let us consider a pulsatile flow due to the periodic 

pressure gradient *1
1 Re( )pi t

p
p

P e
z




         

 , 

and no slip condition holds  ( , ) ( , ) 0u a t u b t   

at walls of the tube, the velocity  (sa )( y)pu u   in 

dimensionless form is given by, 

( ) ( , )p ps pou u r u r t   (14) 

where
2 2 2

2 2

log
( ) ( )

4 4 log( / )

                         ( log log )
4log( / )

ps o i
o i

i o o i
o i

P P r
u r r r r

r r

P
r r r r

r r

    


  

 
2

1 0 2 02

( , )

Re ( ) ( ) 1 p

po

i tp
p p

p

u r t

P
i C J i i r C Y i i r e

 




     



with 

0 0
1

0 0 0 0

( ) ( )

( ) ( ) ( ) ( )

p o p i

p i p o p o p i

Y i i r Y i i r
C

J i i r Y i i r J i i r Y i i r

 

   






 

0 0
2

0 0 0 0

( ) ( )

( ) ( ) ( ) ( )

p i p o

p i p o p o p i

J i i r J i i r
C

J i i r Y i i r J i i r Y i i r

 

   






 1i   ; p is the amplitude and p
p d





  is 

the frequency of pressure pulsation. 

2.3   Couette Flow 

Let us consider a pulsatile flow due to the axial 
movement of outer wall of the annular pipe 

 ( , ) 1 Re( ) , ( , ) 0wi t
wu a t U e u b t     and the 

pressure gradient is constant *1 p
P

z
 
   

, the 

flow profile in dimensionless form is given by 

( ) ( , )w ws wou u r u r t   (15) 

where 

2 2
2 ( )log

( )
4 4 log( / )

o i
ws

o i

r r rP P
u r r

r r


   

 

2 2log log log( / )
     

4 log( / ) log( / )
i o o i e i

o i o i

r r r r R r rP

r r r r


  

  2

1 0 2 0( , ) Re ( ) ( ) wi t
wo w wu r t C J i i r C Y i i r e      

with 

0
1

0 0 0 0

( )

( ) ( ) ( ) ( )
w w i

w i w o w o w i

Y i i r
C

J i i r Y i i r J i i r Y i i r


   






0
2

0 0 0 0

( )

( ) ( ) ( ) ( )
w w i

w i w o w o w i

J i i r
C

J i i r Y i i r J i i r Y i i r


   







 

U , represents the steady component of velocity 
due to the movement of the outer wall, w  is the 

amplitude and w
w d




  is the frequency of the 

wall oscillation. 
3 *

2

d P
P


  is the Poiseuille number 

and e
ud

R


  is the Reynolds number. ‘Re (.)’ 

indicates the real part of a complex number. 

3. MOMENT EQUATIONS 

 Following Aris (1956), the thq moment of solute 
distribution (within a mobile phase) in the 
longitudinal direction as 

( ) ( , ) ( , , )qq t r z Q t r z dzQ



  

 

(16) 

Also the thq   moment for solute distribution 
(within an immobile phase) can be defined as 

( ) ( ) ( , )qq
s st z Q z t dzQ




                               (17) 

Using Eqs. (16) and (17), in Eqs. (9)- (13) become  

( ) ( )
( 1)

( 2)

1 1
( , )

                                            )
1

( 1

q q
q

q

Q Q
r u r t

t Sc r r r
q

Q

Q

q q
Sc





   
       



 

 

(18) 

With 

( )

( )
( ) ( ) ( )

( )

o

( ) for  q 0
(0, )

0 f

 

 or  q 0

[ ] at 

0 at ,

q

q

i
q q q

s

q

G r
r

Q
Q Da Q Q r r

r

Q
r

Q

r
r


   

        
 


  

   
(19) 

It will be apparent that ( ) 1G r   for oir r r  . 

In the immobile phase the equation for the moments 
of the mass distribution is 



S. Debnath et al. / JAFM, Vol. 11, No. 2, pp. 405-417, 2018.  
 

409 

( ) ( ) ( )d
( , )

d
q q q

s si
Da

Q Q t r Q
t Sc

      
 

(20) 

with ( ) (0) 0.q
sQ    

An angle bracket is employed to symbolize the 
averaging of the cross-sectional area of annulus, as 

o( ) ( )
2 2
o

2
( ) ( , )

ii

r
q q

r
t rQ t r dr

r
Q

r


   
 

(21) 

Now with the help of Eq. (21), the integral moment 
Eqs. (18) and (19) can take the form as 

 

( ) ( )
2 2
o

( ) ( )

( 1) ( 2)

2 d 1
( , )

d

           ( , ) ( )

1
               q ( , ) ( 1)

i
i

i

i

q q

q q
s

q q

r
Q t r

t Sc r r

Da Q t r Q t

u r t Q q q
Sc

Q

Q 

 

   

 

  (22) 

with,  

( ) (0) 1 for  q 0

               0 for  q 0

qQ  

 
 

 

(23) 

The distribution of solute concentration can be 
describe with respect to the central moments as 
follows 

o

o

2

0
2

0

( ) d d d
( )

d d d

i

i

r

q
r

r

r

q
g Qr z z r z

t
r rQ z



















  

  
        (24) 

Where 

(1)

(0)

d

d
g

z v
z

v

QQ

Q Q
   
  

 

 

is the first moment or centroid of the solute 

distribution. (0)Q  represents the actual amount of  

solute in the bulk flow. 

For values   q 2,3 and 4  in Eq. (24), the second, 
third and fourth order central moments are:  

(2)
2

2 (0)

(3)
3

3 2(0)

(4)
2 4

4 3 2(0)

( ) ,

( ) 3 , .

( ) 4 6 ,

g

g g

g g g

Q

Q

Q

t z

t z z

t

Q

z z z
Q

Q



 

  


  


   



   



      (25) 

When analyzing the phenomena of dispersion, Aris 
(1956) revealed the physical significance of an 
integral moments having concentration  mentioned 
in Eq.(25). The integral moment Eq.(18),  
represents sequence of inhomogeneous equations 

for 0,1,2,3,......;q   and can be solved for 
sufficiently excessive values of q  for the 
distribution to be developed at any degree of 
accuracy. As finally distribution leads to normality 
so the first two moments are eventually enough for 
the description of distribution where the third and 
fourth moments should be zero. First three and four 
moments provide very significant information about 
the progress of dispersion. The complete nature of 
the slug can be efficiently described by those 
integral moments:  

The zeroth order moment provides the whole area 
under the distribution curve, which in other way 
relating to the overall mass of the mobile phase. 
Observing at the initially located source, first order 
moment is useful to find the position of the center 
of mass distribution. Among them the variance or 
second order central moment ( 2 ) about mean is 

the most important since the rate of change of 2  

with respect to time is same as dispersion 
coefficient. According to Aris (1956), the form of 
the apparent dispersion coefficient cD proposed as 

2
c

d
D

dt


                                               (26) 

The coefficient of skewness 
3

2
2 3 2( / )    and 

kurtosis 2
3 4 2( / 3)     are also essential for 

finding the solution of mean concentration 
distribution in the axial direction. 

4. NUMERICAL SOLUTION 

A standard finite difference method (FDM) 
constructed on Crank-Nicolson implicit scheme has 
been implemented for the solution of differential 
Eqs. (18) and (20) with initial and boundary 
conditions in Eq. (19) as of difficulties in moment 
equation for 1q  . The entire width of the annulus 

is divided into ( 1)M   equal slice of mesh size r , 
denoted by grid point j . Thus the inner and outer 

walls of the annulus are addressed by 1j   and 

j M  individually, i.e., ijr r ( 1)j r   . The 

time is indexed by the grid point i  where each of 
the step size is assumed to be t . The general form 
of time discretization is ( 1)it t i    , hence the 

initial time 0t   is found for fixed 1i  . ( ) ( , )qQ i j  

represent the particular values of  ( )qQ  at the grid 
points i  and j  respectively.  The proposed FDM 
scheme reduce the differential equations into a tri-
diagonal coefficient matrices as: 

( ) ( )

( )

( 1, 1) ( 1, )

                                   ( 1, 1) ,

q q
j j

q
j j

P i j Q i j

R i j S

Q Q

Q

    

  
 

 

(27) 

 where jP , jQ , jR  and jS  are termed as element 

of  matrix. 
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The finite difference form of the initial condition is, 

( ) (1, ) 1 for 0

0 for 0

q q

q

jQ  
 

 
 

(28) 

and that of boundary conditions are 

( ) ( )

( ) ( )

( ) ( )

( 1,0) ( 1,2) 2 ( )

( 1,1) 2 ( 1),

(at the surface of the inner cylinder)

( 1, 1) ( 1, 1),

(at the surface of the outer  cylinde

 

r)

q q

q q
s

q q

i Q i r Da

i rDaQ i

i M Q i M

Q

Q

Q

       

   

    

   (29) 

where ( ) ( )q
sQ i  can be computed from the relation 

( ) ( )

( )
( ) ( 1,1)

( 1)
1

q q
s

q
s

Da
iQ t Q i

Sc
i

Da
t

S

Q

c

       
    

   (30) 

with the initial condition ( ) (0) 0q
sQ  . 

Utilizing the Thomas algorithm (Anderson, 
Tannehill and Pletcher (1984)), the solution of 
Eqs. (27) - (30) has been done by means of a 
MATLAB code. The computation steps are as: (i) 
From Eqs. (14) and (15), the velocity distributions 

( , )u r t of Poiseuille and Couette flows are 

estimated first. (ii) utilizing the results of ( , )u r t  
obtained from the previous step at every grids, the 

solution of the concentration ( )qQ  is computed 
from the moment Eq. (18). (iii) this step will find 

the solutions of ( )q
sQ from Eq. (20) as we already 

know the values of ( ).qQ  and (iv) lastly, using 
Simpson's one-third rule, cross sectional average 

( )qQ  is calculated from Eq. (21)  as the 

solutions of ( , )u r t , ( )qQ  and ( )q
sQ are all known  

at the matching grid positions.  

Numerical computations have been executed for 
steady, oscillatory and combined flow situations 
by their individual effect on dispersion process 
under the variation of different parameters and 
velocity distributions. We know the Crank-
Nicolson implicit scheme is unconditionally 
stable for arbitrarily any fixed values 

of 2/ ( )t r  , also suitably small mesh 

size o( ( ) / ( 1))ir r r M     of spatial and 

temporal ( 0.00001)t   discretization have been 

confirmed an accuracy of 510  in the results.  

In  all  the  cases  we  have  taken  5 ,p w p     

31, 1, 0.5, 10 .w Re P Sc       Both the time 

and space intervals are needed to be small to 
observe the pulsatile behavior in dispersion and to 
maintain the accuracy of the outcomes.  

5. DISTRIBUTIONS OF MEAN 

CONCENTRATION 

According to very popular works of Taylor (1953), 
for a shear-dependent flow, the distribution of 
solute concentration is centered on a point which 
travels with the mean speed of the flow. Taylor 
dispersion process describes an asymptotic stage for 
transport of solute across transversely restricted 
flow region. The mean concentration distribution in 
the longitudinal direction forms a Gaussian like 
distribution during the transport process. When the 
major effect is convection in comparison to 
dispersion, it is estimated that resulting curve will 
considered nearly Gaussian (Levenspiel and Smith 
(1957)) then the concentration might be 
characterized by way of series in Hermite 
polynomials. The Aris’s method of moment is 
useful for finding the central moments, again using 
higher order central moments it is likely to 
approximate the average axial concentration 
distribution Qm(z,t) of tracer across the flow region 
via help of Hermite polynomial representation of 
non-Gaussian curves (Mehta, Merson and McCoy 
(1974)). The cross-sectional mean concentration 

( , )mQ z t is defined as 

2(0)

0

( , ) ( ) ( ) ( )m n n
n

z t t e aQ tQ H





             (31) 

where 

(1)

2 (0)
( ) / 2 ,g g

Q
z

Q
z z     and iH  

represents the Hermite polynomial and is satisfying 
the recurrence relation as 

1 1( ) 2 ( ) 2 ( ), 0,1,2,i i iH H iH i           

and 0( ) 1.0H     

The coefficients ia 's are 

 1/2
0 2 1 2

1/2
3 0 2 4 0 3

1 / 2 , 0,

             2 / 24, / 96

a a a

a a a a



 

  

 
 

 
(32) 

Thus, utilizing the values of various central 
moments obtained from Eq. (25), the mean 
concentration distribution of chemical species in the 
axial direction can be estimated from Eq. (31) at 
any fixed time. 

6. RESULTS AND DISCUSSION 

To study the longitudinal dispersion of reactive 
material flowing through an annular pipe, a 
pulsatile nature of Poiseuille and Couette flows are 
considered due to its versatile applications. In this 
article, a dispersion study is carried out using the 
Aris-Barton’s methodology and the following cases 
were examined to verify the accuracy of the 
numerical scheme: 

Case-I: If 0Da  , the present problem can be 
reduced to  the study of S. Paul (2011) when the 
flow unsteadiness is due to the upper wall 
oscillation. To this end, the model responses outlaid 
in Fig. 2 displays complete agreement with those 
obtained in the study of solute dispersion of S. Paul  
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Fig. 2. Variation of the dispersion coefficient cD  with time when 0Da  , 0.1  , 10w  , (a) for 

small times; (b) for large times. 
 

 

(2011) without reversible reaction. (see Figs. 2(a, b) 
totally coincide with Figs. 7(a, b) in (S. Paul (2011) 
when irreversible reaction parameter value is 0 ).  

Case-II: If the inner boundary of annular pipe is 
inert, the present model becomes a circular pipe 
model when 0  , a case studied by Mazumder 
and Das (1992) under time dependent poiseuille 
flow. Figure 3 shows the axial distribution of mean 

concentration due to combined flow when 0  , 
0Da   and 0  , etc., qualitatively agrees the 

result of Mazumder and Das (1992) for pipe flow, 
such that, the increase of dispersion times lead to 
decrease the peak of the distribution. However, the 
quantitative differences realized in Fig. 3 is 
attributed to differing normalization scales adopted 
in the present study. 
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Fig. 3. Axial distribution of mean concentration 
with time for a combined flows under periodic 

pressure gradient when  Da = 0 , Γ = 0 , 

pα = 1 , vp=1.5, and η = 0 . 

 
Variation of dispersion coefficient with respect to 
time is shown in Fig. 4 for a variety of steady flows 
with different values of the reaction parameters. A 
wide range of time is considered to track the 
asymptotic approachment of the dispersion 
coefficient. As already mentioned earlier two types 
of flow patterns ((i) flow due to pressure gradient, 
(ii) flow due to the axial movement of the outer 
cylinder and two types of reaction parameters 
((i) Damkohler number Da , and (ii) irreversible 
absorption parameter   have been considered for 

the present study giving rise to an array of figures 
with two rows and two columns. Profiles in the first 
column of Fig. 4 are for flow because of pressure 
gradient while next column describes nature of 
dispersion coefficient when the flow is due to 
movement of the upper wall of the annulus 
respectively. The two successive rows explain 
respectively the effects of   and Da  on the 
dispersion coefficient in various flow circumstances 
as mentioned above. 

From Fig. 4, initially, dispersion coefficient is 
found to increase with time in a significant manner 
though as time goes the increments get slower in 
any flow situation. Flow due to the steady 
component of wall oscillation, Figs. 4(b, d) show 
that dispersion coefficient increases with respect to 
both reversible and irreversible reaction parameters. 
It is remarkable to note that for flow driven by 
pressure gradient, cD  is increasing with  and Da  

for times 12t  and 10t  respectively. Again, after 
that critical times, for both reversible and 
irreversible boundary reactions, the increase of 
reaction parameters may lead to reduce the value of 
the dispersion coefficient. [This fact can be realized 
further from Fig. 10] 

For the case of purely oscillatory flow, time 
assessment of dispersion coefficient is shown in 
Figs. 5, and 6 for small and large time respectively. 
During the initial time, dispersion coefficient with 
the variation of reaction parameters is found to be 
irrespective of the flow situations (Fig. 5).  It has 
shown in Fig. 5, in any flow situation the increase 
of reaction parameters that are associated with the 
heterogeneous irreversible and reversible reactions 
(i.e.,  and Da ) on the inner tube wall may lead to 
increase the dispersion coefficient. It is worthy to 
note that the response of dispersion coefficient with 
reaction parameter should not considered as final, 
situation may be different depending on other factor 
such as duration of time, reaction strength, radius 
ratio etc. This fact can be partially realized later 
from Fig. 9. The gradual development of a second 
peak in the dispersion curve is noticeable from any 
of the Fig. 5. For pressure driven flow the peak is 
almost suppressed; whereas it is partially expressed 
in outer wall driven flow. When the time is large,  
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Fig. 5. At small times, variation of the dispersion coefficient against time for purely oscillatory flow 
for different reaction parameters and velocity profiles. Other descriptions are as in Fig. 4. 

 

somewhat similar qualitative effects of different 
reaction parameters on the dispersion coefficient 
can be seen from Fig. 6. 

For combined flow, the response of dispersion 
coefficient with time (small and large) are displayed 
in Figs.7 and 8 separately. The arrangement of the  
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Fig. 4. For steady flow, variation of the dispersion coefficient with time for two different kinds of 
reaction parameters and also for two different kinds of flow. (a, b) Effect of heterogeneous 

irreversible reaction (  ) when 2Da  , (c, d) effect of heterogeneous reversible 
reaction ( Da ) when 3  . (a, c) For flow driven by pressure gradient, (b, d)  

for flow driven by axial motion of the outer wall of the annulus. 
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Fig. 6. Same as Fig. 5, but at large times. 
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Fig. 7. For combined flow, variation of the dispersion coefficient against time at small times for 
different reaction parameters and velocity profiles. Other descriptions are as in Fig. 4. 

 

figures is same as the previous figures. It can be 
seen from Fig. 7 that, similar to the case of purely 
oscillatory flow, in this case also dispersion 
coefficient indicates an increasing trend with the 
growth of reaction parameters relating to boundary 
reactions. More vivid effects of the reaction 
parameters can be noted in Fig. 8, though the 
qualitative nature of the dispersion coefficient 
remains the same as in initial time (Fig. 7) under the 

variation of the reaction parameters. Also, 
responses of the dispersion coefficient seem to be 
more sensitive at large time, i.e., at large time 
effects are more pronounced. 

The effect of radius ratio   on solute dispersion 
has been demonstrated in Fig. 9 when the combined 
effect of both steady and oscillatory velocity 
components are assumed. Fig. 9(a) is due to  



S. Debnath et al. / JAFM, Vol. 11, No. 2, pp. 405-417, 2018.  
 

414 

0 0.5 1 1.5
1

2

3

4

5
x 10

−3

t

D
c

 

 

 = 0.05
0.1
0.2

( a )
 

0 0.5 1 1.5
−0.05

0

0.05

0.1

0.15

t

D
c

 

 

 = 0.05
0.1
0.2

( b )
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different types of unsteady flow situations where unsteadiness is caused by the (a) sole oscillation of 
the pressure gradient and (b) sole oscillation of the outer wall of annular tube. when 3   and 

Da = 2.  
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Fig. 10. Flow driven by steady pressure gradient, variation of the dispersion coefficient with time for 
two different kinds of reaction parameters, (a): effect of heterogeneous irreversible reaction ( ) 

when 2Da  , (b): effect of heterogeneous reversible reaction  ( Da ) when 3.   
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Fig. 8. Same as Fig. 7 but at large times. 
 



S. Debnath et al. / JAFM, Vol. 11, No. 2, pp. 405-417, 2018.  
 

415 

0 0.1 0.2 0.3 0.4 0.5
1

1.0002

1.0004

1.0006

1.0008

1.001

t

Q
0
(
t
,
Γ
)
/
Q

0
(
t
,
0
)

 

 

 = 1
3
7

( a )

 

0 0.1 0.2 0.3 0.4 0.5
1

1.0002

1.0004

1.0006

1.0008

1.001

t
 

 

 = 1
3
7

( b )

0 0.1 0.2 0.3 0.4 0.5
1

1.0001

1.0002

1.0003

1.0004

1.0005

1.0006

1.0007

t

Q
0
(
t
,
D
a
)
/
Q

0
(
t
,
0
)

 

 

Da = 1
2
5

( c )
 

0 0.1 0.2 0.3 0.4 0.5
1

1.0001

1.0002

1.0003

1.0004

1.0005

1.0006

t
 

 

Da = 1
2
5

( d )

Fig. 11. (a, b) Dimensionless mass as a function of heterogeneous irreversible reaction parameter   
against time, (c, d) dimensionless mass for the reversible reaction parameter Da  against time. 

Other descriptions are as in Fig. 4. 
 

periodic pressure gradient such that larger values of 
  makes a significant decrements on cD . Also 

large values of   leads to increase the value of 
dispersion coefficient when the outer wall 
movement of an annular pipe is the reason of flow 
pulsation (Fig. 9(b)). Hence from the present model, 
the relation among cD  and  are completely 

depending on the flow geometry.  

When 0q  , Eq. (22) becomes, 

(0) (0)
2 2

21
( , , , ,...) ( , )    i

i
o i

r
t Da t r dt

Sc r
Q Q

r
   

    

(0) (0)
2 2

21
( , ) ( )i

i s
o i

r
Da t r dt t dt

Sc r
Q

r
Q        

(33)   

Here (0) ( , )it rQ  and (0) ( )sQ t  can be found from the 

solution of Eqs.(18) and (20) respectively. Eq. (33) 
signifies the actual mass of the reactive species 
where the 1st and 2nd term of the right side of 
Eq.(33) represent  the effects of irreversible 
boundary absorption and phase exchange 

respectively. When 0Da   , (0) 1Q  , 

representing total mass in the annular gap is 
constant with time. It can be seen from Fig.11 that 

dimensionless mass 

(0)

(0)

( , ,...)

( ,0,...)Q

Q t

t


 and 

(0)

(0)

( , ,...)

( ,0,...)

t DaQ

tQ
 are increasing functions of the 

corresponding parameter and time t . 

For steady flow, the mean of the concentration 
distribution in the axial direction has been shown in 
Fig. 12. Flow driven by pressure gradient, the 
concentration curves head may rise with the 
augmentation of the both  and Da , the respective 
irreversible and reversible parameters for 
heterogeneous reactions at the inner boundary. An 
opposite scenario has been observed from the flow 
driven by the axial motion of the outer cylinder, 
such as, stronger  or Da  both lead to a fall of the 
peak of the concentration profile. 

7. CONCLUSIONS 

The paper aims to investigate the effect of 
heterogeneous reaction on the dispersion coefficient 
through an annulus. As we know the flow 
conditions may significantly control the dispersion 
process, both Poiseuille and Couette flow are taken 
into consideration for analysis. The coupled effects 
of the reaction parameters on the dispersion 
coefficient are examined in two different flow 
conditions. 

The study disclose the following attributes of 
transport of species: 

i. For all times, cD , on account of steady part of 

outer wall oscillation is an increasing function 
of both   and Da  respectively. 

ii. At small time, cD , owing to steady part of 

periodic pressure gradient is an increasing 
function of both   and Da  respectively.  
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Fig. 12. Axial distribution of mean concentration for two different kinds of steady flows with 
different values of the reaction parameters at a fixed time, 5. t   Other descriptions are as in Fig. 4. 

 

However, after that critical time cD  is 

decreased by the reaction parameters. 

iii. In any flow situation dispersion coefficient due 
to purely oscillatory as well as combined flows 
are increased by heterogeneous irreversible and 
reversible reactions at the inner tube wall. 

iv. In a Poiseuille flow, cD is decreased by 

increasing radius ratio of the annular tube which 
in contrast of the results obtained from Couette 
flow. 

v. In a Couette flow, both  or Da  lead to a fall 
of the head of the concentration profile. 
However, a reverse effect has been captured for 
Poiseuille flow. 
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