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ABSTRACT 

The instability of non-Newtonian power law fluid in double diffusive convection in a porous medium with 
vertical throughflow is investigated. The lower and upper boundaries are taken to be permeable, isothermal 
and isosolutal. For vertical throughflow the linear stability of flow is determined by the power law index (n), 
non-Newtonian Rayleigh number (Ra), Buoyancy ratio (N), Péclet number (Pe) and Lewis number (Le). The 
eigenvalue problem is solved by two-term Galerkin approximation to obtain the critical value of Rayleigh 
number and neutral stability curves. It is observed that the neutral stability curves, as well as the critical wave 
number and Rayleigh number, are affected by the parameters such as Péclet number, buoyancy ratio and 
Lewis number. The neutral stability curves indicate that power law index n has destabilizing nature when it 
takes values for dilatant fluid at low Péclet numbers while for the pseudoplastic fluids it shows stabilizing 
effect. In the absence of buoyancy ratio and vertical throughflow, the present numerical results coincide with 
the solution of standard Horton-Rogers-Lapwood Problem. The numerical analysis of linear stability for the 
limiting case of absolute pseudoplasticity is also done by using Galerkin method. 

Keywords: Porous medium; Non-newtonian fluid; Buoyancy ratio; Rayleigh number; Lewis number. 

NOMENCLATURE 

a dimensionless wave number 
D diffusivity 
g gravitational acceleration ܭ∗ generalised permeability  
K permeability 
Le Lewis number 
N buoyancy ratio 
n power law index  
P dynamic pressure 
Pe Peclet number 

Ra Rayleigh number 
χ thermal diffusivity µ∗ effective consistency factor 
βC concentration expansion coefficient 
βT thermal expansion coefficient 
σ heat capacity ratio 
 porosity 

1. INTRODUCTION

The study of heat and mass transfer in natural 
convection for Newtonian fluid flow in a porous 
medium is an interesting topic of re-search due to 
its applications in science and engineering, such as 
geophysics, biology, meteorology and chemical 
engineering etc. Vast literature can be found on the 
linear stability of convection in a porous medium 
saturated by the Newtonian fluid. Nield and Bejan 
(2017) and Drazin and Reid (2004) gives 
comprehensive details related to the instability of 
Newtonian fluid. 

For non-Newtonian fluid, the study of hydro-

dynamic and thermoconvective instability has many 
applications, such as petroleum production, 
chemical engineering and in liquid food, etc. Most 
frequently used models for non-Newtonian fluids 
are Ostwald-de Waele power law, Carreau-Yasuda, 
Bingham Herschel-Bulkly, Maxwell, Oldroyd-B, 
etc. Shenoy (1994) focused on heat transfer in 
different models of non-Newtonian fluid flow in a 
porous medium. For Ostwald-de Waele power law 
model, Barletta and Nield (2011) explained the 
linear instability of a power law fluid saturated 
porous layer for horizontal throughflow where 
boundary planes were considered as impermeable 
and isothermal. For more general temperature 
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boundary conditions in a porous medium, it was 
extended by Alves and Barletta (2013). The 
convective instability of vertical throughflow of a 
Newtonian fluid saturated horizontal porous 
medium was developed by Sutton (1970) and by 
Homsy and Sherwood (1976). In a non-Newtonian 
power law fluid saturated porous layer, the 
convective instability of vertical throughflow was 
investigated by Barletta and Storesletten (2016). 

The combined effect of heat and mass transfer 
(double diffusive convection) in porous media 
received the considerable attention of the 
researchers due to its physical importance in real 
life applications such as, in seawater flow, chemical 
processes, geology, food processing, etc. In natural 
convection, the impact of double diffusive 
convection in a cavity occupied by Newtonian fluid 
was numerically investigated by the Nikbakhti and 
Khodakhah (2016). The problem on double 
diffusive fingering convection, where flow is 
assumed to be periodic and two dimensional in the 
horizontal direction was studied by Chen and Chen 
(1993). It was numerically solved by Galerkin and 
finite difference methods. The linear stability of 
non-Newtonian Maxwell fluid for double diffusive 
convection was examined by Wang and Tan (2008). 
They explained that the effect of double diffusion 
and relaxation time on critical Rayleigh number for 
Maxwell fluid. For inclined thermal gradient, the 
convective instability in a horizontal porous 
medium was examined by Nield (1991). The 
numerical computation was carried out using 
Galerkin method. The combined effect of inclined 
thermal and solutal gradient in porous layers was 
studied by Nield et al. (1993) and for Soret effect it 
was extended by Narayana et al. (2008). They 
explained the various modes of instability and 
determined the critical Rayleigh number using two-
terms Galerkin approximation. 

The purpose of the present investigation is to 
examine the effect of double diffusive convection 
on linear stability of non-Newtonian power law 
fluid saturated porous medium with vertical 
throughflow. From this analysis, it is noticed that 
the linear stability of vertical through flow for a 
power law fluid is influenced by large parameter 
space. For numerical computation, we used two-
terms Galerkin approximation. The numerical 
analysis of the neutral stability is also done for the 
limiting case of absolute pseudoplastic fluid. In the 
absence of solute concentration and vertical 
throughflow, the result obtained agree with the 
conclusion drawn by Barletta and Nield (2011). 

2. MATHEMATICAL MODEL 

Consider, a horizontal porous medium saturated by 
Ostwald-de-Waele power law fluid of thickness H, 
with permeable, isothermal and isosolutal boundary 
planes at z = 0 and z = H. The x-axis is along the 
horizontal direction and gravitational acceleration g 
is acting in the opposite direction of vertical z-axis. 
The vertical temperature and concentration 
difference across the boundaries is ∆T and ∆C 
respectively and u is a velocity vector with 

Cartesian components (u,v,w). 

 

 
Fig. 1. Schematic of the power law fluid 

saturated porous layer with vertical throughflow 
and isothermal and isosolutal boundary 

conditions. 

 
The governing equation for non-Newtonian power 
law fluid flow in a porous medium with thermal and 
solutal buoyancy forces which are modeled by 
Oberbeck-Boussinesq approximation, the 
generalized Darcy’s law as 
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In the above *K is the generalized permeability for 
the non-Newtonian power law fluid and 0 is the 

fluid density at some reference temperature 0T  and 

reference concentration 0C . For Newtonian fluid (n 

= 1)
*

*K


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K


. 

2.1 Governing Equations 

Under the extended form of Boussinesq 
approximation for concentration, the governing 
equations for the generalised Darcy’s Law of power 
law fluid with double diffusive transport in a porous 
medium may be written as 
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For permeable (constant vertical throughflow ଴ܹ), 
isothermal and isosolutal boundary planes in a 
porous medium, the boundary conditions are, ݖ = 0, ݓ = ଴ܹ, ܶ = ଴ܶ ൅ ∆ܶ, ܥ = ଴ܥ ൅ ݖ  ,ܥ∆ = ,ܪ ݓ = ଴ܹ, ܶ = ଴ܶ, ܥ =  ଴ .                         (6)ܥ
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2.2   Dimensional Analysis 

Non dimensionalizing the governing Eqs. (2) to (6) by 
using the following nondimensional quantities as, 
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 (7) 

By applying the curl operator on both side of Eq. 
(3), and removing (') from all parameters we obtain 
the pressure eliminated form of non dimensional 
governing equations and the boundary conditions as 

. 0,u                                                                  (8) 
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u ݖ (11)                                     = 0, ݓ = ܲ݁, ܶ = 1, ܥ = ݖ   ,1 = 1, ݓ = ܲ݁, ܶ = 0, ܥ = 0                            (12) 

with ˆze is the unit vector in z direction. The 
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 is the buoyancy ratio. 

2.3   Basic Solution 

The basic steady state solution of governing Eqs. 
(8) to (11) subject to boundary conditions (12) is 
given as 
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            (13) 

For the case of Pe → 0, the present basic solution 
for temperature is linear, which is coincides with 
the one that was given in Barletta and Nield (2011). 

3. LINEAR STABILITY ANALYSIS 

3.1   Disturbance Equations 

The linear stability of the basic steady state solution 

is investigated by introducing small disturbance in 
velocity, temperature and concentration as given 
below 
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where ε is a small perturbation parameter. After 
substituting Eq. (14) into Eqs. (8) to (12) and 

neglecting  2O   and beyond, we obtain the 

linearized equations and the corresponding 
boundary conditions as 
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Differentiating Eq. (16) with respect to y and (17) 
with respect to x, then by adding the resulting 
equations and making use of the continuity Eq. 

(15), we obtain  ˆˆˆ , ,w T C  formulation of the linear 

stability problem as 
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ݖ = 0,1 ∶  ŵ = 0, T̂ = 0, Ĉ = 0                  (25) 

Consider an arbitrary disturbance in normal modes 
form, 
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where η is a complex parameter whose real part 
describes growth rate of the disturbance, while 
imaginary part is angular frequency and f (x,y) is a 
solution of the two dimensional Helmholtz equation 
given by 
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with a > 0 is the wave number. By substituting Eqs. 
(26) and (27) into Eqs. (22) to (25) and by setting η 
= 0, we obtained the eigenvalue problem for the 
neutrally stable modes as : 
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3.2   Numerical Solution 

The two-term Galerkin approximation is employed 
to solve the system of ordinary differential Eqs. 
(28)-(30) along with the boundary conditions (31) 
to find the eigenvalue ܴܽ; detail descriptions are as 
given in Finlayson (2013). The trial solution for 
unknown variables ܹ ,  and ߰, which satisfies the ߠ
boundary conditions are taken as 

sin , sin , sini i iW iz iz iz       for i=1,2… 

Now the two-term approximations for ܹ ,  ߰ and ߠ
are written in terms of series of trial functions as: 
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where ܣଵ, ,ଶܣ ,ଵܤ ,ଶܤ  ଶ are constants. Weܥ ଵ andܥ
substitute Eq. (33) into Eqs. (28)-(31) and multiply 
first, second and third equation by ଵܹ,  ଵ and ߰ଵߠ
respectively. For a two-term approximation, the same 
process is repeated with ଶܹ,  ଶ and ߰ଶ, then integrateߠ
each term with respect to ݖ from ݖ =  0 to 1. After 
that, using integration by parts with boundary 
conditions, the system of ordinary differential 
equation is converted into six homogeneous equations 
in ܣଵ, ,ଶܣ ,ଵܤ ,ଶܤ  ଶ. The nontrivial solution ofܥ ଵ andܥ
six homogeneous equations is obtained, when det(ܽ௜௝) 
= 0. The determinant of a 6 × 6 matrix gives a 
polynomial in Ra whose coefficients are functions of 
remaining parameters such as N, Le, Pe, n and a. For a 
given set of input parameters (N, Le, Pe, n), the 
critical value of Rayleigh number Rܽ௖  corresponding 
to a wave number a is determined by using a 
FindMinimum command in Mathematica 9. 

4. RESULT AND DISCUSSION 

In the present analysis, the convective instability of 
the vertical throughflow with double diffusive 
convection in a non-Newtonian power law fluid 
saturated porous medium is investigated. The 
critical value of Rayleigh number is described for 
various value of n, Pe, N and Le. The results are 
presented in the form of neutral stability curves on 
the (a,Ra) plane. The region above and below the 
neutral stability curve represents the unstable and 
stable state of the basic solution respectively. The 
numerical scheme is validated for two special cases. 

For the case of |Pe| → 0 (no vertical through flow) 
with pure thermal convection (N = 0) the present 
results agree well with the conclusion given by 
Barletta and Nield (2011). From present 
investigation, it is observed that for Pe = 10ିଵ଴(|Pe| 
→ 0) the critical Rayleigh number is 5.75261 × 10ିଽ at the critical wave number ܽ௖ = 2.62649 for a 
dilatant fluid (n = 2) and Rܽ௖ = 2.87621 × 10଺ at ܽ௖ 
= 3.736 for a pseudoplastic fluid (n = 0.5). For 
Newtonian fluid (n = 1), the critical value of 
Rayleigh number is Rܽ௖ = 39.4784 with ܽ௖ = 
3.14159 and it coincides with the data given in 
Barletta and Nield (2011) (Eq. 43). The results 
obtained for pure thermal instability (N = 0) with 
vertical throughflow also agrees with the results 
given in Barletta and Storesletten (2016). 

What follows is the discussion on linear stability of 
power law fluid for vertical throughflow in double 
diffusive convection. Unlike in the case of pure 
thermal convection (N = 0) induced convective 
instability when one considers the double diffusive 
convection induced flow of power law fluid, the 
instability is governed by two crucial parameters 
namely the buoyancy ratio and the diffusivity ratio 
in addition to the other parameters. For numerical 
computation, some realistic range of parameters is 
considered as 0 < n ≤ 2, 0 ≤ Pe ≤ 2 (Barletta and 
Storesletten (2016)), −1 < N ≤ 1 and 0 < Le ≤ 10 
(Charrier-Mojtabi et al. (2007)). The effect of 
Lewis number Le and the buoyancy ratio N on the 
linear stability of fluid flow for varying values of 
power law index n has been investigated for some 
selected range of N and Le. 

The effect of buoyancy ratio and diffusivity ratio 
parameters on convective instability, the critical 
Rayleigh number Rܽ௖ for different values of power 
law index n and Péclet number Pe is shown in 
Table 1 for the aiding buoyancy and in Table 2 for 
the opposing buoyancy. From Table 1, it is 
observed that, for moderate vertical throughflow 
(Pe = 0.1), the critical Rayleigh number Rܽ௖ where 
the instability of this flow occurs decreased 
consistently with increasing value of Lewis number 
Le (in the range considered) for aiding buoyancy. 
This behavior is observed for both non-Newtonian 
dilatant and pseudoplastic fluids. As the intensity of 
this vertical throughflow is increased (which is 
signified by the increase in value of Pe), the critical 
Rayleigh number Rܽ௖ is seen to decrease upto 
certain values of Le and beyond which this  
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Table 1 Critical Rayleigh number for Pseudoplastic, Newtonian and Dilatant fluid for aiding buoyancy 
  Le Le=0.1 Le=1 Le=5 Le=10 

   Rܽ௖ Rܽ௖ Rܽ௖ Rܽ௖ 

 n=0.5 N=0.1 90.0824 82.7123 60.8288 46.2852 
  N=0.4 87.4832 64.9882 30.4935 18.6825 
  N=1 82.7102 45.4917 15.2651 8.51779 

Pe=0.1 n=1 N=0.1 39.101 35.902 26.4083 20.1131 
  N=0.4 37.9728 28.2087 13.2408 8.12368 
  N=1 35.901 19.7461 6.62892 3.70463 
 n=2 N=0.1 5.69755 5.2314 3.84868 2.93378 

  
N=0.4 
N=1 

5.53315 
5.23126 

4.11039 
2.87727 

1.92999 
0.966309 

1.1856 
0.540768 

 n=0.5 N=0.1 29.3991 27.0007 23.8507 27.2444 
  N=0.4 28.5296 21.2148 14.5664 18.2026 
  N=1 26.9356 14.8504 8.00404 9.34225 

Pe=1 n=1 N=0.1 40.4412 37.1427 33.1509 378.2444 
  N=0.4 39.2429 29.1835 20.5647 26.9894 
  N=1 37.0463 20.4285 11.3961 13.8243 
 n=2 N=0.1 59.0402 54.2255 48.3314 56.6399 

  
N=0.4 
N=1 

57.2881 
54.0768 

42.6058 
29.824 

30.7058 
17.1415 

42.1701 
21.6075 

 n=0.5 N=0.1 22.755 20.9139 21.7294 23.4853 
  N=0.4 22.0349 16.4323 17.538 25.4525 
  N=1 20.7204 11.5026 11.007 42.6844 

Pe=2 n=1 N=0.1 44.5503 40.9491 43.0284 46.0496 
  N=0.4 43.1302 32.1743 36.0919 50.2197 
  N=1 40.5393 22.522 22.9936 72.1946 
 n=2 N=0.1 130.801 120.235 127.36 135.209 
  N=0.4 126.608 94.4704 110.267 147.311 
  N=1 118.961 66.1293 71.638 236.422 

 

 

Rܽ௖ increased. This behavior is significantly 
affected by the buoyancy ratio parameter N. This 
phenomenon is tabulated for three different values 
of Pe. Thus, from this we conclude that the dual 
nature of Rܽ௖with Le depends on the intensity of the 
initial vertical through flow and the buoyancy ratio 
parameter. From Table 1 it is also noticed that the 
critical Rayleigh number Rܽ௖ for low Péclet number 
(Pe = 0.1) is higher for pseudoplastic fluid than the 
dilatant fluid, but this gets reversed as the value of 
the Péclet number becomes large. 

The destabilizing effect of the slow vertical through 
flow due to the (aiding) buoyancy parameter N for 
various values of the diffusivity ratio (Le) is clearly 
seen from the Figs. 2 and 3. When N = 1 the shift in 
neutral stability curve towards downward direction 
indicates that for Pe = 0.1 destabilizing nature of 
fluid will increase with increasing value of 0 < Le ≤ 
5. Thus the vertical throughflow ceases to be stable 
in the double diffusive convection even for small 
values of buoyancy ratio N and the Lewis number 
Le. From these neutral stability curves it is also 
evident that as the power law index n increases, the 
flow gets destabilized, which means, pseudo-plastic 
fluids are more stable compared to the dilatant fluid 
for small value of Pe. 

 
Fig. 2. Variation of Rayleigh number Ra with 

wavenumber a in aiding buoyancy (N = 1) for Pe 
= 0.1 and Le = 0.1. 

 
In opposing buoyancy situation, where thermal 
buoyancy and solutal buoyancy forces are 
oppositely directed, the flow instability 
phenomenon becomes more complicated and 
different from the aiding buoyancy case. The 
convective instability of a vertical through flow and 
Rܽ௖ is highly influenced by the buoyancy ratio N, 
diffusivity ratio Le and power law index n which is 
shown in Table 2. From this table, it can be seen  
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Table 2 Critical Rayleigh number for Pseudoplastic, Newtonian and Dilatant fluid for opposing 
buoyancy 

  Le Le=0.1 Le=1 Le=5 Le=10 
   Rܽ௖ Rܽ௖ Rܽ௖ Rܽ௖ 
 n=0.5 N=-0.05 91.4408 95.7721 120.936 174.562 
  N=-0.02 91.1659 92.8403 100.991 112.644 

Pe=0.1 n=1 N=-0.05 39.6907 41.5707 52.4832 75.5943 
  N=-0.02 39.5713 40.2981 48.8333 48.8661 
 n=2 N=-0.05 5.78347 6.05741 7.6461 10.9893 
  N=-0.02 5.76608 5.87198 6.38672 7.11647 
 n=0.5 N=-0.05 29.8539 31.2639 33.6033 30.8319 
  N=-0.02 29.7618 30.3069 31.1676 30.1593 

Pe=1 n=1 N=-0.05 41.068 43.0073 45.9156 40.072 
  N=-0.02 40.9411 41.6908 42.7655 41.3485 
 n=2 N=-0.05 59.9567 62.7874 66.6464 61.0646 
  N=-0.02 59.7711 60.8654 62.2974 60.2199 
 n=0.5 N=-0.05 23.1324 24.216 23.622 22.7859 
  N=-0.02 23.0559 23.4747 23.2535 22.916 

Pe=2 n=1 N=-0.05 45.2949 47.4147 46.0177 44.5865 
  N=-0.02 45.144 45.9633 45.4358 44.8577 
 n=2 N=-0.05 132.999 139.22 134.629 130.915 
  N=-0.02 132.554 134.958 133.212 131.711 

 
that for a small value of Péclet number (Pe = 0.1), 
the critical value of Rayleigh number Rܽ௖ increased 
consistently with increasing value of Lewis number 
Le. As Pe becomes large (Pe = 1), Rܽ௖ increased in 
the range 0 < Le ≤ 5 for N < 0, beyond which Rܽ௖ 
decreased. 

 

 
Fig. 3. Variation of Rayleigh number Ra with 
wavenumber a in aiding buoyancy (N = 1) for 

Pe=0.1 and Le = 5. 
 

 
Fig. 4. Variation of Rayleigh number Ra with 

wavenumber a in opposing buoyancy (N = −0.05) 
for Pe = 0.1 and Le = 0.1. 

Further increase in the Péclet number (Pe = 2), this 
dual nature for Rܽ௖ is seen to be starting even for 
smaller values of Le. This behavior is presented in 
Table 2. Similar to the case of aiding buoyancy, 
from this table, it is evident that in the case of 
opposing buoyancy also, the critical Rayleigh 
number Rܽ௖ for low Péclet number (Pe = 0.1) is 
higher for pseudoplastic fluid than the dilatant fluid, 
but this gets reversed as the value of the Péclet 
number becomes very large. 

The neutral stability curves for the opposing 
buoyancy case show the stabilizing effect of the 
vertical through flow, which is contrary to the 
case of aiding buoyancy. In Figs. 4 and 5, neutral 
stability curves are displayed for two values of Le 
when N = −0.05 for pseudoplastic and dilatant 
fluids. In the opposing buoyancy case, the fluid 
flow in a vertical direction is stabilized by the 
solutal buoyancy component while the thermal 
buoyancy which is oppositely directed to the 
solutal buoyancy, tries to destabilize this action. 
In this scenario, the value of the Lewis number 
plays an important role in mostly stabilization of 
the flow. From this figure, it is also seen that, for 
a low Péclet number, such as Pe = 0.1, the 
neutral stability curves shifted towards upward 
direction with increasing values of Lewis 
number. It means that increasing value of Lewis 
number will stabilize the basic flow. Neutral 
stability curves presented in Figs. 6 and 7 for Pe 
= 2, Le = 0.1 shows a shift towards the 
downward direction with increasing value of N 
right from the opposing buoyancy to the aiding 
buoyancy. It means that for a large value of Pe, 
the basic flow of dilatant fluid is more stable than 
the pseudoplastic fluid. Increasing value of 
buoyancy ratio N will increase the destabilizing 
effect of fluid. From all these graphs we can 
conclude that the presence of solute 
concentration has a significant effect on the linear 
stability of different kinds of non-Newtonian 
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fluids. 

 
Fig. 5. Variation of Rayleigh number Ra with 

wavenumber a in opposing buoyancy (N = −0.05) 
for Pe = 0.1 and Le = 5. 

 

 
Fig. 6. Variation of Rayleigh number Ra with 

wavenumber a for Pe = 2, Le = 0.1 and N=−0.05. 

 
4.1 The Limiting Cases of Absolute 
Pseudoplasticity, n → 0 and Absolute 
Dilatancy, n→∞ 

We observe the effect of vanishingly small value of 
power law index n (which is referred to as the case 
of absolute pseudoplasticity) on neutral stability 
curve mathematically for the double diffusive 
convective instability. For pure thermal convection 
case, Barletta and Storesletten (2016) presented a 
detailed discussion for the limiting case of n → 0 
and n → ∞, in terms of the Bessel functions. At n 
→ 0, the system of coupled ordinary differential 
equation is given by 

2 ( ) 0W a N                                             (34) 

2 ( ) 0Pe a WPeF z                            (35) 

21
( ) 0

a
Pe WLePeG z

Le Le
                   (36) ܼ = 0,1 ∶   ܹ = 0, ߠ = 0, ߖ = 0 .                   (37) 

The eigenvalue problem is solved numerically by 
using two term Galerkin approximation. The in-
stability of pseudoplastic fluid in the limiting case is 
shown in the Figs. 8 and 9 by neutral stability 
curves. 

In the aiding buoyancy, Ra is seen to be 
monotonically decreasing with a for all value of 
Le, which means that due to the presence of 
solute concentration, the destabilizing character 
of pseudoplastic fluid is further increased with 
increasing Pe and this is shown in the Fig. 8, the 
results are shown here for N = 1. When Pe 
increases, the curves shift towards the downward 
direction, increasing the instability region. 
Increasing Pe will enhance the shear rate of the 
fluid which is instrumental in reducing the value 
of apparent viscosity, the aiding buoyancy 
promotes early onset of convective instability of 
pseudoplastic fluid in this limiting case also. In 
the opposing buoyancy case also, Ra is 
monotonically decreasing with a for all value of 
Le, but with increase in Pe, the curves are seen to 
shift towards the upward direction leading to, 
increase in the stability region and this is shown 
in the Fig. 9, the results are presented for N = 
−0.05. The case of extremely large value of n(n 
→ ∞) is referred to as the case of absolute 
dilatancy, which is physically unrealistic. The 
mathematical significance of this physically 
unrealistic phenomenon for the case of thermal 
convection was discussed at length by Barletta 
and Storesletten (2016), but in the present 
investigation we ignore presenting this case. 
 

 
Fig. 7. Variation of Rayleigh number Ra with 
wavenumber a for Pe = 2, Le = 0.1 and N = 1. 

 

 
Fig. 8. Asymptotic case n → 0: neutral stability 
curve in the plane (a,Ra) with different value of 

Le and Pe for N = 1. 
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Fig. 9. Asymptotic case n → 0: neutral stability 
curve in the plane (a,Ra) with different value of 

Le, Pe for N = −0.05. 

 

 
Fig. 10. Variation of critical Rayleigh number 
Rࢉࢇ against n with different Le for N = 1 and 

Pe=0.1. 

 

 
Fig. 11. Variation of critical Rayleigh number 
Rࢉࢇ against n with different Le for N = −0.05 

and Pe = 0.1. 

 
4.2   Critical Case 

The effect of buoyancy ratio N on the convective 
instability of the vertical through flow for varying 
values of Lewis number Le and the power law index 
n, has been investigated for varying Péclet number 
Pe and it is presented in Figs. 10 and 11 for Pe = 
0.1 and in Figs. 12 and 13 for Pe = 2 respectively. It 
is evident from the Figs. 10 and 11 that the critical 
Rayleigh number Rܽ௖ is more for the pseudoplastic 
fluids compared to the dilatant fluid. With increase 

in Le, the Rܽ௖ decreased in the aiding buoyancy 
while the reverse nature is seen for the opposing 
buoyancy. For large values of the aiding buoyancy 
parameter, this critical value is the least. The 
physical explanation of this is that the effective 
viscosity of a dilatant fluid is zero as shear rate 
tends to zero (i.e., for small Pe) while it becomes 
infinite for pseudoplastic fluid at low shear rate. The 
onset of convective instability of dilatant fluid is 
represented by the vanishing value of Rܽ௖ while the 
flow instability for pseudoplastic fluid is 
represented by the large value of Rܽ௖. In both 
aiding and opposing buoyancy situation, with large 
shear rate (higher value of Pe) the critical value of 
Rayleigh number is monotonically increasing with 
increasing value of n, which is shown in Figs. 12 
and 13. The higher value of Pe will enhance the 
shear rate of the fluid, which increase the effective 
viscosity of the dilatant fluids and decreases that for 
the pseudoplastic fluids. The instability phenomena 
of the fluid for dilatant fluid is shown by the higher 
value of Rܽ௖ and for pseudoplastic fluid, it is 
explained by the lower value of Rܽ௖. But in case of 
large Pe no regular trend is seen for varying value 
of Lewis number Le. 
 

 
Fig. 12. Variation of critical Rayleigh number 
Rࢉࢇ against n with different Le for N = 1 and 

Pe=2. 
 

 
Fig. 13. Variation of critical Rayleigh number 
Rࢉࢇ against n with different Le for N = −0.05 

and Pe = 2. 
 

5. CONCLUSION 

Unlike in the case of pure thermal convection 
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induced instability, when one considers the double 
diffusive convection induced flow of power law 
fluid, the instability is governed by two crucial 
parameters namely the buoyancy ratio N and the 
diffusivity ratio Le in addition to the other 
parameters. For moderate vertical throughflow (Pe 
= 0.1), the critical Rayleigh number Rܽ௖ decreased 
consistently with increasing value of Le in the 
aiding buoyancy, for both dilatant and pseudoplastic 
flu-ids. As the intensity of this vertical throughflow 
is increased, Rܽ௖ is seen to be decreasing upto 
certain Le, beyond which there is a raise in this 
Rܽ௖. This behavior is pronounced with increasing 
values of N. The vertical throughflow ceases to be 
stable in the double diffusive convection even for 
small values of N and Le. It is also noticed that the 
value of Rܽ௖ is higher for low Péclet number for 
pseudoplastic fluid than the dilatant fluid, but this 
gets reversed as the value of the Péclet number 
becomes large. The critical Rayleigh number Rܽ௖ 
increased consistently with increasing value of Le in 
the opposing buoyancy case for small Péclet 
numbers. As Pe becomes large Rܽ௖ increased up to 
certain Le, beyond which Rܽ௖ decreased. Further 
increase in the Péclet number (Pe = 2), this dual 
nature for Rܽ௖ is seen to be starting even for smaller 
values of Le. In the case of opposing buoyancy also, 
the critical Rayleigh number Rܽ௖ for low Péclet 
number is higher for pseudoplastic fluid than the 
dilatant fluid, but this gets reversed as the value of 
the Péclet number becomes large. The neutral 
stability curves presented for various values of these 
crucial parameters clearly indicate these 
phenomenon in both aiding and opposing buoyancy 
cases. Large value of Pe, the dilatant basic flow is 
more stable than the pseudoplastic fluid flow. 
Increasing value of Buoyancy Ratio N has the 
tendency of more destabilizing effect of the basic 
flow. The presence of solute concentration has 
significant influence on the linear stability of 
different kinds of non Newtonian power law fluids. 
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