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ABSTRACT 

Domain decomposition is involved in Fluid-Structure Interaction (FSI) analysis to speed up their 
computations. Non-matched meshes always exist in the interface of these different domains which brings data 
exchange problem. A load transfer method is investigated in this article to deal with non-matching meshes 
between fluid and structure. The local nearest neighbor searching algorithm was used in this method to match 
fluid nodes and structural elements, while thin plate splines with tension were used to deal with data transfer 
between non-matching meshes in FSI computations, and the corresponding matrix equations for the target 
points are presented. Implementations of the obtained algorithms were used to solve the one-way FSI 
problem of the CRH380C high-speed train and the relative error of transferred results was analyzed. The 
statistical parameters under two algorithms, the TPS model and the model combining both TPS model and 
nearest interpolation model were compared and the results indicate that the latter can transfer data more 
accurately. 

Keywords: Load transfer method; High-speed train; Data exchange; Interpolation method; Thin plate spline 
with tension. 

NOMENCLATURE 

Af f coefficient matrix of fluid domain 
Ass, Bs, ∆X௦௞ parameters of solid domain 
Afs, Asf coupling matrix 
Bf external forces of fluid domain  
c constant 0.577215
dij euclidean length
D(ξe

r ) population variance of the relative 
error  

er
p* relative error of pressure load  

E(ξe
r ) expected value of relative error  

Fa aerodynamic torque
H() integral function  
k iterative time step 

K0(dφ) modified zeroth order Bessel function  
Ps0 unknown pressure in Node 0 
Rd basis function
Vc train velocity vector 

α trend function
 flow flux 
φ weight value∆X௙௞ unknown forces of the fluid domain ௡(௘೛∗ೝ )ே percentage rates of relative error 

1. INTRODUCTION

One-way Fluid-Structure Interaction analysis is 
commonly used to deal with FSI problems in high-
speed trains. According to this methodology, CFD 
(Computational Fluid Dynamics) and CSD 
(Computational Solid Dynamics) solvers should 
couple on the solid-fluid interfaces where the 
structural nodal position, displacement and loads 
are exchanged between the two solvers. The loading 
data and boundary conditions can be exchanged 

accurately when the two solvers are using a uniform 
mesh. However, different meshes are usually used 
in the two domains based on different discretization 
scheme of the above two solvers. After several 
decades of research, many coupling interpolation 
methods have been proposed to deal with FSI 
problems; these methods can be divided into 
partitioned interpolation methods and integral 
interpolation methods. When using the partitioned 
interpolation method to carry out fluid-solid 
coupling data transfer, partial node or element data 
are introduced to calculate the corresponding 
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unknown node or element information. Some 
commonly partitioned interpolation methods are the 
projection method (Boer, Zuijlen, and Bijl 2007), 
Constant Volume Transformation (CVT) (Goura, 
Badcock, Woodgate, and Richards 2001), etc. 
When using the integral interpolation methods, on 
the contrary, all node and element information is 
required. The splines’ interpolation method (Harder 
and Desmarais 1972), Inverse Isoparametric 
Mapping (Pidaparti 1992) and the Shepard method 
(Shepard 1968) (SU, Qian, and Yuan 2010) are 
common examples of this family of methods. 

When applying the projection method, the node 
displacement in the fluid domain is assumed to be 
equal to the displacement of the projection points in 
the solid domain, and can be obtained using shape 
function interpolation in that solid element. This 
method is easy to understand and apply, but its 
disadvantage is that the overall displacement 
coordination and force equivalence of the interface 
is not considered, which greatly limits its 
applications. Goura et al. (Goura, Badcock, 
Woodgate, and Richards 2001) first proposed a 
method called Constant Volume Transformation 
(CVT), which is a partitioned interpolation method 
where element volume conservation is central, and 
does not rely on information from the structural 
model. This method is based on the assumption that 
the orthogonal projection of the aerodynamic points 
in the structure triangle remains constant and is in 
accordance with the linear elastic properties of the 
solid surface element. For the calculation, as long as 
the volume of the tetrahedron, which is composed 
of the structure triangle and pneumatic points, is 
conserved, the length of the aerodynamic point 
beyond the plate can be calculated. The adaptability 
of this method, however, is not very good, as there 
are usually some anomalies which cannot be 
calculated, and its accuracy needs to be improved 
(Xu and Chen 2004). An improved CVT method 
that introduced area limits to ensure the quality of 
grid interpolation has been proposed by Min Xu and 
Shiqi Chen (Xu and Chen 2004). This improved 
CVT interpolation method avoids the abnormal 
cases of the original CVT method and greatly 
improves the interpolation precision. The improved 
CVT method, however, also requires the nodes 
mapping relationship, and the assumption of 
constant volume will also increase the complexity 
of calculations. The Shepard method (Shepard 
1968), also known as the penultimate weighting 
method, was first used in meteorology and 
geological exploration. This method defines the 
value of an unknown point as the distance-
reciprocal weighted sum of the values of the known 
points within a specific neighbourhood. Although 
the Shepard interpolation is smooth, the derivative 
values near the known point of the interpolation 
function are zero, which affects its accuracy. If the 
second or third derivative of the function at these 
points is known, this problem can be solved by 
constructing an improved Shepard interpolation or 
an interpolation with derivative conditions (SU, 
Qian, and Yuan 2010). In 1971, Harder first 
proposed the Infinite Plate Spline (IPS) (Harder and 

Desmarais 1972), which is based on the 
superposition solution of differential equilibrium 
equations with regard to an infinite plate. Appa 
(Appa 1989), however, believed that it is not 
reliable to extrapolate the target value of the plate 
edge from the grid points inside the plate while 
using the IPS method. In this context, the Finite 
Surface Spline Method, the Thin-plate Spline 
Method, and the Multiquadric-Biharmonic Method 
have been put forwards. More details about these 
methods can be found in Smith’s article (Smith, 
Hodges, and Cesnik 1995). In recent years, the 
mathematical community has conducted a lot of 
research on the approximate method based on 
Radial Basis Function (RBF). Interpolation methods 
based on the radial basis function can be used for 
processing large amounts of bulk random data and 
is widely used in computer graphics, meteorology, 
topography and other fields. 

It is always possible to use off-the-shelf commercial 
software to analyze high-speed train FSI problems. 
However, although such software is easy to use and 
computationally efficient, it is difficult to control 
the relative error. Also, this interpolation algorithms 
with constant parameters that commercial software 
used do not fit well to the specific shape of high-
speed train which contains lots of surfaces with 
different curvature. Therefore, we propose a new 
FSI algorithm to transfer the data from the CFD 
solver to CSD solver. This algorithm combines the 
nearest interpolation model with the Thin Plate 
Spline with Tension (TPS) model. The nearest 
neighbor interpolation model is always present in 
common commercial software and the TPS radial 
basis function is based on a vast scope of theoretical 
studies from Frank R. (Frank 1982) and Wu Z. M. 
(Wu 1995) et al. The proposed algorithm solves the 
problems mentioned above and performs the 
automatic link-up of the fluid and solid interface, it 
automatically identifies different mesh types, 
matches the fluidic nodes to the structural elements 
and achieves accurate coupling. 

2. THE LOOSE FLUID-SOLID 
INTERAC- TION METHOD IN 
HIGH-SPEED TRAIN-S 

2.1  Governing Equations 

Combined with train dynamics equations and the 
fluid flow governing equations, the FSI governing 
equations (Zhang 2013) of high-speed trains have 
the form of Eq. (1), where vc is the train velocity 
vector, Fa is the aerodynamic torque, and Fa can be 
expressed as the integral function H, which is 
related with flow flux  . 

.( ( ) ) .( )
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These equations are the basic governing equations 
for dealing with FSI problems. In order to facilitate 
the analysis and solve the equations, the general 
form of the equations is established, different 
parameter values are given, and appropriate initial 
conditions and boundary conditions are defined. 
Currently, there are two approaches to the solution 
of FSI problems: either using directly coupled 
solution (Hermann, Matthies, Rainer, and Jan 2006) 
or partitioned solution, i.e. the loose method 
(Lohner, Yang, and Cebral 1998) (Keith, Richard, 
Vinay, and Tayfun 2000) (Tayfun, Sunil, Ryan, and 
Keith 2006) (Bell, Burton, Thompson, Herbst, and 
Sheridan 2014). Directly coupled solutions, or 
strong coupling, deal with the FSI problems by 
solving the combined equations directly. That is to 
say, the solid and fluid flow governing equations are 
solved using one solver. The coupled matrix is as 
follows: 

k
ff fs f f

ksf ss ss

A A X B

A A BX

     
     
         

                                 (2) 

Here, k is iterative time step, Aff , Bf and ∆X௙௞ are 
the coefficient matrices, external forces and 
unknown forces of the fluid domain, respectively, 
Ass, Bs and ∆X௦௞ are the parameters of the solid 
domain, and Af s and Asf are the coupling 
matrices. 

As there is no time delay after coupling solving, 
directly coupled solution is thought to be ideal 
solution. However, this solution can hardly 
combine the existing CFD and CSD techniques. 
Moreover, it converges slowly and cannot deal 
with large amounts of data. Directly coupled 
solution can at present be only applied to simple 
problems in FSI, and has not been used in 
complex engineering applications. Partitioned 
solution, in contrast, needs not solve the solid 
dynamics and the fluid flow governing equations 
simultaneously. This method solves the two 
equations separately, and, by transferring data 
between different solvers, can reach the final 
convergence result. 

2.2 Analysis of the Loose Fluid-Solid 
Interaction Method 

When we analyze FSI problems on high-speed 
train bodies, the influence of pressure on the train 
caused by outflow is much greater than the train’s 
displacement deformation due to outflow. The 
difference is so large that one-way FSI is much 
more significant than two-way FSI. Therefore, 
this article focuses on one-way FSI analysis on a 
high-speed train body. The coupling parameters  
1 ഼ 3 ഼ 5 ഼ presented in Fig. 1 transfer from fluid to 
solid as the computational time goes by. 
Unmatched meshes occur in the fluid-solid 
interface due to the application of different 
solvers. This process should also make sure data 
are exchanged accurately when unmatched 
meshes exist in the two domains. The nearest 
interpolation model, which is commonly used by 
commercial software, can deal with matched 
meshes or slightly unmatched meshes. However, 

during the modelling process of actual 
engineering project, certain matched or slightly 
unmatched meshes are usually not happening the 
most of time because different grid discrete 
schemes are adopted in the fluid domain and the 
solid domain (Farhat, Lesionne, and LeTallec 
1998) (Smith and Hodges 2000) (Boer, Zuijlen, 
and Bijl 2007). Instead, the most cases will be as 
Fig. 2 shows. 

 

 
Fig. 1. Data transfer of one-way FSI. 

 

 

 
Fig. 2. Non-matching meshes. 

 

3. LOAD TRANSFER 

3.1  Local nearest Searching 

The high-speed train body is a type of large FSI 
interface where the loss of coupling details is not 
allowed. Local interpolation is more accurate than 
global interpolation, so, in order to use it, the local 
nearest searching method is adopted. That is, a local 
interpolation region is built centered on every data 
point that forms the receiving target and the nearest 
source data points are searched and the interpolation 
model is applied on this local region. 

3.2 Thin Plate Spline with Tension 
Interpolation Model 

The Thin Plate Spline with Tension (Benbourhim 
and Bouhamidi 2005) (Smith, Cesnik, and Hodges 
1995) makes use of the Radial Basis Function 
(RBF) (Frank 1982) (Wu 1995) (Smith, Cesnik, and 
Hodges 1995) (Tiago and Leitão 2006). It is widely 
used in Geographic Information Systems’ 
technology. The TPS provides a mean to 
characterize an irregular surface by using functions 
that minimize an energy function. In other words, 
the TPS can fit all source data using a minimum 
curvature surface. The TPS and its variations can be 
applied to smooth and continuous surfaces, and are 
also used in aeroelastic applications and high-speed 
vehicles. 
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Fig. 3. Geometry model of 3-trainset high speed train CRH380C. 
 

 

The Thin Plate Spline with Tension takes the form: 

1
i

n

i d
i

a A R


                                                          (3) 

where a is the trend function, and Rd is the basis 
function, whose full form is shown in Eq.(4). 
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Here, φ is the weight value, whose range is (0, 1). A 
high φ will reduce plate stiffness, hence it will lead 
final surface shape that is too flexible, like film 
(Frank 1982). After many simulations, φ was 
defined as 0.2. c is constant, with a value of 
0.577215(Wu 1995), and K0(dφ) is a modified 
zeroth order Bessel function, which is formulated 
using Eqs. (5) and (6) 
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Based on the theory of Thin Plate Spline with 
Tension, the target’s interpolation formulation can 
be derived as follows. After local nearest searching, 
in the 0 subdomain, for example, the unknown 
pressure Ps0 of the solid node and nth known 
pressure Pl1,Pl2,···,Pln in the fluid domain are on the 
same governing thin plate. We can get Eq. (7) when 
combining the constraint condition and Eqs.(3), (4), 
(5),(6). After solving for the unknown coefficients 
in Eq. (7), we can substitute them back into Eq. (3). 
Then, the final equation for Ps0 is obtained (Eq. (8)), 
while the parameters ܴௗ೔ೕ  (i, j = 0, 1, 2,··· ,n) are 
determined using Eqs. (4), (5) and (6), where dij is 
the Euclidean length. Following this, we can 
calculate [Ps1 Ps2 … … Psn]T , as all we need to 
obtain is [Pl1 Pl2 … … Pln]T, which can be obtained 
through local nearest neighbor searching, as 
mentioned in subsection 3.1. 

3.3  Nearest Interpolation Model 

The main idea of nearest interpolation model 
(Thévenaz, Blu, and Unser 2000) is considerably 
different to the Radial Basis Function. A search 
algorithm determines the point xA in mesh A that is 

closest to a given point xB in mesh B. The value for 
the variable in xB is set equal to that of xA. In this 
manner, its coupling matrix is a ns × nf Boolean 
matrix. Every row has only one nonzero number 
that is equal to one. Moreover, the coefficient 
matrix is sparse, and all the nonzero elements in it 
are gather on the diagonal or near it. So, stable 
solutions of the linear equations can be obtained. 
Then, only a small summation is needed to solve 
after obtaining the solutions of the coefficients of 
the interpolation function. Therefore, this model is 
suitable for areas where the meshes match, and does 
not impose a significant computational load. 

3.4   Load Transfer Process 

The high-speed train CRH380C’s geometric model 
was built using UG NX8, its outflow field meshes 
were formed using Ansys ICEM and its FE model 
was built using Hypermesh, all commercially 
available products. The flow field model of two 
passing trains is entered into Fluent to calculate the 
pressure. Then, these results for the train surface 
were output to MATLAB for TPS Analysis to build 
the interpolation problem after fluidic nodes and 
structural elements were matched using local 
nearest neighbor searching. In the subsequent step, 
the interpolation problem formed is submitted to 
our solver using the TPS model and nearest 
neighbor interpolation model to calculate the 
loading pressure on each structural element. The 
results obtained can then be directly input to Ansys 
or Abaqus for further mechanical analysis. 

4. NUMERICAL APPLICATION IN 
HIGH- SPEED TRAIN AND 
RESULTS 

Two passing trains in open air at high speed 
induces transient changes of aerodynamic 
pressure in its exterior environment. These 
intense pressure changes will affect the safety of 
train body and its components. One needs to 
know the aerodynamic load on structure if we 
want to know how exactly the affection is. By 
bringing oneway FSI technique, we can transfer 
those data to train body. Following the purposes, 
the models of two passing trains in open air 
conditions were created. The geometrical 
parameters of the 3-trainset CRH380C are shown 
in Fig. 3, along with the dimensions used for the 
aerodynamical domain’s computations domain 
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Fig. 4. Boundary conditions of two passing trains 

with same speed. 
 

in Fig. 5. The boundary conditions are depicted in 
Fig. 4; the ground of the two trains is modelled as a 
’moving wall’ in the opposite direction at the proper 
speed, while the pressure inlets and outlets are all 
set at 0 Pascal. In addition, the total fluid 
computational domain is divided into two, with 
each train having its own subdomain, while their 
interface is set as the boundary condition-
‘interface’. Each sub-domain is also divided into 
three parts, as shown in Fig. 5, with the largest sub-
domain, of dimensions 30 × 20 × 400m, is 
considered the ‘farfield’ of this computational 
domain whose size has been worked out by trial 
calculations. The distance of two trains for the 
passing direction in the initial time is 20m and 
1.549m is set as the distance between two trains 
which is perpendicular to passing direction. The 
fluid surface grid of the head train shown in Figure 
was created using an unstructured mesh while the 
solid side was constructed using a quadrilateral 
mesh, which can be seen in Fig. 6. The coupling 
surface of the head train is shown in the Fig. 8. 
Under this configuration, the number of elements 
for the aerodynamical computational domain was 
7,383,065, the total nodes were 2,475,879, while the 

finite element number for the head train shown in 
Fig. 6 was 181,821, with the number of nodes being 
184,463. The aerodynamic load was obtained while 
the two trains were moving alongside each other in 
opposite directions (Fig. 4). As sliding meshes were 
used in this simulation, the trains were set as 
’stationary walls’ which shared the same ’adjacent 
cell zone’ with the ground of which ’moving wall’ 
is set. 

 

 
Fig. 5. Size of aerodynamical computational do-

main. 
 

 
Fig. 6. Finite element mesh of head train 

 (solid grid). 
 

 
Fig. 7. Fluid surface grid of first train. 

 

 
Fig. 8. Coupling surface grid of first car (fluid 

grid is white, solid is grey). 
 

In order to verify our passing train model, 
experiment results have been introduced. This  



S. Huang et al. / JAFM, Vol. 11, No.2, pp. 519-526, 2018.  
 

524 

Table 1 Statistical parameters under two algorithms 

Comparison parameters Only TPS algorithm 
Combined TPS with nearest interpolation 

 algorithm 

*
r
Pe  

*,max
r
Pe  

*,min
r
Pe  

3.94% 
0% 

2.47% 
0% 

 *( 0.6%)r
Pn e

N


 92.31% 93.94% 

 ( )re
E   0.18% 0.15% 

 ( )re
D   7.01275×10ି଺ 5.5×10ି଺ 

 
 

experiment is designed to test the aerodynamical 
characteristics of 16-trainset CRH380C acrossing 
each other at the speed 300km/h and 350km/h in 
Harbin-Dalian track. We’ve changed our train into 
16-trainset whose length is 400.5m and the results 
can be seen in Fig. 9. This figure shows Pmax 
calculated by our simulation are closely match with 
experimental data whether occurring to head or tail 
of the train passing. The tendency of the cures is 
nearly the same compared to the experimental data 
or B-S EN 14067-4(EN BS ), but the Pmin and the 
value of middle plateau are not closely matched. 
We believe it due to the geometric model especially 
the aerodynamical middle train shape haven’t built 
sophisticated. On the other hand, over fine model is 
really time consuming. Still, this model is enough to 
predict the aerodynamical characteristics of passing 
train. 

 

 
Fig. 9. Experimental and simulated pressure 
values of 16-trainset (8M8T) high speed train 

CRH380C (middle train). 
 

 
Fig. 10. Position of the picked points. 

 
Fig. 11. Pressure values of before and after 

transfer on the left side of first car. 
 

 
Fig. 12. Pressure values of before and after 

transfer on the top of first car. 
 

 
Fig. 13. Relative errors of pressure values which 

Figs. 11 and 12 showed. 
 

The train surface pressure was calculated out via  
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Fig. 14. Relative errors between TPS algorithm (figure above) and TPS-Nearest interpolation 
algorithm (figure below). 

 

 

Ansys Fluent in our 3-trainset high speed train 
CRH380C, then used as inputs in our own 
algorithms to obtain the solid surface pressure. 3-
trainset has been used instead of 16-trainset is that it 
can reduce the computation time greatly without 
missing main aerodynamical characteristics of 
passing train. Pressure data from point 1 to 5 on the 
side of the first car and on the top of the car were 
picked out (Fig. 10). In Figs. 11 and 12, 1L 
represents the pressure value of the first point in the 
fluid domain and 1S is corresponding value in the 
solid domain after calculations. In addition, all the 
values are extracted during the time period within 
which the two trains’ head were passing each other. 
The Fig. 11 shows the pressure value of 5 points on 
the left side and the Fig. 12 shows 5 points on the 
top. And it can be seen from both that the fluid and 
solid values were indeed coupled success-fully. In 
addition, considering the above values, the relative 
errors are shown in Fig. 13). The figure shows that 
the relative errors range from 0% to 1.1%, 
indicating that there is good agreement between the 
fluid domain pressure and the solid domain 
pressure. Figure 14 compares the relative errors 
between the TPS algorithm (figure above) and TPS-
Nearest neighbor interpolation algorithm (figure 
below). The data come from the head train coupling 
surface when the two trainss head are crossing each 
other. There are 181821 pressure values in the head 
train. The relative errors range from 0% to 2.47% 
when using the TPS-Nearest interpolation algorithm 
and from 0% to 3.94% when using the TPS 
algorithm. Table 1 shows the statistical parameters 
under two algorithms. In particular, the relative 
error for two algorithms below 0.6% are 92.31% 
and 93.94%. In general, both methods were highly 
accurate. 

Other statistical parameters shown in Table 1 are 
er

p*, i.e. the relative error of the pressure load, 

*( 0.6%)r
Pn e

N


, which is the percentage rate of 

relative error below 0.6%, E(ξe
r ) is the expected 

value of the relative error and ( )re
D  is the 

population variance of the relative error. 

5. CONCLUSIONS 

We have applied a new computational approach for 
simulating fluid-structure interaction (FSI) 
problems in the complex domain of high-speed train 
surfaces. This approach can deal with problems 
such as the automatic coupling of the fluid-solid 
data interface, automatically identifies different 
mesh type, fluidic node and structural element 
matching and accurate data transfer. The core 
interpolation method combines the nearest neighbor 
interpolation model with the Thin Plate Spline with 
Tension (TPS) model. The TPS model is based on a 
vast scope of theoretical studies by Wu Z. M. and 
Frank R. et al. while the nearest interpolation model 
is from common commercial software. Our 
algorithms combine the high accuracy of the TPS 
model and the computational efficiency of the 
nearest neighbor interpolation model. This accuracy 
is validated by applying the methodology to the 
high-speed train FSI problem. The results show that 
the relative errors of 181821 pressure values in the 
head train are under 2.47% after using TPS-Nearest 
interpolation algorithm. In addition, 93.94% of the 
relative error values is below 0.6%. This combined 
approach lays the foundation for two-way FSI 
problems in high-speed train which are currently 
under development and will be presented in our 
future work. 
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