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ABSTRACT 

In this study, the isothermal electroosmotic flow of two immiscible electrical conducting fluids within a uniform 
circular microcapillary was theoretically examined. It was assumed that an annular layer of liquid adjacent to 
the inside wall of the capillary exists, and this in turn surrounds the inner flow of a second liquid. The theoretical 
analysis was performed by using the linearized Poisson-Boltzmann equations, and the momentum equations 
for both fluids were analytically solved. The interface between the two fluids was considered uniform, 
hypothesis which is only valid for very small values of the capillary number, and shear and Maxwell stresses 
were considered as the boundary condition. In addition, a zeta potential difference and a charge density jump 
were assumed at the interface. In this manner, the electroosmotic pumping is governed by the previous 
interfacial effects, a situation that has not previously been considered in the specialized literature. The 
simplified equations were nondimensionalized, and analytical solutions were determined to describe the electric 
potential distribution and flow field in both the fluids. The solution shows the strong influence of several 

dimensionless parameters, such as μr, εr, w ,   and sfQ  , and 1,2 , on the volumetric flow. The parameters 

represent the ratio of viscosity, the ratio of electric permittivity of both fluids, the dimensionless zeta potential 
of the microcapillary wall, the dimensionless charge density jump and charge density between both fluids, and 
the electrokinetic parameters, respectively. 

Keywords: Immiscible conducting fluids; Electroosmosis; Circular microcapillary; Maxwell stress; Inter-
facial stress. 

1. INTRODUCTION

Micro- and nanofabricated devices have led to 
revolutionary changes in the ability to manipulate 
tiny volumes of fluids or micro- and nanoparticles 
contained within the fluids. This has led to the 
development of applications in chemical and 
particulate separation and analysis, biological 
characterization, sensors, cell capture and counting, 
micropumps and actuators, high-throughput design 
and parallelization, and system integration (Kirby 
2010). Electroosmotic pumping based on the 
phenomenon of electroosmosis can be used to 
accomplish tasks involving the manipulation of tiny 
volumes of fluids. It refers to the motion of an 
electrolytic fluid relative to a stationary charged 
surface when an electric field is applied (Probstein 
2005). However, electroosmosis cannot be directly 
used to drive noncon-ducting liquids or liquids with 
very low conductivity such as oil, ethanol, and blood. 

In this context, Brask et al. (2003) proposed an 
electroosmotic pump that relied on two liquids with 
different viscosities. The pump supplied 
nonconducting liquids or liquids with very low 
conductivity when a con-ducting pumping liquid 
driven by EOF dragged a nonconducting liquid by 
means of viscous forces. Hence, an increasing 
amount of attention was focused on the study of 
electrokinetic flows for multiphase systems 
containing liquid-liquid interfaces subject to electric 
fields. 

The pumping of non-conducting fluids has widely 
analyzed in several previous studies (Brask et al. 
2003; Choi et al. 2011; Movahed et al. 2012; Matías 
et al. 2017; Qi and Ng 2018). Gao et al.(2005) 
proposed an approach in which high elec-troosmotic 
mobility liquid was used as a driving mechanism to 
drag the low electroosmotic mobility liquid. Choi et 
al. (2011) studied a two-fluid electroosmotic flow in 
a microchannel based on full 
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Fig. 1. Sketch of the electroomostic flow of two immiscible and symmetric (z : z) electrolyte solutions 
with an annular arrangement. 

 

hydrodynamic and electrostatic interactions on the 
liquid-liquid interface in which the inter-facial 
electrostatic effects were shown. Su et al.(2013) 
obtained semi-analytical solutions for transient 
electroosmotic and pressure-driven flows of two-
layer fluids between microparallel plates in which 
Maxwell stress at the interface was included. A 
numerical simulation of the electroosmotic flow in a 
column of an aqueous solution surrounded by an 
immiscible liquid was examined by Movahed et al. 
(2012). Their results indicated effects on the flow 
field of ζ -potential and viscosity ratio of the two 
fluids. Liu et al. (2009) presented a numerical study 
for a circular two-phase electroosmotic flow that 
involved pumping a conducting peripheral layer of 
fluid that dragged the inner fluid. In the same 
direction, Jabari (2016) analyzed the flow of two 
immiscible fluids in a circular microchannel. He 
considered that the inner fluid is a non-conducting 
liquid and the surrounding liquid is conductive, 
where the former is driven by pressure forces and the 
latter is driven by electroosmotic forces. In addition, 
electric double layers form at the wall as well as at 
the liquid-liquid interface, which are in contact with 
the high EO mobility liquid. However, in such 
analysis, it is assumed the non-existence of a zeta 
potential difference, as well as a surface charge at the 
interface between both fluids. The two aspects 
mentioned before are considered in the present work. 

Conversely, it was observed that an electric field can 
penetrate a conductive dielectric liquid. This leads to 
the formation of double layers on both sides of the 
interface (Pascall and Squires 2011). Verway and 
Niessen (1939) were the first to de-scribe the 
electrical double layer at the interface of two 
immiscible electrolyte solutions as two non-
interacting diffuse layers with a layer on each side of 
the interface. Volkov et al. (1996) presented an 
excellent review on the status of the theory with 
respect to the electrical double layer at a liquid/liquid 
interface. 

The electrical double layer at the oil/water inter-
face is a heterogeneous interfacial region that 

separates two bulk phases of polarized media and 
maintains a spatial separation of charges (Volkov et 
al. 1996). Thus, there are frequent occurrences of 
liquids that are electrically weak conductors. How-
ever, the EDL is formed at the interface between the 
two fluids. In this context, most theoretical and 
numerical studies on two-liquid electroosmotic 
flows in microchannels were conducted in Cartesian 
coordinates and do not show the effect of the EDLs 
formed at the interface between the fluids. In this 
aspect, the present study derived an analytical 
solution of the electroosmotic flow by accounting 
for electrokinetic effects at solid-liquid and liquid-
liquid interfaces. Specifically, electrical and viscous 
stresses were considered at the liquid-liquid 
interface. The results of the analysis revealed the 
importance of the formation of the EDL at the 
interface between both immiscible fluids as well as 
the physical properties of the fluids. 

2 PROBLEM DEFINITION 

Figure 1 shows the scheme of the physical model 
analyzed in this study. A microcapillary with length 
L that considerably exceeded its inner radius R2 
was filled with two immiscible and symmetric (z : 
z) electrolyte solutions with an annular 
arrangement. A 2D cylindrical coordinate system 
(r,x) was adopted, and the origin was placed at the 
left end of the capillary tube. The column of the 
inner fluid had a radius of R1. The flow was 
exclusively driven by the effect of electro-osmotic 
forces originating in an electric field externally 
applied in the x axial direction with an intensity of 
E0 = φ0/L, in which φ0 denotes the value of the 
electric potential imposed at the entrance of the 
microcapillary, i.e., at x = 0. At the interface 
between both fluids, a zeta potential difference and 
Maxwell stress were considered. 

Additionally, the following assumptions are made:(i) 
Debye lengths at the interface between both fluids 
and at the liquid-wall interface as denoted by λD,i or 
κi

-1 were very small, where the subscript i = 1,2 
denotes the inner and surrounding fluids, 
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respectively, and it was defined as λD,i = κi
-1 =(εikBT 

/2e2zi
2

,in ) . Here, εi, kB, T , e, and zi and ,in  

denote dielectric permittivity of the two electrolytes, 
Boltzmann constant, absolute temperature, 
elementary charge, and valence and bulk concen-
trations, respectively, for both fluids. The Debye 
lengths were assumed as very small, i.e., κ1

-1 << R1 
and κ2

-1<< h, where h = R2 –R1. (ii) The interface 
between the two fluids was well defined and stable. 
i.e., the liquid film thickness h was constant along the 
microcapillary. In this context, the very small 
pressure difference that arose from surface tension 
and curvature was ignored (Middleman 1995). This 
is a restrictive assumption, however, we assume that 
the interface remains stable because the capillary 
number, is very small, i.e., Ca = εE0ψc/γT << 1 
(Mandal et al. 2015); for instance, typical values of 
the physical parameters used in this study take the 
following values: the dielectric permittivity is ε ∼ 7 
× 10-10 C V-1 m-1, the external electric field E0 ∼ 104 
V m−1, the thermal voltage or characteristic electric 
potential in the EDL, defined latter, ψc ≤ 25 m V, and 
the surface tension between both fluids γT ∼ 10-3 N 
m-1. With these values, the capillary number is 
estimated as Ca ∼ 10-4. Of course, for higher values 
of the surface tension, such as γT ∼ 10-2 N m-1, the 
Capillary number is decreased, i.e, Ca ∼ 10-5. (iii) 
The net charge density in the two EDLs followed the 
well-known Boltzmann distribution. (iv) The Debye-
Hückel approximation was considered. That is, at the 
liquid-wall surface interface and at the interface 
between both fluids, the zeta potentials were ζi << 25 
mV. 

2.1   Mathematical Model 

2.1.1   Electric Potential 

Under the fore-mentioned assumptions, the Poisson 
equation that defines the electric potential ψi in each 
fluid is given by: 

,

1
( ) ,i f i

i

d d
r

r dr dr

 


   1,2,i                                  (1) 

where ρf,i denotes the local charge density as given 
by the Boltzmann distribution 

, ,

2 sinh( ),i i

f i i i

B

z e
zen

kT




   1,2.i                            (2) 

In the analysis, the Debye-Hückel linearization was 
considered by assuming that |zeψ| << kBT , such that 
this could be expressed as follows: sinh(zeψ/kBT ) ≈ 
zeψ/kBT (i.e. |ψ| ≤ 0.025 V) (Masliyah and 
Bhattacharjee 2006). Accordingly, with respect to 
small potentials, the linearized Poisson-Boltzmann 
equation is applied as follows: 

21
( ) ,i

i i
dd

r K
r dr dr

   1,2.i                               (3) 

Equation (3) are subject to the following boundary 
conditions: 

at 0 :r   1 0,
d

dr


                                                 (4) 

at 1 :r R  1 2 ,                                         (5) 

at 1 :r R  1 2
1 2 sfq

r r

   
  

 
                     (6) 

and 

at 2 :r R  2 w                                                (7) 

Equation (4) represents the axisymmetric boundary 
condition, and Eq. (7) denotes the surface zeta 
potential, ζw, of the microcapillary wall. The zeta 
potential difference,  , at the interface between 
both fluids is represented by Eq. (5). Finally, the 
Gauss law, Eq. (6) was introduced into the electrical 
displacement of both fluids, where qsf denotes the 
surface charge density at the liquid/liquid inter-face. 

2.1.2   Flow Field 

In order to determine the velocity profile, the steady-
state modified Navier-Stokes equation was used for 
each fluid where the electric force is taken into 
account as follows: 

, 0
1

0 ( ) ,i
i f i

dud
r E

r dr dr
    1,2,i                    (8) 

where µi denotes the dynamic viscosity. The 
boundary conditions associated with Eq. (8) include 
the following: 

at 0 :r   1 0,
du

dr
                                                 (9) 

at 1 :r R  1 2 ,u u                                              (10) 

at 1 :r R  1 1
1 0 1

du d
E

dr dr

    

                    2 2
2 0 2 .

du d
E

dr dr

                         (11) 

at 2 :r R  2 0u                                                 (12) 

Boundary conditions (9)-(12) represent the condition 
of symmetry in the microcapillary, the continuity of 
velocities at the interface between both flu-ids, the 
balance of total stresses at the interface, and the no 
slip condition at the liquid/solid interface, 
respectively. It should be noted that the boundary 
condition (11) considered contributions from 
Maxwell as well as viscous stresses (Chang and Yeo 
2009). 

2.1.3  Dimensionless Governing Equations 

In order to obtain the dimensionless version of the 
governing equations, the following non-
dimensional variables are introduced: η = r/R1, Z = 
(r –R1)/h, iu  = ui/uc, and i  = ψi/ψc. In previous 

definitions of non-dimensional variables, the 
characteristic velocity is given by the following 
expression: uc = ε1E0ψc/µ1, where ψc = kBT /ze 
denotes the thermal voltage associated with the 
inner fluid. With respect to the above 
dimensionless variables, the governing equations 
(3) and (8) are transformed as follows: 
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for 0 ≤ η ≤ 1: 

21
1 1

1 d d

d d

  
  

 
 

 
                                       (13) 

over 0 ≤ Z ≤ 1: 

  22
2 2

1 d d
Z

Z dZ d

  
 

 
    

                      (14) 

for 0 ≤ η ≤ 1: 

21
1 1

1
0

d du

d d
  

  
 

  
 

                                   (15) 

and for 0 ≤ Z ≤ 1: 

22
2 20 1 1 .

d Z du Z

dZ dZ
 

 
    

        
     

          (16) 

The parameters that appear in Eqs. (13)-(16) are 

defined as follows: / ,r r   1 / ,R h 

1 1 1,R  and 2 2 ,h  where 2 1/r   and 

2 1/r   denote permittivity and viscosity ratios 

of surrounding and inner fluids, respectively. The 
electrokinetic parameters 1 and 2  represent the 

ratio of the radius of the inner region to the Debye 
length formed at the interface and the ratio of the 
thick-ness of the surrounding fluid to the Debye 
length that forms at the solid-fluid interface, 
respectively. It should be noted that 2  also 

represents the ratio of the surrounding fluid thickness 
to the Debye length that forms at the fluid-fluid 
interface on the surrounding fluid side. 

Substituting the dimensionless variables into the 
boundary conditions (4)-(7) and (9)-(12), for the 
electric and velocity fields, yields the following 
expressions: 

 1 0
0,

d

d

 



                                                  (17) 

   1 21 0 ,Z                                    (18) 

   1 21 0
,r r sf

d d Z
Q

d dZ

  
   


 

            (19) 

   2 1 ,wZ                                                   (20) 

 1 0
0,

du

d





                                                   (21) 

   1 21 0 ,u u Z                                           (22) 

     
   1 11 1du d

d d

  
 
 

   

   2 20 0
r r

du Z d Z

dZ dZ


  
  

 
  

                 (23) 

and 

 2 1 0.u Z                                                       (24) 

In the above equations, the dimensionless surface 

charge density is defined as 2/ ,sf sf cQ hq    

where /w w c    denotes the dimensionless 

electric zeta potential of the microcapillary wall, and 
/ c      denotes the dimensionless jump zeta 

potential at the interface. 

2.2   Analytical Solution for the Electric 
Potential 

In order to determine the electric potential 
distribution in both fluids, Eqs. (15) and (16) are 
expressed as follows:  

2
2 2 21 1

12
0

d d

dd

     


                            (25) 

and 

2
2 2 22 2

2 22
0

d d
u u u

dudu

                              (26) 

where u = Z + ϕ. As observed, Eqs. (25) and (26) 

correspond to modified Bessel differential equations 
(Olver et al. 2010). The solutions of these equations 
after applying boundary conditions (17)-(20) are 
given by the following: 

for 0 ≤ η ≤ 1: 

     
 

0 1
1 1 0 2 2 0 2

0 1

I
A I A K

I

 
     


      (27) 

and for 0 ≤ η ≤ 1: 

   
  

0 2
2 2 0 2

0 2

1
1

w

I Z
A K

I

 
   

 

           

    

 
 

 
3 1 1 6

0 2
0 2

0 2
4 3 5

0 2

1
.

1

1

w A I A
I

K Z
K

A A A
I

  
 

 
 

 

 
   
                

(28) 

Here, I0 and K0 denote zero-order modified Bessel 
functions of the first and second type (Olver et al. 
2010), respectively, and the parameters Ai (i = 1,...6) 
are defined in the Appendix. 

In the above expressions, I1 represents the modified 
Bessel function of order 1 (Olver et al. 2010). 
Therefore, using Eqs. (27) and (28), the local 
volumetric net charge densities for fluids 1 and 2 are 
given by the following corresponding equations: 

      
 

0 12
1 1 1 0 2 2 0 2

0 1
f

I
A I A K

I

 
      


     

(29) 

and 

   2 2
2 1 2 0 2 2 2 0 2 .f A I Z A K Z               

(30) 
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2.3   Velocity Field 

By integrating Eqs. (15) and (16) twice with respect 
to η and Z, respectively, and applying boundary 
conditions (21)-(24), it was easily shown that the 
velocity profiles in the inner and surrounding fluids 
are as follows: 

over 0 ≤ η ≤ 1: 

     
 

0 1
1 1 0 2 2 0 2 1

0 1

I
u A I A K

I

 
     


       

 (31) 

and on the region 0 ≤ Z ≤ 1 

2 2 3 4ln 1
Z

u   


 
    

 
 

    4
2 2 1 2 1 2 1 22

A K Z A I Z
               

    5 2 0 2 1 0 2A K Z A I Z               

     1 0 2 2 0 2A I Z A K Z               (32) 

In the above equations, K1 denotes the modified 
Bessel Function of order 1. The parameters involved 
in Eqs. (31) and (32) are presented in the Appendix. 

The dimensionless volumetric flow rates of the inner, 

1Q , and surrounding, 2Q , fluids can be obtained by 

integrating the velocity profiles given by Eqs. (31) 
and (32), as follows: 

1
1 10

2Q u d                                                      (33) 

and 

1
2 20

2
1 ,

Z
Q u dZ

 
 

  
 

                                     (34) 

in which 1 1 / cQ Q Q  and 2 2 / cQ Q Q , where Q1 

and Q2 represent the dimensional volumetric flow 
rates for the inner and surrounding fluids, 

respectively. Additionally, 2
1c cQ R u  denotes the 

characteristic volumetric flow rate. 

By solving for the integrals defined in Eqs. (33) and 
(34), the volumetric flow rate of the inner fluid is 
obtained as follows: 

   
 

1 0 2 2 0 2
1

0 1
2

A I A K
Q

I

    


   
   

  
 

 1 1
1

1
,

I 



 

 
  

                                                   (35) 

Furthermore, with respect to fluid 2, the dimension-

less volumetric flow rate 2Q  has to be determined 

by numerically integrating Eq. (34). This was per-
formed by using the trapezoidal rule (Hoffman and 
Frankel 2001). 

3. RESULTS AND DISCUSSION 

In this study, analytical solutions of the dimension-
less electrical potentials and velocity distributions 
were derived in a purely EOF of two conducting 
immiscible Newtonian fluids inside a microcapillary. 
The results indicated that the EOF was con-trolled by 
several dimensionless parameters such as the 
viscosity ratio µr and permittivity ratio εr of inner and 
surrounding fluids, electrokinetic parameters 
(denoted as 1 and 2 ), dimensionless zeta potential 

difference at the interface between both flu-ids 
(denoted as  ), and the dimensionless inter-face 

charge density jump sfQ  . In order to estimate the 

values of the dimensionless parameters involved in 
the analysis, values of the physical parameters were 
used that were previously used in the specialized 
literature that examined electroosmotic flows of two 
immiscible fluids. They were estimated by 
appropriately combining typical values of the physical 
parameters as shown in Table 1. In this table, the 
values of the EDLs thicknesses and permittivity were 
based on those used in a previous study (Liu et al. 
2009), and the value of the interfacial potential jump 
was also based on an extant study (Wandlowski et al. 
1995). It should be noted that in the present study 
since the Debye-Hückel approximation was assumed, 
the appropriate values of ∆ψ were used such that ψ1 ≤ 
25 mV. 
 

Table 1 Typical values of physical parameters 

Parameter Value units 

R1 10 μm 
R2 20 μm 
L ̴10-2 m 
E0 ̴104 Vm-1 

w  <-25 mV 

ɛ 8.854×10-12 Cm-1V-1 

ΔΨ -130-190 mV 
qsf 0.015 Cm-2 

λD,i 30.2-302 nm 

 

Figures 2 to 6 show the influence of the 
dimensionless parameters involved in the analysis of 
the electrical potential through the microcapillary as 
a function of the coordinates η and Z and the 
corresponding velocity profiles. It should be noted 
that in each of these figures, there is a gap in the 
potential electric distribution, which means that in 
domain the electric potential remains uniform and 
equal to zero. The effect of the jump dimensionless 
zeta potential at the liquid-liquid interface and the  
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Fig. 2. (a) Electric potential distribution through the microcapillary for different values of the 
dimensionless jump zeta potential, and (b) the corresponding dimensionless velocity profiles. The 

following parameters were used: µr = 15, 1 = 30, 2 = 30, εr = 1 and sfQ  = 15.094, w  = 1. 

 
 

 
Fig. 3. (a) Electric potential distribution through the microcapillary for different values of the 

dimensionless zeta potential at the microcapillary wall, and (b) the corresponding 
dimensionless velocity profiles. The following parameters were used: µr = 15, 

1 = 30, 2 = 30, 1,   εr = 1 and sfQ  = 15.094. 

 
corresponding dimensionless velocity profiles are 
plotted in Figs. 2(a) and (b). It was observed that the 
presence of the surrounding fluid that acted as a 
lubricant increased the velocity of the inner fluid. 
Specifically, in the case of 1,    (line with the 
symbol ), the electric force in the inner fluid was 
opposite to that of the surrounding fluid at the 
interface between both fluids, and this slowed the net 
flow. In contrast, when 1,  , the velocity of the 
inner fluid corresponded to the maximum value due 
to a larger force at the liquid-liquid interface. This 
was because the zeta potential at the interface 
attained a value that could be evaluated from 

   1 21 0 .Z         This in turn defined 

the zeta potential at the interface either in the inner 
or surrounding fluid side. 

Figure 3 shows the effect of assuming negative and 
positive values of the dimensionless zeta potential of 
the microcapillary surface or its absence while 
maintaining a fixed zeta potential at the fluid-fluid 
interface. As observed in the figure, the electric 
potential distribution near the fluid-fluid interface 

was not modified due to the manner in which the wall 
was charged. Evidently, the jump zeta potential 
defined the behavior of the electrical potential 
distribution at the fluid-fluid interface. In this case, 
electrical forces in the inner fluid side at the fluid-
fluid interface acted from the left to right as shown 
in Fig. 1, thereby dragging the surrounding fluid. 

However, with respect to 0,w   the electric force 

near the wall acted in a manner opposite to those 
developed in the inner fluid at the fluid-fluid 
interface. Therefore, the bulk velocity diminished as 
shown in the curves denoted as ◦ and . In the case 

of 0w   (a line denoted as ∗), the capillary wall 

was not electrically charged, and thus the 
surrounding fluid motion was analogous to that of a 
shear driven flow that was dragged by the inner fluid. 

Figure 4(a) shows the plots of electric potential 
distribution for different values of the dimensionless 
interfacial charge density. As shown in the figure, the 
influence of the interfacial charge density was 
practically null. However, the effect of  
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Fig. 4. (a) Electric potential distribution through the microcapillary for different values of the 

dimensionless surface-charge density, and (b) the corresponding dimensionless velocity profiles. 
The following parameters were used: µr = 15, 1 = 30, 2 = 30, 1,   εr = 1, 1w  . 

 

 
Fig. 5. (a) Electric potential distribution through the microcapillary for different values of the 

electrokinetic parameter 1 , and (b) the corresponding dimensionless velocity profiles. The 

following parameters were used: µr = 15, 2 = 30, 1,   εr = 1, 1w  and sfQ  = 15.094. 

 
 

sQ  on the velocity profiles was particularly 

significant. As shown in Fig. 4(b), increasing values 

of sfQ  led to a significant increase in the velocity 

magnitudes of the inner fluid. The dimensionless 
surface-charge density assumed values of 

0 15.sfQ   In this direction, a value of 15sfQ   

was estimated with respect to the dimensional 
surface-charge density 0.0015sfq   C/m2 (Choi et 

al. 2011). When 0sfQ   the velocity of the inner 

fluid tends to the Helmholtz-Smoluchowski velocity. 

The effect of the electrokinetic parameters 1  and 

2  on electric and velocity distributions are shown 

in Figs. 5 and 6, respectively. Evidently, in both 
figures, the velocity profile exhibited a nonlinear 
behavior as the parameters 1  or 2  increased. For 

instance, in Fig. 5, with respect to values of 1  = 

(15,20,25), the velocity magnitudes for both fluids 
increased and the velocity decreased for 1  = 30. 

Similar behavior was observed in Fig. 6 with 

variations in the parameter 2 . Nevertheless, the 

effect of 2  on the velocity when compared with 

that of 1 , was more significant because greater 

velocities were obtained. Evidently, the fore-
mentioned observation was reflected in the 
volumetric flow rate as shown below. Additionally, 
when both fluids have the same physical properties, 
the well-known plug-like velocity profile is 
recovered, which is rep-resented by the dashed line 
in Fig. 5(b). 

When both fluids have the same physical proper-ties, 
some of the dimensionless parameters involved in 
Eqs. (31) and (32) assumed the following values: µr 

= 1, εr = 1 and 1  . Additionally, if the jump in the 
electrical potential and the charge density across the 

interface did not exist, 0   and 0sfQ  . By 

considering the above, the velocity profiles for the 
inner and outer fluids as given by Eqs. (31) and (32) 
can be simplified and yields 1 1u   and 

   2 0 2 0 21 / ,u I Z I    respectively. Both  
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Fig. 6. (a) Electric potential distribution through the microcapillary for different values of 

the electrokinetic 2 , and (b) the corresponding dimensionless velocity profiles. The 

following parameters were used: µr = 15, = 30, and  = 15.094. 

 
 

 
Fig. 7. (a) Influence of the viscosity ratio and (b) permittivity ratio between the surrounding and inner 

fluids on the dimensionless velocity profiles. The following parameters were used: = 50, = 50, 

 =0.967, w =1 and  = 13; in Fig 7(a), εr= 1 and in Fig. 7(b), µr= 15. 

 
equations represent the solution to the electroosmotic 
flow of a single fluid in the circular capillary as 
represented by the dashed line in Fig. 5(b). 

The effect of the viscosity ratio µr on the velocity 
profiles is shown in Fig. 7(a). The velocities for both 
fluids increased when the surrounding fluid was less 
viscous than the inner fluid. Figure 7(b) shows the 
influence of the parameter εr that depicts the 
competition between the dielectric permittivities of 
both fluids. It was observed that a higher velocity 
was attained when the surrounding fluid possessed 
increased permittivity. Additionally, εr → 0, 
indicated that the surrounding fluid was electrically 
weakly conductive and that the fluid motion of the 
surrounding fluid was exclusively due to viscous 
forces that existed in the interface, which originated 
from the inner fluid. Analogously, the inner fluid was 
electrically weakly conductive when εr → ∞, ε2 << 
ε1,. 

Figure 8 shows the volumetric flow rates iQ  as a 

function of parameter (a)  , (b) w , (c) r , (d) 

r , (e) 1 , and (f) 2 . The influence of   on 

the volumetric flow rate of both immiscible fluids is 
shown in Fig. 8(a). In this case, as the dimensionless 
jump zeta potential increased, the volumetric flow 
rate of the surrounding fluid was slightly diminished 
and for the inner fluid was significantly increased. In 
Fig. 8(b), the volumetric flow rate of the two flu-ids 

varied linearly as a function of w . It was ob-served 

that with respect to the assumed values of the 
parameters, the volumetric flow rate is always an 
increasing function if the microcapillary wall was 
charged positive or negative, obtaining the best 
volumetric flow for the surrounding fluid when the 
zeta potential of the wall is ζw = 1 . The effect of 
permittivity ratio, εr, on the volumetric flow rate is 
shown in Fig. 8(c), where it was observed that the 
volumetric flow rate increases in a linear fashion for 
in-creasing values of the permittivity ratio. In 

contrast, the volumetric flow rates iQ  were 

diminished when the surrounding fluid had a greater 
viscosity when compared with that of the inner fluid, 
Fig. 8(d). An interesting characteristic of the  

1 1,  1w  sfQ

1 2

sfQ



A. Matías et al. / JAFM, Vol. 11, No.3, pp. 667-678, 2018.  
 

675 

 

 

 
Fig. 8. Volumetric flow rate as a function of the dimensionless parameters involved in the analysis. 

Lines with the symbol  represent the dimensionless volumetric flow rate of the inner fluid, while lines 
with the symbol  correspond to the dimensionless volumetric flow rate of the surrounding fluid. 

 
 
volumetric flow rates is shown in Figs. 8(e) and (f) 

which show the behavior of iQ  when the 

electrokinetic parameters i  are increased. In the 

former figure, maxima values for iQ  were observed 

when i  ≈ 27 for 2  = 30. Conversely, with 

respect to 1  = 30, the volumetric flow rates 

corresponded to a monotonic function for increasing 
values of 2 . 

In Fig. 9 we show the behavior of velocity pro-files 
for greater values of 1  and 2  than those used in 

previous figures. As expected, for thin EDLs at the 

interface between both fluids, velocity profiles 
become fairly flat in the central region of the 
microchannel, and velocity gradients at the interface 
increase in a notable manner. The above is clearly 
appreciated by comparing, for example, Figs. 9(a) 
and 9(b) against Figs. 5(b) and 6(b). In Fig. 9(c) we 
show the effect when the inner fluid has a lower 
viscosity than that of the surrounding fluid, which is 
denoted by having values of µr < 1. By comparing 
this figure against Fig. 7(a), the inner fluid reaches 
greater values than those obtained when µr > 1. 

Finally, the volumetric flow rate for values of the 
electrokinetic parameter 1  > 50 and 2  > 100 are 

shown in Figs. 10(a) and 10(b), respectively. As can  
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Fig. 9. Dimensionless velocity profiles as function of the coordinates η and Z, for values of (a) 50 < 2 < 

350, evaluated with 1 = 100, and (b) 50 < 1 < 300, evaluated with 2 = 300. (c) Influence of the 

parameter µr ≤ 1 on the dimensionless velocity profiles. In figures (a) and (b), the values of the 

parameters that were considered are as follows:  sfQ  = 15.094, µr = 15,  =1, εr= 1 and 

w =1. For Fig (c),  sfQ  = 13,  =1, εr= 1, w =1, 1 =50, 2 =50. 

 

 
Fig. 10. Dimensionless volumetric flow rate, Qi with i = 1,2, as function of (a) 1 > 50, evaluated with 

2 = 300 and (b) 2 > 100, evaluated with 1 = 100. Lines with the symbol  represent the 

dimensionless volumetric flow rate of the inner fluid, while lines with the symbol  correspond to the 
dimensionless volumetric flow rate of the surrounding fluid. Here,     = 15.094, µr = 15,  =1, εr= 1,  =1. 

 
 
be seen, the volumetric flow rate behaves in a linear 
fashion, in contrast to the behavior shown in Figs. 

7(a) and 7(b), where relative low values of 1  and 

1, 

1, 
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2  were assumed. 

It should be noted that we have not shown the 
behavior of the other variables, such as the electric 
potential in the EDLs, for values of i  > 100 with i 

= 1,2, because of the underlying mechanisms are 
similar as those described along the Result Section. 

4. CONCLUSIONS 

The present study involved an analytic study of the 
electro-osmotic flow in a microcapillary with two 
immiscible fluids, namely Newtonian as well as 
electrical conductors. The analysis accounted for 
viscous forces and electric stresses that acted at the 
interface between both fluids. The results 
demonstrated the importance of the formation of the 
EDL at the interface between both immiscible fluids. 
Additionally, the effect of the competition between 
the dynamic viscosity and permittivity of both fluids 
was observed via the dimensionless parameters µr 
and εr. Future studies will investigate the analysis of 
transient effects as well as thermal effects in these 
types of electroosmotic flows. Future research 
should also examine the relaxing of the assumption 
of a flat interface. 
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APPENDIX 

The expressions for A1-A6 presented in Section 1.2 
are the following: 
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The expressions for ρ1-ρ5 presented in Section 1.2 are 
the following: 
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where the parameters Π1-Π6 are defined as follows: 
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