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ABSTRACT 

The influence of rheological behavior on the natural convection in a dielectric  nanofluid with vertical AC 
electric field is investigated. The rheology of the nanofluid is described by Maxwell model for calculating the 
shear stresses from the velocity gradients. The employed model introduces the combined effects of movement 
of the molecules of the fluid striking the nanoparticles, thermophoresis and electrophoresis due to embedded 
nanoparticles. The exact solutions of the eigen model value problem for stress-free bounding surfaces are 
obtained analytically using one term  Galerkin method to find the thermal Rayleigh number for onset of both 
non-oscillatory (stationary) and oscillatory motions. It is found that the oscillatory modes are possible for both 
bottom and top-heavy distributions of nanoparticles. It is observed that the value of critical Rayleigh number is 
decreased by a substantial amount with the increase in electric field intensity, whereas role of viscoelasticity 
(time relaxation parameter) is to hasten the occurence of oscillatory modes appreciably. The thermal Prandtl 
number is found to delay the occurence of oscillatory modes. These results are also shown graphically. 

Keywords: Nanofluid; Maxwell model; Brownian motion; Thermophoresis; Electric field; Stress relaxation 
time; Galerkin method. 

NOMENCLATURE

a dimensionless wave number 
ac critical wave number 
cp specific heat 
dp nanoparticle diameter
DB Brownian diffusion coefficient 
DT thermophoretic diffusion coefficient 
e coefficient of relative variations of the 

dielectric constant  ϵ dielectric constant ۳ሬԦ electric field ܧ௢ root mean square value of the electric field ܍܎ሬሬሬԦ force of electrical origin ܏ሬԦ gravity field due to acceleration ܘܒ mass flux of the diffusing nanoparticles 
kB Boltzman’s constant 
kf thermal conductivity of the base fluid 
kp thermal conductivity of the nanoparticles 
kT thermal conductivity 
Le Lewis number 
NA modified diffusivity ratio 
NB modified specific heat increment 
p pressure 
pl thermal Prandtl number 
Re AC electric Rayleigh number 

Rm basic density Rayleigh number  
RN concentration Rayleigh number 
t time 
T temperature ሬ࢜ሬԦ velocity 
(x, y, z) co-ordinates of inertial frame of reference 

 growth rate ߪ heat capacity ߶ nanoparticles volume fraction ߮ root mean square of the electric potential ∇ଶ laplacian operator ∇ଵଶ horizontal Laplacian operator ܿߩ ௣ nanoparticles densityߩ ௙ base fluid densityߩ ௘ density of charged electronsߩ ଴  nanofluid reference densityߩ nanofluid density ߩ ௕ base fluid viscosityߤ viscosity ߤ coefficient of thermal expansion ߚ
Superscripts 
ˊ perturbed quantities 
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Subscripts 
b basic state 
p particle 

o lower boundary 
1 upper boundary 

1. INTRODUCTION  

The nanotechnology has attracted many young 
researchers and scientists due to its unlimited 
growth in the modern era. Nanofluids are 
engineered by suspending nanoparticles in the 
range of 1 to 100 nm, which are first utilized by 
Choi (1995) in traditional heat transfer fluids such 
as water, biofluids, polymer solution, oil and 
ethylene glycol. Nanofluids are used for a wide 
range of applications in chemical, biological, 
medical, electronics engineering and in many 
industrial sectors due to their enhanced 
characteristic in thermal conductivity. Buongiorno 
(2006) formulated a model in which two factors 
Brownian motion and thermophoresis effects are 
incorporated, and was used by various authors or 
researchers to study the thermal convection in a 
nanofluid layer by applying various factors in 
saturated porous and non-porous medium. Using 
this model, many researchers have investigated the 
criteria for the onset of thermal convection. Many 
researchers [Kolodner (1998), Xuan and Li (2003), 
Jang and Choi (2004), Tzou (2008), Das and Choi 
(2009), Nield and Kuznetsov (2010), Bhadauria 
and Agarwal (2011), Yadav, et al. (2013)] have 
investigated the onset of convection under various 
parameters so as to study the stability of the 
research problems and they have found that regular 
fluids due to the enhancement in the thermal 
conductivity exhibit higher stability than 
nanofluids. In all the above studies, the nanofluids 
are assumed to be Newtonian and it has been 
observed that much research work has been done 
on the viscous nanofluids; whereas a little research 
work is available to investigate and study the 
stability criterion of rheological (non-Newtonian) 
nanofluids. This is due to the complexity of the 
rheological non-linear terms in the Navier-Stoke’s 
equations of motion, which are not solved easily. 
The other reason is that the rheological fluids are 
not known yet in the universe. Since there is a 
competition within the process of thermal 
convection and that of rheology (viscoelasticity) 
due to which convection sets in through oscillatory 
modes rather than stationary modes.  Silver191 and 
Fe3O4

192 nanoparticles have been found in bacteria. 
The first viscoelastic rate type model used 
worldwide is proposed by Maxwell (1866) having 
a great storage of energy. A rheological model 
proposed by oldroyd was used by Malashetty et al. 
(2009 a, b) to study double diffusive instability in a 
viscoelastic fluid saturating a porous medium. A 
linear as well as the weak nonlinear stability 
problem was analysed by Umavathi et al. (2016)  to 
study the convective transport saturating a porous 
medium layer in a Maxwellian nanofluid. They 
have presented a linear stability analysis to 
investigate the onset of convective transport in a 
rheological model described by Maxwell and 

saturated by porous nanofluid layer and found that 
stability increases with increase in Lewis number, 
viscosity ratio and conductivity ratio where as it 
decreases with increase in the nanoparticle 
concentration Rayleigh number and relaxation 
parameter. They have further analyzed the weak 
nonlinear stability by using truncated Fourier series 
and showed that heat and mass transfer increases 
with increase in relaxation parameter. Recently, 
Sharma et al. (2017) have derived the expression 
for thermal Rayleigh number for stationary modes 
using Galerkin-weighted residual method and 
found that electric fields and the modified 
diffusivity ratio do not have any significant role on 
the onset of stationary convection. They also 
showed that Lewis number and modified particle 
density increment, concentration Rayleigh number 
destabilize or stabilize the system under certain 
wave number bands. 

Electro-hydrodynamics (EHD) is the mechanics 
which deals with the motion of flow in fluids due 
to externally applied electric field and generates an 
instability phenomenon in nanochannels. 
Electrohydrodynamics enhances heat transfer, 
microjump fabrication, electrospray mass 
spectrometry, electrospray nanotechnology, 
micro-electromechanical system and it increases 
the efficiency of heat transfer, which provides a 
new idea to the industry.  The applied electric force 
of fluid motions is a very effective method in 
getting very helpful interesting results in the 
cooling of laptops and devices of the flight in space 
separately, usage to a variety of applications 
ranging from electrokinetic assays to electrospray  
ionization, made on nanoscale being used at a large 
scale in the present era.  In dielectric liquids 
characterized by low values of conductivity, 
Maxwell equations reduce to the electroquasistatic 
limit. According to the theory of Landau, electric 
(body) force acting on dielectric liquids mainly 
contains Coulomb force, dielectric force and 
electrostrictive force.   Then a dielectric 
(homogeneous) viscoelastic nanofluid is heated 
from below so as to maintain an adverse 
temperature gradient due to which a gradient in the 
electric conductivity, σ1 and dielectrical 

permittivity, ϵ are produced. Then charge in the 
fluid is induced  in the presence of an applied DC 
electric field and the electric relaxation time (the 
built free charge). When a dielectric constant is 
applied,  the accumulated charge in the fluid and 
the free charge thus built varies exponentially in 
time with a electric relaxation time constant ߳ ⁄ ߪ . 
However, the free charge is not accumulated by 
applying an alternating current electric field with a 
frequency quiet higher than the ߪ ߳⁄  due to the 
quick enhancement in the movement of the charge. 
Due to this it is difficult to observe any effective 
contribution in the temperature field due to low 
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dielectric loss. At this stage, the mobility of the 
charge, varies the body force so rapidly that its 
effective value instead of mean value to determine 
motions of the fluid, is taken rather than that of 
fluids with extreme low viscosity. Thus the case of 
alternating current electric field is dominated and 
well manageable field on the onset of thermal 
convection in a layer of dielectric fluid. Nield and 
Kuznetsov (2010) have analysed linear stability for 
the onset of natural convection in a horizontal 
nanofluid layer. They have found that oscillatory 
modes are possible for the bottom heavy 
distribution of the nanoparticles. Further they have 
established that this is due to the conservation of 
nanoparticles coupled with the buoyancy force. 
Shivkumara et al. (2011) have investigated 
stability / instability of electrothermoconvection in 
porous / non-porous medium including various 
parameters for a) both stress free boundaries, b) 
both rigid boundaries, c) lower rigid and upper free 
boundaries. They have observed that the necessary 
conditions are independent of the applied electric 
field for the existence of oscillatory modes and for 
small Taylor number domain. The stress free 
boundaries are always unstable than that of other 
set of boundaries. This research work was 
reviewed extensively by Nield and Bejan (2013). 
Rana et al. (2013) have investigated steady laminar 
flow mixed with convection and heat transfer 
characteristics of Al2O3 numerically using  
Galerkin Finite Element method with volume 
fraction of nanoparticles ranging upto 4% and they 
have presented excellent validations. Later on, 
steady two-dimensional and mixed convection 
boundary layer flow of a nanofluid over a semi-
infinite vertical stretching sheet has been 
investigated numerically by Rana et al. (2014) 
using a Galerkin Finite Element Method (FEM). 
They have shown that heat transfer is effectively 
enhanced in nanofluids and the skin friction is 
reduced as compared to pure water. Recently, 
Kalbani et al. (2016) have studied the problem of 
unsteady natural convection nanofluid having 
various size of nanoparticles inside an inclined 
square enclosure to include magnetic field. The 
numerical results have been obtained by using 
Galerkin weighted residual Finite Element Method 
and they have observed that the time taken to reach 
the steady state is influenced by the different model 
parameters describing the physical system.   

Much research work has been carried on 
electrothermal instability including various 
physical properties of various viscous dielectric 
nanofluids, using different techniques. Therefore, 
an attempt has been made to examine theoretically 
and analytically the effect of rheology on the 
criterion for the onset of electrothermal convection 
in dielectric Maxwellian nanofluid layer, which is 
an extension of the research work by Nield and 
Kuznetsov (2010) for the case of stress free 
bounding surfaces. The Maxwell fluid model 
(1866) is deployed to describe the rheological 
behavior of the nanofluid layer of finite depth d, for 
the realistic stress-free boundaries. Stability is 
discussed analytically applying a single-term 
Galerkin approximation and numerical 

computations have been carried out using the 
software Mathematica Version-5.2. 

2. PROBLEM FORMULATION 

An infinitely extending electrically conducting layer of 
incompressible dielectric Maxwellian nanofluid heated 
from below is considered, pervaded by vertical gravity 
force  0,0, gg


and is confined between two parallel 

xy - planes at a distance of d in which temperatures at 
the lower and upper boundaries are assumed to be T0 
and T1 respectively, ( ଴ܶ > ଵܶ) . In addition to this 
nanofluid layer is subjected to a uniform vertical 
alternating current. The lower surface in which a 
reference point in an electrical circuit is taken at the 
lower surface against which other potentials are 
measured with φ as root mean square value.  

 
 

 
Fig. 1. Schematic diagram. 

 
Following Buongiorno (2006) and Maxwell (1866), 
the continuity and momentum equations governing 
the physical system for the incompressible 
Maxwellian nanofluid are: 
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 where , ,ρ,p,T, , ,μ and λv g E


  denote velocity, 

gravitational acceleration, density, pressure, 
temperature, electric constant, electric field, 
viscosity and stress relaxation parameter (accounting 

for viscoelasticity), respectively and ef


  is the 

electrical origin force which is given by (Landau and 
Lifshitz (1960))  

2 21 1
ρ ρ ,

2 2

       
f E E E
   

e e t
                 (3) 

where ρ௘ is the density of the charge. The term  e E


 

is the force produced due to a free charge after the 

name of Coulomb and the second term 21

2
   
 

E

  

depends on the gradient of ߳ . The bulk of the 
dielectric fluid remains uninfluenced with the 
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electrical force ef


. Since the dielectric constant ߳ 

and the electrical conductivity   the built up free 
charge is prevented for a longtime due to the 
sufficient relaxation appeared in the presence of 
electric field in most dielectric fluids at standard 
powerline frequencies. Thus, dielectric loss 
produced at these frequencies becomes very low so 
as to make the temperature field unchanged at the 

same time. Therefore, the first term e E


, is 

neglected as compared to the di-electrophoretic force 

term 21

2
   
 

E


  for most dielectric fluids. It is also 

assumed that the density, ρ  and the dielectric 
constant, ߳ can be expressed as [Yadav et al. (2016)]  

   0 0 0 01 α , 1 e ,            ρ ρ T T T T            (4) 

where  α  is the volume expansion coefficient and
0e  is the coefficient of the dielectric constant with 

temperature relative variations, which is assumed to 
be small. The modified pressure term using the 
equation 

2ρ .
1

p
2


 


E


P
t

                   (5) 

The free charge density is assumed to be very small. 
The Maxwell equations by (Roberts, 1969) are : 

  0, E


.                    (6) 

.0 E


                   (7) 

In view of Eq. (7), E


 can be expressed as φ E


 
where φ  is the root mean square of the electric 
potential. 

The conservation equations for the nanoparticles are 

 
p

1
.

ρ
.

       

v
v v j

    p.
t

                 (8) 

Here ϕ is the nanoparticle volumetric fraction, pρ  is 

the density of nanoparticles and jp  is the 

nanoparticles diffusion mass flux 

T
p B p

1

D
D T.

T

 
      

 
jp                   (9) 

where BD  (Brownian diffusion coefficient) and 

TD  (thermophoretic diffusion coefficient) are given 

as 

B f f
B T

f p f f p

k T 0.26k
D , D ,

3 d 2k k

 
 

  
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          (10) 

where k஻ is Boltzman’s constant, μ୤ is the base fluid 
viscosity, d୮ is the diameter of the nanoparticle, fρ  

is the base fluid density, k f  and k p   are the 

thermal conductivities of the base fluid and 
nanoparticles, respectively. Using the value of ܘܒ 
from Eq. (9) into Eq. (8), the conservation equations 

of nanoparticles become as 

  2 2T
B

1
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The heat energy equation for the nanofluid is  

   
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2

1
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      

   







v
v

 

 

f

T
p p B

c T k T

D
c D T T T

.
t

T

               (12) 

where ܿ௣  is the specific heat of the material 
constituting the nanoparticles. Here both the 
bounding surfaces are assumed to be stress-free and 
the medium adjoining the nanofluid is a perfect 
conductor. The boundary conditions relevant to the 
problem are 

2

2
0 0 .

 
      



 w
w at z and z d

zz
     (13) 

3. PRIMARY FLOW 

The primary flow representing the basic state is 
assumed to be quiescent (no settling of suspended 
nanoparticles) and is assumed to be stationary. 
Initially, no motions are present in the nanofluid flow 
and  time-independent solutions of Eqs. (1), (2), (6), 
(7). (11) and (12) are taken. The temperature, 
nanoparticle volume fraction and pressure vary in the 
direction of vertical. Therefore, the solutions of the 
basic state satisfying Eqs. (1), (2), (6), (7), (11) and 
(12) are 

   
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b
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z e z E E

e z

E
z e z

e

        (14) 

where subscript b denotes the steady state, 

 0 1T T
β

d


  , is the adverse temperature gradient, 

 
1

0
φ eβz

E
log 1 eβz





 , is the root mean square value of 

the intensity of electric field at 0z ,  ˆ ˆ 0,0,1 .k k
 

4. PERTURBATION EQUATIONS 

Let the primary flow be slightly disturbed from the 
equilibrium position so as to examine the stability of 
the perturbed modes with respect to the involved 
physical variables by superimposing infinitesimal 
disturbances to the basic state flow. It is assumed that

' '
b b b

' '
b b

,p p p ,ρ ρ ρ ,T T T , ,

, ,φ φ φ ,ρ ,p ,θ,wh ,ere
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', and φ   denote the perturbations superimposed 

into the physical quantities of the equilibrium state. 
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Using these perturbations and the solutions of 
primary flow (14), the Eqs. (2), (7), (11) and (12) in 
the non-dimensional linearized perturbed form using 
linear theory (neglecting the products and higher 
orders of perturbed quantities) and Boussinesq 
approximation  reduce to  

4 2 2 2
1 a 1 e 1
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N 1 e 1
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 is a horizontal Laplacian operator,

1 2

α

d

λ
λ   is the non-dimensional parameter 

accounting for stress-relaxation time. In deriving Eq. 

(14) the identity 2curlcurl graddiv   has been 
used.  

5. NORMAL MODE TECHNIQUE 

The partial differential Eqs. (15) - (18) are solved by 
using the normal mode technique by analyzing the 
disturbances into normal modes. The perturbed 
physical quantities are assumed to be of the form 
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where  ߪ  is the non-dimensional growth rate, which 
is generally complex in nature, ݇௫  and ݇௬  are the 

horizontal  wave numbers,  
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(18) become 

   

   

2 2 2 2
1

1

2 2 2
1

1

Θ Φ Ψ 1 0,a e N e

σ
D a D a λ σ W

p

a R R a R a R D λ σ

 
     

 
      

(20)  

2 2B A B

B

N 2N N
W Θ

L L

N
Ψ 0,

L

e e

e

D D a σ

D

 
     
 

 

           (21) 

   2 2 2 2N 1
Θ σ Φ 0,

L
A

e e
W D a D a

L

 
      

   
(22) 

 2 2 Ψ Θ 0  D a D ,                              (23) 

where D 
d

dz
. The boundary conditions (13) using 

the expression (19) transform to  

2W Θ Φ Ψ 0 at 0 and 1D W D z z         (24) 

The set of differential Eqs. (20) - (23) with boundary 
conditions (24) constituite an eigen value problem 
for ܴ௔ whose solutions ought to be obtained. The 
case of stress-free boundaries  is little artificial, 
however it is useful to obtain an exact/analytical 
solution of the problem. Using single term Galerkin 
approximation method, exact solutions of the system 
of Eqs. (20) - (23) satisfying the boundary conditions 
(24) of lowest mode solutions of  
are: 

0 sin ,Θ Θ sin ,Φ Φ sin ,

sin
o o

o

W W πz πz πz

Ψ Ψ πz

  


         (25)  

where   ௢ܹ, Θ௢, Φ௢  and  ߖ௢  are constants. 
Substituting solutions given by (25) into Eqs. (20) - 
(23), and integrating each equation by parts over the 
range of z (0 < ݖ < 1)  and using Boundary 
conditions (24), the following matrix equation is 
obtained:  
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 2 2 2

1

A

J J ) 0

1 J 0 0 Θ
0.

N J J Φ
1 0

L Ψ

0 0 0

a e N

e e

σ
a R R K a R K

p W

σ

σ
L

J

                        
  

(26) 

where  2 2J a π   and  11 λ σ K    

Using orthogonality, the non-trivial solution of the 
above matrix exists only if the thermal Rayleigh 
number Ra is as follows 

2 2
2 2 2

1

2 2
2 2 2

1

2 2 2
1

2 2
2 2 2 2

2 2
2 2

2 2
2 2 2 1

1

( )
( )( )

( )
( ) ( )

( )( )

( )

( )
( )[ ]

( )( )

1

1 [ ]

[ 1 [ ]

1

[ ]

1
[ ]( ) ].

a

e

e
e

N

A A

e e

e

R
a π

a a π σλ σ
L

a π
a R a π σλ σ

L

a R a π σλ

a N π N
a π σ a π

L L

a π
a π σ σ

L

σ a π σλ
a π

p




  


   

  

     


  

 
 

 (27) 

6. RESULTS  

6.1   Oscillatory Modes 

 Since for overstability, we wish to determine the 
critical Rayleigh number for the onset of instability 
via a state of pure oscillations of increasing 
amplitude by putting 0 σ iω  in the Eq. (27) and 
after some algebraic simplifications, we have 

1 2,   aR iω                  (28) 

where 

 
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R L
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e
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.
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         (30) 

Since 0ω for oscillatory modes, therefore, Eq. 
(28) implies that ∆ଶ= 0  which on simplification 
yields a dispersion relation as  

4 2
1 2 3a ω a ω a 0,                                 (31) 

where 
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   32 2 2 2 2
N 1 e Na π a R λ R R a π .

          
 

Then, Eq. (28) with 2 0   on simplification gives 

the thermal Rayleigh number for oscillatory modes 
as 
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(32) 

The oscillatory neutral solutions of Eq. (32) are 
obtained first by the roots of Eq. (31), which is 

quadratic in 2ω . As ω  is real for overstability and at 
most there may be one change of sign in Eq. (31) 
implying thereby  at  most one positive root of Eq. 
(31) for which the critical thermal Rayleigh number 
for oscillatory modes is obtained for various values 
of non-dimensional wave number. 

 

6.2   Stationary Modes  

The stationary modes are characterized by putting 
0ω  in Eq. (27),  which yields

 
 

32 2

2
,


   a e N A e

a π
R R R N L

a
               (33) 

which expresses the nanofluid thermal Rayleigh 
number Ra for stationary convection as a function of 
the dimensionless wave number a, electric Rayleigh  

number Re, nanofluid Lewis number Le, modified 
diffusivity ratio NA and concentration Rayleigh 
number RN . 

The critical dimensionless value of the wave number 
for the onset of instability is obtained for 

2 2
2

0,


 
 

 
c

a

a a

dR

da
 which gives c

π
a 2.22144

2
 


. 
When the electric field is not considered,  then ܴ௘(electric Rayleigh number) is zero. In the absence 
of the electric Rayleigh number accounting for 
electric field (ܴ௘ = 0), expression (33) reduces to 

 
 

32 2

2


  a N A e

a π
R R N L

a
 ,              (34) 

which is in good agreement with the value of thermal 
Rayleigh number given by  Nield and Kuznetsov 
(2010). 

When the suspension of nanoparticles is not 
considered  (ܴே = 0, ஺ܰ = 0), the above expression 
further reduces to  

 32 2

2


a

a π
R

a
 ,                (35) 

which is the earlier result by Chandrashekhar (1961).  

To investigate the effects of the electric field  ܴ௘ , the 
nanofluid Lewis number ܮ௘, the modified diffusivity 
ratio ஺ܰ and the concentration Rayleigh number ܴே, 
on the stability of stationary modes, the behavior of ௗோೌௗோ೐ , ௗோೌௗ௅೐ , ௗோೌௗேಲ  and ௗோೌௗோಿ   have been examined 

analytically. 

Equation (33) gives 

1 a

e

dR

dR
,                (36) 

which is negative implying thereby that thermal 
Rayleigh number decreases with increment in ܴ௘ 
(electric Rayleigh number) . 

Equation (33) further gives 

,  a a
N

e A

dR dR
R

dL dN
               (37) 

which are both negative (positive) if  

 N NR 0 or R 0    i.e. for both the cases of top-

heavy or bottom heavy particles. This depicts  that 
both the nanofluid Lewis number Le  and the 
modified diffusivity ratio NA have destabilizing / 
stabilizing effects for positive or negative values of 
RN, respectively. 

Equation (33) also yields that 

   a
A e

N

dR
N L

dR
 ,               (38) 

which is negative if   0 A eN L . Here a positive 

/ negative NA, (modified diffusivity ratio), indicates 
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that the density of nanoparticles is smaller / larger 
than that of the base fluid. An increase in 
positive/negative values of NA advances / reduces the 
thermophoresis to push the lighter / heavier 
nanoparticles upwards, which enhances the 
stabilizing effects of particle distributions. 
Therefore, due to the addition of nanoparticles, 
electric field and viscoelasticity in the regular fluid, 
additional parameters concentration Rayleigh 
number (ܴே) , modified diffusivity ratio ( ஺ܰ) , 
electric Rayleigh number (Re), Lewis number (Le) 
are introduced in the expression for the thermal 
Rayleigh number, which strongly affect the 
stationary convection of the nanofluid layer. 

To validate the numerical results obtained to 
calculate the critical wave number and 
corresponding critical Rayleigh number to discuss 
the stability of the system, the computed results are 
obtained under the limiting case of nanoparticle and 
electric field in Eq. (35) i.e.,  ܴே  = 0, ஺ܰ = 0 (see 
Table 1). 

 

 
Fig. 2. Variation of thermal Rayleigh number 

(Ra) versus wave number (a). 
 

Table 1 Thermal Rayleigh numbers and wave 
numbers of the unstable modes for stationary 

convection. 

a Ra
stat 

0.5 4145.25 

1 1284.23 

1.5 791.194 

2 667.01 

2.2 657.50 

2.5 670.167 

3 746.528 

3.5 883.478 

4 1082.06 

4.5 1349.34 

5 1695.9 

5.5 2134.74 

6 2680.85 
 

From the Table 1, it is observed that in the absence 

of nanoparticles and electric field, the critical 
thermal Rayleigh number ܴ௔௖  is equal to 657.50 and 

the corresponding wave number c
π

a 2.22144
2

 


, which is the exactly same result for Rayleigh-
B ݁́ nard instability for the ordinary fluid by 
Chandrasekhar (1961). Thus accuracy  of the 
numerical method used is verified.  

The expressions of thermal Rayleigh number for both 
stationary and oscillatory motions are presented in 
Eqs. (32) and (33), respectively. The variation of 
Rayleigh number with respect to wave-number has 
been plotted using Eq. (32) for oscillatory case and 
Eq. (33) for stationary case, whereas the experimental 
values and the fixed permissible values of the 
dimensionless parameters viz. to investigate the 
effects of stress-relaxation time parameter, modified 
diffusivity ratio, thermal Prandtl number, Lewis 
number, concentration Rayleigh number and electric 

Rayleigh number are 1 1λ 0.2,p 5,   

N A e eR 0.1, N 1, L 2000, R 100.     The 

stationary thermal Rayleigh number is found to be 
independent of viscoelastic parameter, since it 
vanishes with the vanishing of ߱ . Thus the 
viscoelastic (Maxwellian) nanofluid behaves like a 
regular (Newtonian) nanofluid. Nield and Kuznetsov 
(2010) has shown the possibility of oscillatory 
motions to set in only for the bottom heavy 
nanoparticle distributions. In the present work, the 
work has been extended to top-heavy distribution of 
the nanoparticles. Equation (31) is quite complicated 
to find the analytical roots and to obtain critical non-
dimensional wavenumbers so as to find critical 
thermal Rayleigh numbers for oscillatory motions, 
which only occur for positive values of growth rates ߱. The variations of thermal Rayleigh number with 
respect to wavenumbers have been plotted graphically 
for these non-dimensional parameters for stationary 
cellular motion as well as for oscillatory motions. The 
calculation for thermofluid characteristics is based on 
the 10nm nanoparticles In Figs. 3a and 3b, the 
variation of thermal Rayleigh number Ra has been 
plotted versus wave number a for different values of 
electric Rayleigh number, Re i.e., Re= 0,  100, -100, 
500, -500  for oscillatory and stationary motions,  
respectively (see Tables 2a and 2b). It is clear from 
the graphs that the thermal Rayleigh number takes 
very large values in the range of  0 < ܽ ≤ 1 and there 
is no significant effect of electric Rayleigh number, Re 
on thermal Rayleigh number, Ra in this regime. For ܽ > 1, there is a decrease in thermal Rayleigh number 
with increase in electric Rayleigh number Re implying 
thereby the destabilizing effect of the viscoelastic 
nanofluid layer for stationary as well as oscillatory 
modes i.e., an increase in the destabilizing 
electrostatic energy to the system strengthens the less 
stable system due to higher electric field. 

The variation in the thermal Rayleigh number Ra 
versus wave number a for various values of the 
stress-relaxation parameter, ߣଵ is illustrated in Fig. 4 
for oscillatory motions. It is observed that the stress 
relaxation parameter destabilizes the oscillatory 
modes, since thermal Rayleigh number grow on 
decreasing with its varying values i.e., ߣଵ = 0, 0.2,  

0 1 2 3 4 5 6

500

1000

1500

2000

2500

3000

3500

4000

4500

ac=2.22

R

a



V. Sharma et al. / JAFM, Vol. 11, No.3, pp. 765-777, 2018.  
 

773 

 
Fig. 3. (a) Variation of thermal Rayleigh number 
(Ra) versus wave number (a) for different values 
of electric Rayleigh number (Re) for oscillatory 

modes. 
 

 
Fig. 3. (b) Variation of thermal Rayleigh number 
(Ra) versus wave number (a) for different values  
of electric Rayleigh number (Re) for stationary 

convection. 

Table 2 a Thermal Rayleigh numbers and wave numbers of the unstable modes for onset of oscillatory 
modes convection for various values of Re= 0,100, -100, 500, -500. 

a Ra
osc 

 Re=0 Re=100 Re=-100 Re=500 Re=-500 

0.5 3190.11 3105.84 3274.62 2771.32 3614.95 

1 971.131 887.736 1055.38 564.667 1399.47 

1.5 582.754 500.546 666.516 194.325 1013.17 

2 475.93 394.941 558.997 104.684 905.93 

2.5 462.221 382.305 544.446 100.525 889.502 

3 497.872 418.826 579.19 137.999 920.786 

3.5 570.851 492.519 651.29 209.082 988.498 

4 679.363 601.577 758.95 314.702 1091.41 

4.5 825.786 748.471 904.623 458.502 1232.41 

5 1014.86 937.946 1093.03 645.559 1416.46 

5.5 1252.79 1176.24 1330.4 882.1 1649.91 

6 1546.97 1470.72 1624.07 1175.4 1940.14 
 

Table 2 b Thermal Rayleigh numbers and wave numbers of the unstable modes for onset of stationary 
convection for various values of Re= 0,100, -100, 500, -500 

a Ra
stat 

 Re=0 Re=100 Re =-100 Re =500 Re =-500 

0.5 3945.15 3845.15 4045.15 3445.15 4445.15 

1 1084.13 984.126 1184.13 584.126 1584.13 

1.5 591.094 491.094 691.094 91.0942 1091.09 

2 466.91 366.91 566.91 33.0898 966.91 

2.5 470.067 370.067 570.067 29.9326 970.067 

3 546.428 446.428 646.428 46.4279 1046.43 

3.5 683.378 583.379 783.379 183.379 1183.38 

4 881.955 781.955 981.955 381.955 1381.96 

4.5 1149.24 1049.24 1249.24 649.245 1649.24 

5 1495.8 1395.8 1595.8 995.804 1995.8 

5.5 1934.64 1834.64 2034.64 1434.64 2434.64 

6 2480.75 2380.75 2580.75 1980.75 2980.75 
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Table 3 Thermal Rayleigh numbers and wave numbers of the unstable modes for onset of oscillatory 
modes for various values of 0.6 ,0.4 ,0.2 ,0 =1ߣ 

a Ra
osc 

 0.6= 1ߣ 0.4= 1ߣ 0.2= 1ߣ 0= 1ߣ 

0.5 3566.59 3105.84 2079.48 1524.39 

1 1045.96 887.736 576.392 407.036 

1.5 613.547 500.546 313.584 211.776 

2 507.77 394.941 241.029 157.822 

2.5 516.41 382.305 230.91 150.16 

3 592.569 418.826 253.641 166.885 

3.5 726.122 492.519 301.18 202.104 

4 919.144 601.577 372.317 254.976 

4.5 1179.22 748.471 468.694 326.755 

5 1517.16 937.946 593.465 419.819 

5.5 1946.13 1176.24 750.776 537.282 

6 2481.2 1470.72 945.55 682.838 
 

 

0.4, 0.6 thereby advancing the onset of oscillatory 
convection due to the rheological behavior of the 
nanofluid (see Table3). 
 

 
Fig. 4. Variation of thermal Rayleigh number 

(Ra) versus wave number (a) for different values  
of stress relaxation parameter (1ߣ). 

 

 

Fig. 5. Variation of thermal Rayleigh  number 
(Ra) versus wave number (a) for different values 

of thermal Prandtl  number (p1). 

 

Figure 5 depicts the effect of different values of 
thermal Prandtl number p1, i.e., p1=1, 3, 5, 10 on the 
thermal Rayleigh number Ra for the case of 
oscillatory motions against non-dimensional wave 
numbers. It is depicted from the figures that the 
thermal Rayleigh number Ra decreases with the 
increase in the thermal Prandtl number p1 implying 
thereby advancement in the stability due to Prandtl 
number  (see Table 4).  
 

 
Fig. 6. Variation of thermal Rayleigh number 

(Ra) versus wave number (a)   for different 
values of concentration  Rayleigh number (RN). 

 

The thermal Rayleigh number against wave number 
for different values of concentration Rayleigh 
number i.e., RN = 0, 0.1, 0.01, -0.1, -0.01 is plotted 
in Fig. 6. It is depicted that an increase in the 
concentration Rayleigh number RN tends to increase 
the thermal Rayleigh number Ra for oscillatory 
motions slightly; whereas an increase in 
concentration Rayleigh number RN tends to increase 
thermal Rayleigh number for stationary convection 
thereby stabilizing the physical system and the onset  
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Table 4 Thermal Rayleigh numbers and wave numbers of the unstable modes for onset of oscillatory 
modes for various values of ܘ૚ = ૚, ૜, ૞ ܌ܖ܉ ૚૙ 

a Ra
osc 

 p1=1 p1=3 p1=5 p1=10 

0.5 3684.34 3341.83 3105.84 2746.67 

1 1076.05 964.965 887.736 769.178 

1.5 625.626 551.977 500.546 421.174 

2 510.596 442.393 394.941 322.005 

2.5 510.408 434.506 382.305 303.034 

3 575.192 481.947 418.826 324.519 

3.5 692.83 572.571 492.519 374.91 

4 863.552 705.287 601.577 451.537 

4.5 1093.02 883.738 748.471 555.346 

5 1389.99 1114.16 937.946 689.123 

5.5 1765.35 1404.52 1176.24 856.797 

6 2231.79 1764.17 1470.72 1063.14 

 
Table 5 Thermal Rayleigh numbers and wave numbers of the unstable modes for both the onset of 

oscillatory modes and  stationary convection for various values of  RN= 0, 0.1, 001, -0.1, -0.01 

a Ra
osc Ra

stat 

 RN=0 RN=0.1 RN =0.01 RN=-0.1 RN=-0.01 RN=0 RN=0.1 RN=0.01 RN=-0.1 RN=-0.01 

0.5 3660.83 3105.84 3105.61 3105.32 3105.55 4145.25 3845.15 4025.24 4245.35 4065.26 

1 1140.45 887.736 887.478 887.164 887.421 1284.23 984.125 1164.22 1384.33 1204.24 

1.5 708.406 500.546 500.252 499.894 500.186 791.144 491.094 671.184 891.294 711.204 

2 603.069 394.941 394.61 394.207 394.536 667.01 366.91 547 767.11 587.02 

2.5 612.176 382.305 381.94 381.496 381.859 670.167 370.067 550.157 770.267 590.177 

3 688.796 418.826 418.433 417.955 418.346 746.528 446.428 626.518 846.628 666.538 

3.5 822.781 492.519 492.101 491.593 492.008 883.478 583.378 763.468 983.578 803.488 

4 1016.2 601.577 601.136 591.542 601.037 1082.06 781.955 962.05 1182.16 1002.07 

4.5 1276.62 748.471 748.006 747.439 747.902 1349.34 1049.24 1229.33 1449.44 1269.35 

5 1614.87 937.946 937.454 936.858 937.347 1695.9 1395.8 1575.89 1796 1615.91 

5.5 2044.1 1176.24 1175.72 1175.09 1175.61 2134.74 1834.64 2014.73 2234.84 2054.75 

6 2579.41 1470.72 1470.18 1469.51 1470.06 2680.85 2380.75 2560.84 2780.95 2600.86 

 
of oscillatory motion is delayed (see Table 5). Also 
at high thermophoretic diffusivity, thermophoresis 
initiates turbulence in viscoelastic nanofluids 
quickly and so it destabilizes the system. 

In Figs. 7 and 8, the effect of various values of 
modified diffusivity ratio NA i.e., 0, 20, -20, 50, -50 
and Lewis number Le i.e., 4000, 6000 (non-
dimensional parameter accounting for Brownian 
motion DB) on the cases of stationary and oscillatory 
modes have been displayed (see Tables 6 and 7). The 
graphs of both the figures clearly depict that the 
stability of the system is slightly affected due to the 
variations in both Lewis number and the modified 
diffusivity ratio. 

It is also observed from all the graphs that stationary 
convection  is the preferred manner of instability and 
the critical wavenumber remains same for the 
stationary convection (i.e., ac=2.47) and the 

oscillatory motions (i.e., ac=2.51) with respect to 
variations in various physical parameters.  

7. CONCLUSIONS 

The effect of rheological behaviour described by 
Maxwell model to investgate the thermal convection 
in an electrically conducting viscoelastic nanofluid 
to include an external vertical A.C electric field for 
stress free boundaries is studied. The characteristic 
value problem satisfying the appropriate boundary 
conditions was solved analytically  using linear 
theory and perturbation technique followed by 
numerical computations. Using one term Galerkin 
method, an exact analytical solution is obtained and 
the results are encapsulated in Eq. (31) for the 
stationary convection and Eq. (29) for the oscillatory 
motion. It is established that the effect of electric 
field is to destabilize both stationary and oscillatory  
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Fig. 7. Variation of thermal Rayleigh number 

(Ra) versus wave number (a) for different  values 
of modified diffusivity ratio (NA). 

 

 
Fig. 8. Variation of thermal Rayleigh number 

(Ra) versus wave number (a) for different values 
of Lewis number (Le). 

Table 6 Thermal Rayleigh numbers and wave numbers of the unstable modes for both  the onset of 
oscillatory modes and stationary convection  for various values of  NA= 0, 20, 50, -20, -50 

a Ra
osc Ra

stat 

 Le=4000 Le=6000 Le=4000 Le=6000 

0.5 3105.41 3105.27 3645.15 3445.15 

1 887.561 887.503 784.125 584.125 

1.5 500.399 500.351 291.094 91.0937 

2 394.781 394.781 166.91 -33.0902 

2.5 382.11 382.045 170.067 -29.9329 

3 418.575 418.492 246.428 46.4276 

3.5 492.183 492.072 383.378 183.378 

4 601.117 600.965 581.955 381.955 

4.5 747.832 747.621 849.244 649.244 

5 937.051 936.756 1195.8 995.803 

5.5 1174.98 1174.57 1634.64 1434.64 

6 1468.96 1468.38 2180.75 1980.75 

 
Table 7 Thermal Rayleigh numbers and wave numbers of the unstable modes for both the onset of 

oscillatory modes and stationary convection for various values of  Le= 4000, 6000 

a  Ra
osc  Ra

stat 

 NA=0 NA=20 NA=50 NA=-20 NA=-50 NA =0 NA =20 NA=50 NA=-20 NA=-50 

0.5 3660.83 3105.84 3105.84 3105.84 3105.84 4145.25 3843.25 3840.25 3847.25 3850.25 

1 1140.45 887.736 887.736 887.736 887.737 1284.23 982.225 979.225 986.225 989.225 

1.5 708.406 500.545 500.545 500.546 500.547 791.194 489.194 486.194 493.194 496.194 

2 603.069 394.941 394.941 394.941 394.942 667.01 365.01 362.01 369.01 372.01 

2.5 612.176 382.304 382.303 382.305 382.305 670.167 368.167 365.167 372.167 375.167 

3 688.796 418.826 418.825 418.827 418.827 746.528 444.528 441.528 448.528 451.528 

3.5 822.781 492.518 492.517 492.519 492.52 883.478 581.478 578.478 585.478 588.478 

4 1016.2 601.576 601.576 601.577 601.578 1082.06 780.055 777.055 784.055 787.055 

4.5 1276.62 764.929 764.929 748.471 748.472 1349.34 1047.34 1044.34 1051.34 1054.34 

5 1614.87 937.944 937.944 937.946 937.946 1695.9 1393.9 1390.9 1397.9 1400.9 

5.5 2044.1 1176.23 1176.23 1176.24 1176.24 2134.74 1832.74 1829.74 1836.74 1839.74 

6 2579.41 1470.72 1470.72 1470.72 1470.72 2680.85 2378.85 2375.85 2382.85 2385.85 
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modes. The thermal Prandtl number, p1 Lewis number, 
Le and the stress relaxation parameter, ߣଵ  have 
destabilizing effects thereby increasing the region of 
instability for both stationary and oscillatory modes. 
With an increase in the concentration Rayleigh number,  
oscillatory frequency remains uninfluenced, whereas 
increase in concentration Rayleigh number RN hasten 
the onset of convection, thereby stabilizing the system 
for the   nanoparticle distribution from the top and as 
well as from the bottom in the base fluids. The onset of 
both stationary and oscillatory convection are found to 
be uninfluenced with the top and bottom-heavy 
distribution of  nanoparticles.  
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