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ABSTRACT 

In this paper a meshless method using exponential basis functions is developed for fluid-structure interaction 
in liquid tanks undergoing non-linear sloshing. The formulation in the fluid part is based on the use of Navier-
Stokes equations, presented in Lagrangian description as Laplacian of the pressure, for inviscid 
incompressible fluids. The use of exponential basis functions satisfying the Laplace equation leads to a strong 
form of volume preservation which has a direct effect on the accuracy of the pressure field. In a boundary 
node style, the bases are used to incrementally solve the fluid part in space and time. The elastic structure is 
discretized by the finite elements and analyzed by the Newmark method. The direct use of the pressure, as the 
�䐀䐀ential of the acceleration, helps to find the loads acting on the structure in a straight-forward manner. 
The interaction equations are derived and used in the analysis of a tank with elastic walls. The overall 
formulation may be implemented simply. To demonstrate the efficiency of the solution, the obtained results 
are compared with those obtained from a finite elements solution using Lagrangian description. The results 
show that while the wave height and the oscillations of elastic walls of the two analyses are in good 
agreement with each other; the use of the proposed meshless analysis not only leads to accurate 
hydrodynamic pressure but also reduces the computational time to one-eighth of the time needed for the finite 
elements analysis. ☮Keywords: Fluid-structure interaction; Meshless method; Exponential basis functions; Lagrangian 
Keywords: Fluid-structure interaction; Meshless method; Exponential basis functions; Lagrangian 
description for fluids; Nonlinear sloshing. 

NOMENCLATURE 

Af amplitude of oscillation 
c constant factors 
C  damping matrix 
g  gravity acceleration 
K  stiffness matrix 
M  mass matrix 
n unit normal vector 
N shape functions matrix 

p fluid pressure 

pH
 homogeneous part of pressure 

P  pressure vector 
U  displacement vector 
U  velocity vector 
U  acceleration vector 

x, y cartesian coordinates 

,c c   damping coefficients 

,N N   Newmark coefficients 

f
  fluid density 

1. INTRODUCTION

Fluid-structure interaction is of particular 
importance in various applications in engineering 
mechanics and, especially, in the designing process 
of industrial systems. Examples of such systems are 
offshore structures, dams, fluid tanks, bridges, ships 
and spacecrafts. Predicting the hybrid fluid-
structure system response is a complex process and 

in many practical cases finding an analytical 
solution is not possible. On the other hand, in this 
field, laboratory investigations are of limited 
ranges. Therefore many researchers have attempted 
to develop numerical methods to study the dynamic 
behavior and fluid-structure interaction.  

The available methods to simulate the behavior of 
fluids and fluid-structures interaction can be 
categorized in; “mesh-based/element-based” 
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methods which use mesh for the discretization, and 
the so called “meshless” methods which do not 
require the standard mesh production. In the studies 
on fluid behavior, four well-known mesh-based 
methods can be found in the literature: finite 
differences method (FDM), finite volume method 
(FVM), finite element method (FEM) and boundary 
element method (BEM). The finite element method 
and the boundary element, and the combination of 
these two methods in solving problems of fluid-
structures interaction have so far been attracting 
attention of many researchers (Firouz-Abadi et al. 
2009; Wang and Wu 2011; Nguyen-Thoi et al. 
2013; Kolaei et al. 2015). 

Although the element-based methods yield useful 
and satisfactory results in the field of fluid-structure 
interaction, the success of these methods largely 
depends on the mesh quality and, consequently, on 
the time allocated for its generation process. 
Moreover, in the simulating waves and free surface 
of fluid, the possibility of confronting with highly 
distorted elements, and thus needing mesh 
regeneration, is not far from reality. Element 
distortion may occur at each time step, so 
regeneration of the mesh may include a large share 
of the calculation cost (Ma 2005). Therefore, the 
development of numerical methods that are less 
dependent on the mesh generation, in solving 
problems with the free surface of fluid with large 
deformation, has been highly regarded in many 
recent studies. Among the methods developed to 
simulate the behavior of fluids without needing 
mesh the Galerkin meshless method, diffusion 
element method, reproducing kernel particle 
method, smoothed particle hydrodynamics method 
(SPH), particle finite element method, moving-
particle semi-implicit method (MPS), meshless 
local Petrov-Galerkin method (MLPG) can be noted 
(Lucy 1977; Monaghan 1994; Vuyst et al. 2005; 
Antoci et al. 2007; Mayrhofer et al. 2015; Oñate et 
al. 2004; Idelsohn et al. 2014; Sriram and Ma 
2012). 

The SPH method is one of the most widely used 
Lagrangian meshless methods in solving various 
engineering problems (Randles et al. 1996; Antoci 
et al. 2007; Zhang et al. 2017; Ren et al. 2017). 
This method can be classified into two categories in 
the field of computational fluid dynamics; i.e. the 
weakly compressible SPH (WCSPH) method and 
the incompressible SPH (ISPH) method (Liu et al. 
2014 and 2016). ISPH method is particularly 
efficient in improving the pressure and the volume 
conservation field in comparison with WCSPH 
method (Lee et al. 2010; Gotoh and Khayyer 2016). 
Apart from deficiencies pertaining to the pressure 
accuracy and volume preservation, all the methods 
falling in the SPH family need excessive number of 
particles, even for sloshing in a tank, so that the 
computational cost will not be small at all 
(compared to the FEM for instance).    

The method based on using exponential basis 
functions (EBFs) is among the element-free 
numerical methods (see Boroomand et al. 2010) 
that has so far been employed for the analysis of a 
wide range of engineering problems including those 

involving fluids with free surface movement. In this 
method, the general system’s response is considered 
as a linear combination of exponential functions 
with complex exponents. The complex exponents 
are found such that the functions precisely satisfy 
the governing differential equations. The constant 
coefficients of the series are found by satisfying the 
boundary conditions on the set of boundary points.  

Zandi et al. 2012a used the EBFs to solve some 
well-known benchmark fluid problems with free 
surface such as the water tank under harmonic 
forces, standing wave in a rectangular tank and the 
solitary wave. This method was also used for the 
analysis of incompressible stationary fluid flows in 
closed environments and also for the modeling of 
elasticity problems with fully incompressible 
materials (Zandi et al. 2012b). In the studies by 
Zandi et al. (2017) one may find one of the latest 
applications of the method in ocean engineering 
problems.   

As can be traced in the literature, the method can be 
used either in a boundary node style or in a local 
form utilizing domain points. The local form of the 
exponential basis functions was developed by 
Mossaiby (2010). In this method, the solution area 
and the boundaries are discretized by a set of nodal 
points. The sensitivity of the accuracy of the 
responses to the irregular arrangement of points in 
the domain led to the provision of a new local 
method by Soleimanifar et al. (2014) which was 
applied to some common problems in physics and 
solid mechanics, such as Poisson and Helmholtz, 
elasticity problems and elastic wave on two-
dimensional domains. The performance of the 
method has been investigated in solving the wave 
propagation and consolidation in saturated porous 
environments (Taghdirian 2011) and also in 3D 
simulation of nonlinear sloshing in tanks 
(Boroomand et al. 2016). The reader may refer to 
the studies by Shojaei et al. (2015) and (2016) for 
further extension of the method for some 
challenging problems. 

In the studies conducted based on the use of EBFs 
presented for the analysis of engineering problems 
in recent years, the speed and accuracy of the 
meshless method as well as its low computational 
costs, compared to other methods, was 
demonstrated. In this article, it is attempted to 
analyze the fluid-structure interaction problems 
using the EBFs method combined with a 
Lagrangian approach for the fluid part.  

In the fluid-structure interaction simulations 
presented in this paper it is assumed that the fluid is 
Newtonian inviscid fluid and the governing 
equation is written in Lagrangian description. The 
overall response of the fluid is considered as a 
linear combination of EBFs. The linear elastic 
structure, analyzed by the finite element method 
and Newmark time marching method, is subjected 
to the pressure induced by the fluid.  

The main objective in this study is to show that a 
pressure based formulation using EBFs, previously 
presented in Zandi et al. 2012a, can be effectively  
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Fig. 1. Boundary points and the fluid coordinate system. 

 
used in fluid-structure interaction. The capability 
of the EBFs in the modeling of relatively large 
sloshing, in tanks with rigid walls, has been 
demonstrated in our previous papers (e.g. see 
Zandi et al. 2012a). In order to show that the 
study is on a right path towards simulation of the 
fluid-structure interaction, one needs to study the 
movement of the structure due to non-linear 
behavior of the fluid. In this way we use a 
commercial program using the FEM for the 
validation and verification of the results. We shall 
discuss the time consumed and the pressure 
distribution found by both methods, i.e. the FEM 
and our method, to demonstrate the advantages of 
the proposed method. 

This is the first study in its kind for using EBFs 
for the pressure for the aforementioned 
interaction problems especially when the free 
surface of the fluid undergoes nonlinear sloshing. 
The novel features of the study can be 
summarized as below: 

 The presented method is a meshless one in a 
boundary node style. This domain reduction 
feature is expected to be more advantageous in 
3D problems.  

 It can be implemented in a code with a few 
lines.  

 The use of pressure based formulation helps 
not only to directly relate the interface 
acceleration to the gradients of the pressure 
but also to directly evaluate the acting forces 
to the structure. Based on our previous 
experiments in using EBFs, it is expected that 
the pressure field be evaluated with high 
accuracy. This effect is highly appealing in 
fluid-structure interaction. 

 The use of EBFs helps to find a solution which 
exactly satisfies the incompressibility condition 
with absolutely no approximation. This 
prominent feature of the formulation has a 
direct effect on the accuracy of the pressure 
field mentioned previously.    

The boundary node method is simple to implement 
and, as can be seen later, it proves to be practically 
faster than the FEM methods used in commercial 
codes for the simulation of these interaction 
problems. 

The layout of the paper is as follows; in section 2 
the model problem and the core of the 

formulation is presented. Section 3 has been 
devoted to the validation of the formulation and 
presentation of the results. The overall 
conclusions are given in Section 4.   

2. THE MODEL AND FORMULATION 

It is well-understood that the governing equations 
(Navier-Stokes equations) of an inviscid 
incompressible fluid in Lagrangian description    
consist of the pressure gradients and the material 
acceleration terms and can be summarized as: 

0
,

f

f f

D
p

gDt
    



 
 
 

U
g g


             (1) 

by defining the pressure as the sum of two following 
parts: 

H f
p p g y                                                      (2) 

the governing Eq. (1) reduces to: 

f

f H

D
p

Dt
  

U
                                                    (3) 

In the above relations, the superscript f denotes the 

fluid, f
U is the fluid velocity vector, 

f
 is the fluid 

density and g is the acceleration of gravity.
H

p  is 

the homogeneous part of the solution for the 

pressure (or hydrodynamic pressure) and f g y  is 

the particular part of the solution. The reader may 
note that such a split is always mathematically 
allowable since the gradient operator in Eqs. (1) and 
(3) is linear.  Therefore, there is no restriction for 
the origin of the coordinate system, especially for 
the y  axis. This means that the particular part of 
the solution in Eq. (2) plays the role of “semi-
hydrostatic” pressure. This part of the solution may 
be interpreted as the true hydrostatic pressure when 
the origin of the y  axis is considered at the (still) 
free surface. However, from a mathematical stand 
of view, this is not necessary and thus the origin of 
the coordinate system may be considered as a fixed 
point during the solution process (see Fig. 1). By 
applying divergence operator on both sides of Eq. 
(3) in a Lagrangian description (see Boroomand et 

al. 2016), and noting that 0f .U  due to the 
incompressibility effect, one may write:  



H. Pary Abarghooei and B. Boroomand / JAFM, Vol. 11, No.3, pp. 787-799, 2018.  
 

790 

0
f

 .U                                               (4)  

Note that Eq. (4) is valid for all instances of time. 
In order to solve the problem, a time marching 
approach should be adopted. To this end, the 
solution is performed within small time intervals 
as t . Although, no time variable is explicitly 
present in Eq. (4), the geometry of the fluid 
deforms as time goes on. The solution of Eq. (4) 
at each time step is considered as a series of 
exponential functions as: 

1

ˆ i i

l
x y

H i

i

p c e
 



                                                   (5)  

The above equation may be written in a more 
compart form as: 

ˆ
H

p  e c                                                                (6) 

Complex coefficients 
i

 and 
i

  in the exponent 

of the EBFs in Eq. (5) are found (see Appendix 
A) by direct insertion of the EBFs in Eq. (4).  The 

unknown coefficients
i

c , arranged in the 

vector c , are found by imposition of the time-
dependent boundary conditions. To this end, N 
boundary points are considered for the fluid 
boundaries from which M points are allocated to 
the fluid free surface while the remaining N-M 
points are considered on the boundaries labeled 
by number 1 to 3, associated with the bottom of 
the tank and the structure (surfaces S1 to S3 in 
Fig. 1). 

Assuming that the solution has been found until 

time nt , the fluid-structure geometry, the velocity 
and acceleration fields are available. With the 
geometry updated from the previous step, the 
pressure field can readily be reconstructed from 
the available boundary information. At the 
beginning of the time step n, i.e. 1n nt t t   , 
based on the boundary conditions and the 
geometry which are already found at the end of 

the previous time step, the vectors 
B

nP and 
n
iV are 

defined as follows: 
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In Eqs. (7) and (8),  ,
T

x y
n nn =  is the outward 

vector normal to the fluid boundaries while 
x

u  and 

y
u are the components of the fluid acceleration. The 

N-M conditions above the dotted lines in the vectors 

B

n
P and 

n

i
V  pertain to the Neumann conditions 

collocated at boundaries S1 to S3 in Fig 1. These 
conditions are defined through the following 
relation at the three surfaces: 

S

S

H

H

p
p

n
 






   



T T T
n U n n U          (9) 

In Eq.  (9), 
S


U denotes the fluid’s acceleration, at 

the interfaces of the fluid and structure (S1 to S3), 
which is to be considered equal to the structure’s 

acceleration (also 
S


U at S2  represents the ground 

acceleration).  

The M conditions below the dotted lines in the 

vectors 
B

n
P and 

n

i
V  pertain to the Dirichlet 

conditions collocated at the free surface. These 
conditions are defined by setting the pressure to 
zero, at the free surface, which yields:  

H f freefree
p g y                                               (10) 

In the above equation (.)
free

denotes that the 

quantity is evaluated at the free surface. In order to 
make the solution independent of the dimensions 
and the coordinates of the solution area, and to 

achieve accurate results, the vector 
n

i
V  is defined 

by normalizing the vector 
n

i
V  as:  


V

V

n

n i

i n

i
S

     
,

max( V )n

i
j

n

i j
S   

                          (11) 

where 
,

V
n

i j
is the jth element of the vector

n

i
V . 

Based on the definition of the vectors 
B

n
P and  

n

i
V , 

and also by considering Eq. (6) one may write: 
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B

n n nV Pc                                               (12) 

The vector of unknown coefficients 
nc  can now be 

calculated as follows: 

B
( )

n n n V Pc                                                     (13) 

where (.)  indicates the pseudo-inverse of the 

matrix. By calculating the vector 
nc one can 

evaluate the pressure at any point, either inside the 
domain or on its boundaries using Eqs. (6) and (2), 
including those which fall on the structure and fluid 
interface. The fluid pressure on the structure is 
calculated by inserting the coordinates of the nodal 
points of the structure’s boundary as follows: 

1

ˆ i i

l
x yn n n

H i
i

p c e 



  ec                                   (14) 

Thus, the forces applied to the structure by the fluid 
may be calculated by the integration of the pressure 
on the elements having one edge at the interface: 

int

int int int
ˆ dn T n

H f
p g



   P N                           (15) 

where,  N is the matrix of the structural elements’ 

shape functions, 
int

 is the water height (from the 

still water depth) at the interface nodes and 
int

 is 

the interface of the elastic wall moving with fluid. 
By replacing the pressure with its equivalent in Eq. 
(14) the following equation is found: 

int

int int int int int
dn T n n

f f
g g 



      P N ec Hc    

                                (16)  

where 

int

d
T



 H N e                                                  (17) 

By evaluating the forces applied on the interface, 
one may proceed to construct the vector of forces 
applied to the entire structure as follows: 

int int

n n

n

n

rest

 
   
   

  

P P
P

P 0

 



                                        (18) 

In the above relation the subscript “rest” is used to 
indicate that the quantity is related to the nodes of 
the structure which are not on the interface (the rest 
of the structure). In case of the presence of an 
external force other than the fluid force, the 

elements of the vector n

rest
P  can take on non-zero 

values. By forming the vector of forces applied to 
the entire structure, one may take into account the 
system of equations governing the structure: 

+ + = (t)s s sM U C U K U P                               (19) 

The system of equations is solved by Newmark 
method. In Eq. (19) the superscript S is used to 
indicate the structure part, M is the mass matrix, C  

is the damping matrix, K  is the stiffness matrix, 
(t)P is the force vector and U , U  and U  are the 

displacement, velocity and acceleration vectors  
respectively. 

Regarding the fact that only the boundary points’ 
acceleration is required for the re-analysis of the 
fluid, by rewriting the Newmark algorithm for 
linear systems with multiple degrees of freedom, a 
simplified acceleration equation is achievable. To 
this end, one may first consider the increment of 
displacement, found from Newmark algorithm, as: 

 1 1ˆ ˆ ˆn n n n n

s s s s s

       U K P K P a U b U       (20) 

where, 

2

1ˆ
( )

N

N N
t t



 


 
K K + C + M                        (21) 

1
N

N
t



 
a = M C                                           (22) 

and 

1
1

2 2
( )N

N N

t


 
 b = M C                              (23) 

In this research the Newmark parameters are 

considered as 1 / 4
N

   and 1 / 2
N

  . 

By substituting nP , as the difference between the 

obtained forces in the time step n  using the initial 
geometry and the forces applied on the structure at 
the end of step n , in  Eq. (20) one may write: 

  1 1ˆn n n n n

s s s s

     U K P P a U b U             (24) 

On the other hand, considering the increment of the 
acceleration, the following relation is available from 
Newmark algorithm: 

1

2

1 1 1

( ) 2

n n n

s s s

n n n n

s s s s

N N N
t t  
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   
 

U U U

U U U U

  

  

 

(25) 

Finally, by substituting Eq. (24) in Eq. (25) the 
following relation may be written for the nodal 
accelerations of the structure: 

 



1 1 1

2

1 ˆ
( )

1 1

2

n n n n

s s s

N

n n n n

s s s s

N N

t

t



 

     


  


U U K P P

a U b U U U

  

   
       (26) 

To perform an analysis for the end of the time step, 
it is necessary to find the intermediate geometry and 
the associated acceleration field for the fluid. After 

calculating the coefficients 
n

i
c the acceleration field 

is found from the following equation: 
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1

ˆ
1

 
n n

i i

nl
i x yn n i

f H

i if f

p
c

e
 



 




  
 
 
 

U                (27) 

Now by the 
n

f
U  and 

n

f
U  in hand, i.e. the 

displacement and velocity fields at the end of the 
previous time step, one may find an intermediate 
fluid geometry as follows: 

21

2

n n n n

f f f f
t t    U U UU                                 (28) 

Such an intermediate geometry is used for the 
calculation of required vectors and matrices. 
Considering the boundary conditions of the 
intermediate geometry, one write: 

1 1 1

B

n n n  V c P                                                    (29) 

The unknown vector 1n c  can again be calculated 
using the following equation: 

1 1 1 1 1

B
, ( )n n n n n      c Q P Q V                (30) 

Note that 1

B

P n contains all nodal information for 

the fluid (at all boundaries as depicted in Fig. 1). 

The matrix 1nQ  and the array 1

B

P n each may be 

partitioned to two parts, one pertaining to the 
interface nodes and the other pertaining to the rest 
of the nodes at other boundaries: 

1 1 1 1 1 1 1

1 , int 2 ,

n n n n n n n

B B B comp

        c Q P Q P Q P             (31) 

In the above equation int

, 1B n
P is an array associated 

with the fluid boundary conditions at the interface 
nodes that is calculated through the structural 

acceleration 1n

s

U : 

1 1

,int ,int

n T n

B f s
 P A Un                                             (32) 

In this equation n  is the unit vector normal to the 
fluid boundary at the interface. A is a matrix 
relating the structural nodal accelerations to the 

fluid pressure nodes (see Appendix B). 1

,

n

B comp

P is the 

complementary part of the boundary conditions (in 
the fixed and the free boundaries) which is defined 
as follows (based on the zero values for the pressure 
at the free surface and the acceleration at the fixed 
boundary): 

1 1

, 1

1

n n

B comp f N M

n

f N

g y

g y





 

 



    

 



 
 
 
 
 
 
 
  

0

P 





                                    (33) 

By substituting Eq. (32) in Eq. (31) the vector 
1nc  

is defined as follows: 

1 1 1 1 1

1 ,int 2 ,

n n T n n n

f s B comp
     c Q A U Q Pn                  (34) 

In the above equation the array 
1

,int

n

s

U  contains all 

unknown nodal accelerations on the interface. By 

substituting the new definition of 
1nc  in Eq. (16), 

the forces applied to the structure can now be 
calculated by the following equation: 

 1 1 1 1 1

1 ,int 2 ,

int int

int

n n T n n n

f s B comp

f
g





     

 

P H Q A U Q P



n
            

             (35) 

As a result, the vector of the whole structure’s 
forces is arranged as follows: 

 

 

 

1

1

1

1 1 1 1

,int 2 , int int

1

1 1

,int

1 1

2 , int int

int

1

1         

n

n

n

n T n n n

f s B comp f

n

n T n

f s

n n

B comp f

rest

rest

g

g

 











   



 

 

 

  




 

  
 
  
  
 
  
 
 
 
 
 
 

P
P

P

H Q A U Q P

P

H Q A U

0

H Q P

0









n

n

                                                                             (36) 

By substituting such an array of forces in Eq. (26) 
one may write: 

 

 

 

1 1

,int1 1

2

1 1

, int int

1

2

1

2

1 ˆ
( )

1 ˆ
( )

1 1
 (1 )

2

n T n

f sn

s s

N

n n

B comp f

n n n

s s s

N

n n

s s

N N

t

g

t

t









 

 

 

 



 


 


   


 


 
 
 

 
 
 

H Q A U
U K

0

H Q P

0

K P a U b U

U U




  

 



n

     (37)  

or 

 

 

1 1

2

1 1

, int int1

2

2

1 ˆ
( )

1 1
(1 )

2

1 ˆ
( )

n n n n

s s s s

N

n n

s s

N N

n n

B comp f

s

N

t

t

g

t



 





 

 



    


  


 



 
 
 

MU K P a U b U

U U

H Q P
K

0

   

 



 

(38)  

In this equation M  is defined as follows: 

 1

1

2

1
1 ˆ
( )

n T

f

s

N
t







 


 
 
 

H Q A 0
M I K

0 0

n
       (39) 

Finally the nodal accelerations of the structure are 
calculated from Eq. (38) as: 
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 

 

1 1 1

2

1 1

, int int1

2

2

1 ˆ . .
( )

1 1
          (1 )

2

1 ˆ         
( )

n n n n

s s s s

N
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N
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

    


  


 
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 

U M K P a U b U

U U

H Q P
K

0

   

 



                 (40) 

By calculating 1n

s

U and substituting it in the 

definition of 1nc in Eq. (34), the solution of the 
coupled system at the end of the time step is 
completed. With the solution at the end of time step 
in hand, it is necessary to calculate the values 
required to continue the solution in the next step. 
Assuming linear acceleration, the nodal velocities 
and displacements of the structure are obtained by 
the nodal accelerations obtained at the end of the 
steps 1n   and n : 

 1 11

2

n n n n

s s s s
t    U U U U                               (41) 

1

1 2

6 3

n n

n n n s s

s s s
t t



      
 
 
 

U U
U U U

 
                (42) 

Acceleration field of the fluid in the intermediate 
geometry is obtained by the following equation: 

1 1

1

1

1

 
n n

i i

nl
i x yn i

f

i i

c
e
 





 








 
 
 

U
                             (43) 

Now the new fluid’s velocity field and its geometry 
as the initial boundary conditions of the next step 
are calculable based on the acceleration obtained at 
the beginning of the step, the intermediate geometry 
accelerations, and also the velocities and 
displacements at the end of the time step 1n  : 

 1 11

2

n n n n

f f f f
t    U U U U                              (44) 

1
1 2

6 3

n n
f fn n n

f f f t t


      

 
  

 

U U
U U U

 
                  (45) 

In the next section we shall present the results of 
some numerical experiments using the proposed 
formulation. 

3. NUMERICAL EXPERIMENTS 

In the forthcoming simulations, the validation and 
verification of the formulation are performed 
through comparison of the results with those of the 
FEM implemented in a commercial code.  To this 
end, after definition of the problem, we shall first 
compare the results found for nonlinear sloshing in 
a tank with rigid walls for which some analytical 
solutions are available.  This helps to estimate the 
errors, for the liquid part,  for the two methods 
which may be used for finding an appropriate mesh 

resolution for the FEM and also an appropriate 
number of nodes in our formulation so that a fair 
comparison can be performed when fluid-structure 
interaction is of concern.  

3.1 Definition of the Problem 

In this example a square tank with the length of 
1l m  filled with water, with the density 

of
3

1000 kg m  , is considered. The left wall of 

the tank is made of steel material with 0.3  , 

37860 kg m  and 
9

198 10E Pa   (see Fig. 

2). 

The tank is fixed at the base while its right wall is 
considered rigid. The fluctuation of the fluid and the 
elastic wall are affected by a standing wave. The 
initial condition of the fluid is specified as follows: 

  ( ) cos / 2
f

x A k x l                               (46) 

where, ( )x is the height of the wave from the still 

water level, 
f

A is the amplitude of the initial wave 

profile, 2 /k   while   is the wavelength. The 
subscript f  denotes the fluid part. The initial fluid 
free surface is defined as a cosine wave with an 

amplitude of 0.005
f

A m  considering / 2l   

while the water height in the standing condition 
is 1h m . 

  

 
Fig. 2. Initial conditions of the standing wave in 
the tank with the elastic wall (S and f denote the 

structure and fluid, respectively). 
 

This example is modeled by a computer code, 
developed by the authors, in the programming 
environment of Mathematica (Wolfram 
Mathematica 9.0 in 2012) for the simulation of 
fluid-structure interaction problems and also by a 
commercial code using the finite element method 
(i.e. the Abaqus software). In the next section, 
further details of the two types of modeling are 
given.  

3.2 Details of the Proposed Modelling  

In the proposed model, as mentioned earlier, the 
elastic wall section is analyzed by the finite element 
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formulation while the fluid part is simulated using 
EBFs. The fluid boundaries are discretized by 206 
boundary points (Fig. 3) from which 51 points are 
allocated to each side, including the elastic wall, 
while 104 points are allocated to upper and lower 
boundaries, including the free surface.  

 

 
Fig. 3. Initial configuration of fluid boundary 

points in EBFs method. 
 

The size of the wall is considered as 0.05 m×1.01 m 
(the height of the elastic wall is larger than the 
initial left water level). The wall is discretized by 9-
node elements (only one element used through the 
thickness). Up to the height of 0.995, the wall is 
discretized by 10 elements 

(1 fA  1 0.005 0.995  ) while 6 elements are 

used to discretize the rest of the wall, i.e. the part 

with the height of 2 fA on which the water level is 

expected to fluctuate (Fig. 4). 

 

 
Fig. 4. Elements used for the elastic wall in 

Mathematica. 
 

Damping matrix factors are calculated based on the 
first and second frequencies of the wall (without 

water), evaluated as
1 2

234.954 , 1456.96   , 

and considering the damping ratio of 0.05   
while using the Rayleigh’s damping relations 
(Chopra 1995). Therefore the damping matrix C  is 
assumed as follows: 

5
+ , 20.2326 , 5.9 10c c c c       C M K  

                 (47) 

In this equation K  is the stiffness matrix and M  is 

the mass matrix. In order to study the fluid–
structure interaction, the wall vibration due to the 
hydrodynamic pressure is investigated. To this end, 
the effect of hydrostatic pressure is removed from 
the solution by applying a static pressure on the 
wall.    

3.3 Details of the Modeling in Abaqus  
In the FEM model, the geometry of the fluid part is 
considered similar to that described in the previous 
section (Abaqus 6.11 in 2011). The fluid is defined 

as Newtonian with the viscosity of 
9

10 .Pa s


 and 

the speed of sound as v 1483 m s . The analyses 

are performed with two sets of damping coefficients 

20.2326c  and 202.326c  (while 0c   for 

both cases). It is noteworthy that using a non-zero 

value for c  in Abaqus software greatly increases 

the CPU time, especially when fluid-structure 
interaction is involved (e.g. for a 5 second solution 
and using 4096 elements, the CPU time is about 33 
hours and 20 minutes for 0   while it takes 186 

days for 
5

5.9 10c
  ). Therefore in the 

modeling c is considered zero. The option of 

“explicit dynamic solution” in the software was 
used in the interaction analysis and the solution’s 
stages are defined in one step.  

As mentioned in the previous section, since the 
objective here is to study the problem under 
hydrodynamic forces, the effect of water hydrostatic 
pressure (or the initial deformation of the elastic 
structure caused by the hydrostatic pressure) is 
removed by considering a hydrostatic pressure 
through the software’s feature of  
“Load/Tools/AnalyticalField/Manager” and 
defining an equation as 9845 9845y   (see Fig. 5 
for the distribution and also Fig. 2 for the origin of 
y ). 

 

 

 
Fig. 5. Distribution of the hydrostatic pressure 

on the inside edge of the elastic wall. 
 

Based on the problem type and the features of the 
software, the discretization of the fluid and elastic 
wall is performed by 4-node plane strain elements  
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Table 1 Sensitivity of the numerical solution for a tank with rigid walls 

M
et

ho
d Property Error of Period 

(%) 
Error of Amplitude 

(%) 
Total CPU Time 

(min) 
Elements  or boundary nodes (sec)t  

A
ba

qu
s 

169 
elements 0.025 19.88 102.42 3 

1024 
elements 0.025 3.14 31.2 33 

2500 
elements 0.025 2.14 26 120 

4096 
elements 0.025 0.49 14.2 240 

E
B

F
s 

206 boundary node 
0.025 0.49 25.7 40 

0.01 0.48 9.56 100 

 
and the discretization of the rigid parts is performed 
by linear 2-node elements. The number of square 
elements used in the discretization of the fluid is 
4096 and the elastic structure is discretized by 198 
elements (Fig. 6). 

 

 
Fig. 6. Initial form of discretization of the fluid 

and structure in ABAQUS software. 
 
3.4 Results for Rigid Tank  

In order to find the best element size for the fluid 
part, the problem is first solved for the case in 
which all walls are rigid. Such a case has an 
analytical solution presented by Faltinsen (1974). 
Therefore by comparing the numerical solutions, 
found form either Abaqus or the EBFs, with the 
analytical one an appropriate element size in 
Abaqus, whose results is comparable with that of 
the EBFs, may be found and thus comparison of the 
two methods, in the solution of the tank with elastic 
wall, will then be possible. To this end, the water 
fluctuation at the walls of the tank is evaluated with 
different number of elements, i.e. 169, 1024, 2500 
and 4096 elements. The time increment is taken as 

0.025 sec t . The computed errors and the CPU 

times are presented in Table 1. We have included 
the results of EBFs with 0.01sec t . As can be 

observed in Table 1, to reach a rather similar 
acceptable accuracy in both methods, 4096 
elements are required in the discretization of fluid 
part in the FE analysis in Abaqus. Thus using the 
same number of elements for the elastic reservoir 

may lead to a fair comparison between the two 
methods. The reader may note that the accuracy of 
the results with 2500 elements and 0.025sect   is 

rather similar to the accuracy of the results obtained 
by EBFs with the same time increment. However, 
the errors calculated are not acceptable from a 
computational stand of view.  An important feature 
reported in the table is the CPU time of the 
solutions (the CPU used in this paper is 2.27 GHz 
Core i5). It can be seen that for results with rather 
similar accuracies, the CPU time of EBFs is much 
less than the CPU time of the FEM (or vice versa, 
for results with rather similar CPU times, the error 
of EBFs’ results is considerably less than the errors 
of the FEM’s results).   

3.5 Results for Fluid-Structure Interaction  

In this section the results found for elastic tank are 
presented. Here the objective is not only 
verification of the results but also demonstration of 
the advantages of the proposed method over the 
existing tools.  Figure. 7 illustrates the fluctuation 
of water at the top left node of the fluid versus time 
found from both EBFs and Abaqus software. The 
time increment in the EBFs solution is taken as 

0.005 sect   and in Abaqus the increment of 

time is 0.01sect  . Note that due to the presence 

of an elastic wall in the solution, the time 
increments in both methods are taken less than 
those used for the tank with rigid walls (other 
solution characteristics in both methods are similar 
to those presented in Table 1, i.e. 4096 elements in 
FEM and 206 boundary nodes in EBFs). The 
analyses are performed using 

20.2326c  and 0c   (see Eq. (47)).  

As it can be observed, the results of the two 
methods are in good agreement in terms of period 
and amplitude.  

In Figs. 8 and 9, the variation of hydrodynamic 
pressure at the interface between the fluid and 
elastic wall along the wall’s height is presented at 
the times 1.42t   (minimum water height in the 
third phase) and 1.71t   (maximum water height at 
the end of the third phase). As it can be observed 
from the figures, the hydrodynamic pressure found 
from Abaqus exhibits some unrealistic fluctuations 
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Fig. 7. Comparison of the calculated wave heights at the left node of the fluid on 

the interface with elastic structure. 
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Fig. 8. Hydrostatic pressure distribution on the elastic wall at t 1.42 . 
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Fig. 9. Hydrostatic pressure distribution on the elastic wall at t 1.71  

 
and this effect is in contrast with the results of EBFs 
solution. It appears that the pressure found from 
Abaqus fluctuates around the EBFs results. This 
effect clearly shows that the EBFs results may be 
considered more reliable while the computational 
effort is much less than that of the FEA. Using 
similar CPU for both analyses, the solution in 
Abaqus software takes 33 hours and 20 minutes 
while the solution using EBFs takes 4 hours and 20 
minutes (noting that, unlike the Abaqus software, 
the code written for the EBFs has not been 
professionally optimized). This clearly shows the 

advantage of using the proposed meshless method 
in the solution of fluid-structure interaction 
problems.  

Figure 10a shows the variation of horizontal 
displacement of the top of the elastic wall on 
interface with fluid (h=1.005 m) obtained from 
EBFs method and Abaqus software. As can be 
observed in this figure, the period and amplitude of 
the oscillation found from both methods are in 
excellent agreement. Some additional oscillations 
are observable within the period of  
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Fig. 10. Comparison of the horizontal displacement of the top point of the elastic wall on the interface 

with fluid (h=1.005 m); (a) for c  , (b) for c   

 

 

0 0.25sect  which decay as the time goes on. 

This additional wall vibration may be attributed to 
the free vibration of the wall. In order to provide 
better insight to the problem, the solutions have 
then been repeated using higher damping 

coefficient 202.326c  . The results are presented 

in Fig. 10b.  It can clearly be seen that while the 
oscillation in the Abaqus results is reduced and 
damped fast, no meaningful change is perceivable 
for the overall wall behavior.     

4. CONCLUSIONS 

In this paper a boundary node method, suitable for 
the simulation of interaction between inviscid-
incompressible fluids with their containers, has 
been proposed. It has been also shown that the use 
of pressure based formulation helps not only to 
directly relate the interface acceleration to the 
gradients of the pressure but also to directly 
evaluate the acting forces to the structure. 

Apart from the features as: domain reduction, 
simplicity of the implementation and capability of 
exactly satisfying the incompressibility condition; 
the following advantages have been experienced 
during the numerical experiments: 

 It is considerably faster than the FEM 
methods, e.g. those used in commercial codes. 
The reduction in computational cost has been 

evaluated as (at least) one-eighth of the 
Abaqus software, considering that the program 
used in this research has not been optimized, 
in contrast to some well-known professional 
and commercial codes such as Abaqus. This 
feature may become more advantageous while 
dealing with 3D problems in which domain 
reduction is of more importance. 

 It results in a meaningful/accurate pressure 
distribution compared to the pressure found by 
the FEM.  

Since the formulation of the proposed method is 
based on using smooth bases, it cannot be directly 
applied to modelling of breaking waves in the tanks 
(which involve singularities in the solution). 
Appropriate singular bases may be introduced to the 
solution, as suggested by Mossaiby et al. (2015). 
There is a possibility of constructing the singular 
bases for special cases (see for instance 
Noormohammadi and Boroomand 2017). These 
issues are currently under consideration.   

APPENDIX A 

By placing ˆ
Hp in Eq. (5), the relationship between 

complex values 
i and 

i are obtained as follow: 

2 2 0 i i
i i

i i

 
 

 
 

     

i

i
                                 (A-1) 
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In this equation 1i =  is a unique imaginary 
number. Therefore by choosing the factors 

i and 

i the differential equations are satisfied in all 

areas. These factors are chosen according the 
following pattern which was initially given by 
Boroomand et al. (2010): 

2

2

i

i

j
G

n

j
G

n

 

 

  

  

  
   


     

i

i

                                             (A-2) 

where 

2 8

1,2,..., 4

1, 2,..., n

G m m

j n  

 
 

                                    (A-3) 

The following equation is proposed for   

3.5 4.5
( , )Max L Lx y

   
                      (A-4) 

where, Lx and Ly are the dimensions of the 

rectangle that circumscribes the domain. In this 
study m and n are considered as 10 and 5 
respectively and 4 is the value proposed for  ; 
therefore, 8 400l m n  exponential bases are 

defined.  

APPENDIX B 

The matrix A relates the fluid and structure nodes in 
common boundary: 

,int ,intf sU AU                                                       (B -1) 

Assuming that the normal vector of the interface 
between the structure and the fluid is in x 
coordinate and linearly acceleration between two 
successive nodes of the structure at the common 
boundary, the corresponding elements of 
acceleration 

xU  of matrix A  are formed as 

follows: 

If     1y y yk j k
s f s

   

1

y y

y y

j k
f s

jk k k
s s

A 





 

1

1 1

y y

y y

k j
s f

jk k k
s s

A


 





 

Else 

0jkA                                                                (B-2) 

In this equation the superscripts f  and s denote the 
fluid and the structure, respectively. It should be 
noted that due to the lack of transferring the 
acceleration along the y axis (tangential level) 
between the structure and fluid, in the rows and 
columns corresponding to the U y

the value 0 is 

placed in matrix .A  
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