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ABSTRACT 

A novel reduced order model (ROM) for unsteady hypersonic aerodynamics is developed, which is applicable for the 
variations of multi-parameters. The key to the developed ROM lies in the CFD-based model reduction of the steady 
aerodynamic component, which stems from the quasi-steady nature of aerodynamic forces in the hypersonic regime. 
Concretely, the proper orthogonal decomposition (POD) method, combined with Kriging interpolation, is used to 
construct the ROM for the steady aerodynamic component; meanwhile the unsteady part is directly obtained from 
Donov’s third-order piston theory. The new procedure is applied to a three-dimensional low aspect ratio wing 
(Lockheed F-104 Starfighter wing). It is shown that the developed ROM is able to accurately predict the unsteady 
hypersonic aerodynamic loads over a wide range of different flight conditions compared with the direct CFD 
computation. 

Keywords: Reduced order model; Proper orthogonal decomposition; Kriging surrogate; Piston theory; Multi-
dimensional parametric space. 

NOMENCLATURE 

a speed of sound iU POD mode 

ra coefficient of the rth POD mode V matrix of eigenvectors 

C covariance matrix iv eigenvector of covariance matrix 

pC pressure coefficient nv normal velocity of the surface 
ROM
pC pressure coefficient of reduced order model w midsurface displacement of the surface 

,p sC steady component of piston theory pressure x sampling point 

,
ROM
p sC steady component of reduced order model rotx x  coordinate value of the midchord 

,vpC component of piston theory pressure due to 
surface velocity Z instantaneous surface position 

pC
component of piston theory pressure due to 
combined surface velocity and surface 
inclination 

hZ thickness distribution of the surface 

,
PT
p usC unsteady component of piston theory pressure  angle of attack 

jf polynomial function  side-slip angle 

1L normalized root mean square error  structural mode shape 

M number of sampling points r  nonlinear function 

Ma freestream Mach number r̂ kriging approximation 

N number of nodes of aerodynamic mesh  radio ratio of the specific heat ratio of air 

P snapshot matrix i eigenvalue of covariance matrix 

p  average vector of pressure   air density of the freestream 

p  pressure of of the surface i  singular value 

p  pressure of the freestream 
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1. INTRODUCTION 

Hypersonic vehicles generally refer to the flight of 
vehicles in an atmosphere layer or trans-atmosphere layer 
at a Mach number above 5. The hypersonic vehicle, such 
as an X-43, usually adopts a long, slender lifting body 
layout. The body and aerodynamic control surfaces are 
flexible due to minimum-weight restrictions. Due to 
complex interactions between the flow, flight dynamics, 
structural response, controllers, and propulsion system, 
the aeroelastic and aerothermoelastic properties of the 
hypersonic vehicle are very important (McNamara, 2008, 
2011), and it is impractical to test these properties in 
wind-tunnels. Therefore, accurate prediction of the 
unsteady aerodynamic loads becomes one of the primary 
challenges for the design of hypersonic vehicles. 

Limited by the capabilities of computational facilities, 
early researchers of hypersonic aeroelasticity had to 
employ a number of approximate unsteady aerodynamic 
models, such as piston theory (Liu, 1997) and (Dowell, 
2016), Newtonian impact theory, and the shock-
expansion theory (McNamara, 2010). The advantages of 
high computational efficiency and ease of 
implementation make these analytical models very 
attractive at the stage of preliminary design. However, 
these analytical models neglect some potential important 
effects (viscidity and real gas effects, etc.), and it is 
difficult to accurately predict aerodynamic loads under 
some complex flow conditions. Furthermore, the 
aerodynamic forces in the hypersonic regime are quite 
large, and any inaccurate prediction of these loads may 
lead to an unreliable design of the control system, which 
could result in air accidents. Recently, along with the 
rapid development of the CFD technique, Euler and 
Navier-Stokes (N-S) equations have been used to 
accurately predict unsteady aerodynamic loads (Boulahia, 
2014). This makes the direct CFD/CSD coupling 
computations possible in the time domain. Full-order 
CFD models, also known as high-fidelity models, can 
provide the necessary accuracy for aeronautical 
applications (McNamara, 2008). However, the direct 
CFD computation is very time consuming, and it is 
unsuitable for design processes such as aeroelastic 
tailoring, which requires iterative computations in multi-
dimensional parameter space. In addition, CFD 
simulations in the time domain will produce a huge 
amount of input and output time histories, so they are 
also unsuitable for analysis or synthesis problems of the 
control system. Consequently, accurate lower-
dimensional models, also known as ROMs, that can 
capture the dominant behavior of the system of interest, 
are often sought to enable real-time operations by 
practitioners (Skujins, 2011), (Kim, 2015) and (Huang, 
2014). 

A number of ROMs have been proposed to improve the 
efficiency of CFD. The overviews of different ROMs are 
discussed by Ghoreyshi et al. (2014) and Lucia et al 
(2004). ROMs seek to construct a lower-dimensional 
model by extracting information from a limited number 
of full-order simulations. POD (Hall, 2000); (Thomas, 
2010); (Lieu, 2007) and surrogate-based approaches 
(Glaz, 2010); (Liu, 2016) are two typical representatives 
of such ROMs. The POD approach essentially belongs to 
a type of projection-based model reduction methods by 
projecting the high-fidelity model onto a well-chosen 
subspace consisting of a set of basis vectors. Kriging is 

an interpolation method that is well suited for 
approximating nonlinear functions. However, the above 
ROMs for unsteady aerodynamics are built on one 
operating point (fixed flight conditions) and are not 
effective on other points. A new ROM must be 
reconstructed with the variations of the operating point, 
even for a tiny change. 

In general, the aeroelastic analysis and tailoring, control, 
and many other applications involve several parameter 
changes, for example, variations in shape, Mach number, 
angle of attack, etc. Hypersonic vehicles operate within a 
large range of flight envelopes and undergo large 
variations in dynamic parameters. Therefore, it is an 
urgent requirement to establish an efficient ROM, that is 
applicable for the variations of multi-parameters. A 
survey of model reduction methods for parametric 
dynamical systems is given in (Benner, 2013), where 
various methods are presented and compared. A 
parametric reduced-order modeling approach has been 
introduced to efficiently generate ROMs that are accurate 
over a broad range of parameters, without the need for a 
new reduction model at each design point. To solve the 
ROM adaptation issue, several POD-based ROMs have 
been proposed. Schmidt et al. (2004) developed a global 
POD (GPOD) method by enriching the snapshot matrix 
with solutions corresponding to different values of the 
varied parameters. The major drawback of this approach 
lies in the lack of the optimal approximation property of 
the POD method, which usually results in an 
unsuccessful ROM adaptation in the transonic regime 
(Amsallem, 2008). The direct interpolation method (Lieu, 
2004) attempts to construct a set of new reduced-order 
bases associated with a new set of physical parameters by 
interpolating pre-computed reduced-order bases. 
However, the obtained bases are not guaranteed to be 
orthogonal. Subspace angle interpolation has been used 
for F-16 aeroelastic simulations (Lieu, 2007), when the 
freestream Mach number or angle of attack is varied. 
However, the subspace angle interpolation approach has 
proven difficult to extend for variations of more than one 
parameter. 

In this work, a parametric ROM for hypersonic unsteady 
aerodynamics is developed, which is based on the 
following three conditions: quasi-steady nature of the 
hypersonic flow, the high computational efficiency of the 
piston theory, and the need for ROM adaptation in multi-
dimensional parameter space. A flow is said to be quasi-
steady when the reduced frequency is small ( 1k  ). 
This condition occurs if the frequencies are very low, the 
vehicle semichord is very small, or the velocity is very 
high. For hypersonic flows (Scott, 1996), the fluid 
solution is quasi-steady. The developed ROM includes 
the ROM for steady aerodynamic components and the 
unsteady component from Donov’s third-order 
formulation of piston theory, which is denoted here as the 
PT-ROM method. A steady aerodynamic ROM is 
constructed to give the accurate steady aerodynamic 
component in multi-parameter space by combining the 
POD method with the Kriging surrogate. Three sections 
in this paper discuss the PT-ROM method in detail. In the 
section 2, the relevant theories regarding the PT-ROM 
method are briefly described: piston theory, Latin 
hypercube sampling, proper orthogonal decomposition 
(POD) and surrogate models (Kriging model), and the 
implementation steps of the PT-ROM method are 
discussed in detail, and two separate error metrics are 
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defined to judge the accuracy of the PT-ROM compared 
with the CFD. In the section 3, the validity of the PT-
ROM method is verified by simulation results on a low-
aspect-ratio wing over multidimensional parameter space. 
Finally, concluding remarks are made in section 4. 

2. PARAMETRIC REDUCED- ORDER 
MODELING APPROACH FOR UNSTEADY 
HYPERSONIC AERODYNAMICS 

Figure 1 shows the schematic diagram of the PT-ROM 
framework. First, the input parameter space (Mach 
number, angle of attack, slide-slip angle, etc.) with 
bounds is given. Then, Latin hypercube sampling (LHS) 
is used to identify a set of sampling points. The basic 
function of the PT-ROM is to correct the classical piston 
theory using CFD computations. For this purpose, the 
classical piston theory is decomposed into the steady 

component (value-dependent) and the unsteady 
component (rate-dependent). The steady component can 
be replaced by the result of steady-state CFD flow 
analysis. Based on steady-state CFD results, POD and 
Kriging surrogates are employed to construct an efficient 
parametric ROM. Combining the steady aerodynamic 
ROM with the unsteady component of Donov’s piston 
theory, the parametric PT-ROM is obtained. 

2. 1 Donov’s Third-Order Piston Theory 
Including Side-Slip Angle 

The piston theory (Ashkey, 1956) is a technique that has 
been used to predict the unsteady aerodynamic forces on 
a lifting surface when the Mach number is sufficiently 
high. The piston theory assumes that for a thin or slender 
body, the gradients of flow parameters in the direction of 
the free stream are negligible compared to the gradients 
 

 

Fig. 1. Schematic diagram of the unsteady aerodynamic PT-ROM. 
 

the normal to the surface, and the interaction of arbitrary 
two points on the surface is very small. This 
characteristic of the flow can be simply mimicked by a 
moving piston in a one-dimensional channel, as shown in 
Fig. 2. 

 

Fig. 2. Pressure on a surface can be mimicked by a 
moving piston in a one-dimensional channel. 

The classical piston theory yields the following formula 
for local pressure p  of the surface: 

2

11
1

2
nv

p p
a


 




 
  

 
 (1) 

where   is the radio ratio of the specific heat ratio of air, 

and nv  is the normal velocity of the surface such that 

( , , ) ( , , )
n

Z x y t Z x y t
v V

t 

  
   

  
  (2) 

As shown in Fig. 3, the all-moving lifting surface 
(control surface) is considered. The instantaneous lifting 
surface position can be written as 

rot( , , ) ( , , ) ( , ) ( )( )hZ x y t w x y t Z x y t x x      (3) 

where ( , , )w x y t  is the midsurface displacement of the 

control surface. ( , )hZ x y  is the thickness distribution. 

( )t  is the rotation of the control surface about the 

midchord at the root of the wing, and rotx  is the x  

coordinate value of the midchord. 

For hypersonic aeroelastic applications, such as panel 
flutter, the side-slip angle is an important parameter 
influencing flutter speed and mode shape at the flutter 
point. In Fig. 3, the airstream coordinate system O   is 
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Fig. 3. Definition of side-slip angle  . 

defined, and the axis   corresponds to the direction of 

the freestream. Note that the following relationship holds 
true 

cos sinx      , cos siny       (4) 

Thus, we have 
( , , )

cos sin
Z x y t Z x Z y Z Z

x y x y
 

  
      

   
      

  (5) 

For | |nv a , we can expand the right hand side of Eq. 

(1) into the series expressed in terms of /nv a : 

2 3

2
1 2 3

n n nv v v
p p a c c c

a a a
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  

    
       
     

 (6) 

where 1 1c  , 2 ( 1) / 4c   , 3 ( 1) /12c   . Then, 

the pressure coefficient on an oscillating surface is given 
by 

2 3

1 2 32

2 n n n
p

v v v
C c c c

a a aMa   

    
      
     

 (7) 

Donov (1956) obtained a series expansion solution up to 
the fourth-order term, accounting separately for the 
isentropic part and the rotational part due to a simple 
wave and shock wave, respectively. Donov’s third-order 
piston theory can be expressed as 

2 3

1 2 32

2 n n n
p

v v v
C c c c

a a aMa   

    
        

     
 (8) 

where 
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Substituting Eq. (2) into Eq. (8) yields the following 
pressure coefficient: 

,s ,v( , , ) ( , , ) ( , , ) ( , , )p p p pC x y t C x y t C x y t C x y t   (9) 

where 
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64
( , , )p

c Mac Z Z Z Z
C x y t

V t tV 


 
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 (12) 

Equation (10) is the steady part, which is dependent on 
the surface instantaneous inclination, since the structure 
experiences transient rotations due to control input and 
elastic deformations. Equation (11) represents the 
component of pressure that is entirely dependent on the 
surface velocity. Equation (12), which represents the 
second- and third-order PT contributions to the wash-
velocity terms, is dependent on the products of surface 
velocity and inclination. 

For this approach, Eq. (10) is replaced with the steady-
state pressure computed from a CFD flow analysis. 
Modification of the fluid mesh was completed before 
computing the full-order flow. To increase computational 
efficiency and ease of implementation, the steady-state 
CFD results are computed by constructing an ROM 
combining Kriging and POD in multidimensional 
parameter space. 

2. 2 Steady Aerodynamics Modeling Via 
Parametric Reduced-Order Model 

2. 2. 1 Sampling point selection 

In the multi-parameter space, the principle of sampling 
point selection is that the characteristics of the model can 
be reflected by as few sampling points as possible. For 
this purpose, Latin hypercube sampling (LHS) is usually 
employed to select appropriate sampling points within 
the parameter space (Mackay, 2000). 

The two main criteria for measuring sampling methods 
are the uniformity of space and projection. However, the 
sampling points generated by the standard LHS only 
ensure the projective property. In this paper, maximum 
LHS using the successive local enumeration (SLE) 
algorithm (Zhu, 2012) is used, which is an enhanced 
algorithm of the LHS. The goal of the SLE is to 
maximize the minimal distance, which is the minimum of 
all the distances between the point to be generated and 
the existing points. In Fig. 4, 100 sampling points are 
generated by LHS and SLE. It is shown that SLE is 
effective at generating sampling points with good space-
filling and projective properties. 

2.2.2 Proper Orthogonal Decomposition (POD) 

POD is a mathematical technique that uses a set of 
optimal orthogonal basis functions to characterize the 
behavior of the full-system dynamics. The basic 
functions (called POD modes) are completely dependent 
on the experimental data or the results of high precision 
numerical simulations. 
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(a) LHS 

 

(b) SLE 
Fig. 4. Sampling points in 2-dimensional space using 

LHS and SLE 

Consider a field vector ( )kp  defined over a set of 

aerodynamic mesh points: 

( ) ( ) ( ) ( ) T
1 2( , , , )k k k k

Np p pp  ， 1, 2, ,k M   (13) 

where M  is the number of sampling points in the 
parameter space, and N  is the number of nodes of 
aerodynamic mesh. The N M  matrix representing the 
sample of “snapshots” can be written as 

(1) (2) ( )[ , , ]MP p p p   (14) 

The deviation matrix is defined as 

( )k P p p , 1, 2, ,k M   (15) 

where ( )

1

1 M
k

kM 

 p p  is the average vector. The 

singular value decomposition (SVD) of the covariance 

matrix TC P P   is given by 

2 2 2
1 2 1 2diag[ , , , ] diag[ , , , ]M M      CV V V 

  (16) 

The covariance matrix C  is a positive semi-definite 
matrix whose eigenvalues can be ordered in decreasing 

order such that 1 2 0M      , and the 

corresponding standard orthogonal eigenvector is given 

by 1 2, , , Mv v v , 1 2[ , , , ]MV v v v . 

, 1, 2, ,i i i M     is the singular value of TP . 

The orthonormal basis 1 2 1{ , , , }M U U U  is given by 

i
i

i


Pv
U


, 1, 2, , 1i M   (17) 

Therefore, the POD approximation of the snapshot 
solution is given by 

( ) ( )

1

m
k k

i i
i

a


 p p U , m M  (18) 

with POD coefficients 

2

( ) ( ) ( ) T1
, ( )k k k

i i iL
i

a


   p p U p p Pv  (19) 

in which, 
2

,
L

   is the usual 2L  inner product. 

2.2.3 Surrogate model 

The goal of the surrogate model is to establish a 
simplified mathematical approximation. There exist a 
variety of approximation models (Gupta,2007) and 
(Skujins, 2014), such as the polynomial response surface, 
moving least square method, radial basis function, 
Kriging model and neural network. In this paper, the 
Kriging surrogate model, due to its outstanding ability to 
model the local behavior of the function, is used to 
establish the approximate relationships between POD 
coefficients and sampling points. 

In multi-dimensional parametric space, a nonlinear 
functional relationship between POD coefficients and 
design variables is as follows: 

1 2 1, 2,r r Wa x x x r m          (20) 

where ra  is the coefficient of the rth POD mode. The 

nonlinear function r  can be approximated by using the 

surrogate model to obtain a surrogate mapping function 

r̂ . 

Consider the case of M  sampling points 
(1) (2) ( ), , , Mx x x  in the W  dimensional parameter 

space. The corresponding responses are denoted by 
(1) (2) ( ), , , M

r r ra a a . The Kriging approximation is 

expressed as at an arbitrary point x : 

0
T

1

( ) ( ) ( )
N

r j j
j

f Z Z 


   x x x f   (21) 

where ( )jf x , usually a polynomial function, are 0N  

known regression models, j  are the corresponding 

parameters, and ( )Z x  is a stochastic process with mean 

zero and variance 2
var . 

The covariance between the ( )Z x  at two design points 
( )ix  and ( )jx  is 

( ) ( ) 2
var[ ( ), ( )]i j

M MCov Z Z  x x R   (22) 

where M MR  is a correlation matrix, and 
( ) ( )( , )i j

ijR R x x  is a correlation function that depends 

on the relative location of these two design points. The 
Gaussian exponential correlation function is utilized in 
this paper. The covariance matrix is shown to be 
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( ) ( ) ( ) ( )

1

( , ) exp( )
k

W pi j i j
k k k

k

R x x


  x x   (23) 

In the current study, the parameter kp  is fixed at the 

value of two; thus, the correlation function in Eq. (23) is 
related to the distance between the two design points. To 

find k , the generalized least square estimates of   and 
2
var , denoted by ̂  and 2

var̂ , respectively, are 

employed: 

T 1 T 1ˆ ( )   F R F F R y  (24) 

T 1
2
var

ˆ ˆ( ) ( )
ˆ

M

 
 


y F R y F   (25) 

where F  can be defined as a 0M N  matrix where the 

ith row corresponds to the evaluation of the 0N  

functions at the ith sampling point, and y  is a 1M   
vector of observed function outputs at the sampling 
points, which are expressed as 

0

0

0

(1) (1) (1)(1)
1 2

(2) (2) (2)(2)
1 2

( ) ( ) ( ) ( )
1 2

( ) ( ) ( )

( ) ( ) ( )
,

( ) ( ) ( )

Nr

Nr

M M M
r N

f f fa

f f fa

a f f f

  
  
      
  
     

M

x x x

x x x
y F

x x x




    


  (26) 

With ̂  and 2
var̂  known, k  is found such that a 

likelihood function is maximized. Any values of k  

would result in a surrogate, but the best Kriging 
surrogate is found by maximizing the likelihood function. 

For given correlation parameters kp  and k , the 

predictor of r  at an arbitrary point x  can be shown to 

be 

  T T 1ˆ ˆˆ ( ) ( ) ( )r    x f x r x R y F   (27) 

where 

  (1) (2) ( ) T[ ( , ) ( , ) ( , )]MR R Rr x x x x x x x  (28) 

The predictor of the Kriging model given by Eq. (27) 
represents the optimal predictor, which results in the 
minimum mean square error with respect to the assumed 

stochastic process r . Note that the Kriging predictor is 

represented as an approximation to a stochastic process, 
but Eq. (27) is a deterministic function. Therefore, the 
Kriging model has been widely used in approximating 
deterministic computer models. 

2.2.4 POD combined with surrogate model 

After the LHS procedure is performed in parameter space, 
a total of M  sampling points are produced. Then, M  

snapshots ( )kp  are formed from the results ( )k
CFDy  of the 

full order CFD computations, as shown in Fig. 5. Thus, a 
set of truncated POD modes and POD coefficients are 
obtained by snapshot matrix. To account for the ROM 
adaptation to the variations of multi-parameters, Kriging 
interpolation is performed to construct the surrogate 
response surfaces for POD coefficients with respect to 
the sampling points in multi-parameter space. Note that 
only one set of truncated POD modes is produced for all 
points in parameter space, and the Kriging interpolation 
is only applied to a small number of POD coefficients. 
Therefore, POD combined with surrogate strategy 
provides a very efficient construction of ROM (Xiao, 
2010). 

2.3 Construction of Parametric Reduced-Order 
Model for Unsteady Hypersonic Aerodynamics 
and Error Metrics 

2.3.1 Construction procedure 

In this paper, the developed PT-ROM for hypersonic 
unsteady aerodynamics features the combination of the 
reduction strategy for steady aerodynamic force with the 
unsteady component of piston theory. Thus, the PT-ROM 
for hypersonic unsteady aerodynamics can be written as 

ROM ROM PT
,s ,us( , , ) ( , , ) ( , , )p p pC x y t C x y t C x y t   (29) 

where 
 

 

Fig. 5. Workflow of establishing the approximate relationships between POD coefficients and sampling points. 
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PT
, ,v( , , ) ( , , ) ( , , )p us p pC x y t C x y t C x y t     (30) 

Detail procedures for PT-ROM construction are 
summarized as follows: 

(1) The input parameters (Mach number, angle of 
attack, etc.) with bounds are given. 

(2) SLE algorithm is then used to identify a set of 

sampling points: ( ) , 1, 2, ,k k Mx  . For each 

sampling point, the steady-state pressure ( )kp  is 

approximated by CFD computation prior to 
modification of the fluid mesh for each sample 
point due to the structural deformation as an input. 
These snapshots are collected to form the snapshot 
matrix P , given by 

(1) (2) ( )
1 1 1
(1) (2) ( )
2 2 2

(1) (2) ( )

M

M

M
N N N

p p p

p p p

p p p

 
 
 
 
 
  

P




   


 (31) 

where N  is the number of aerodynamic mesh 
nodes on the lifting surface. 

 (3) The POD modal matrix U  is obtained by SVD 
for snapshot matrix P . Form the truncated POD 
modes 1 2, , mU U U , m M .. 

(4) Compute the POD coefficients ( )
1{ } |k M

ka . 

Using the truncated POD modes, the snapshot can 

be approximated as ( ) ( )

1

m
k k

i i
i

a


 p p U . 

(5) Construct Kriging response surfaces for 
( )

1{ } |k M
ka  with respect to the sampling points in 

parameter space. 

(6) Using the surrogate model, compute the POD 

coefficients (e)a  at an arbitrary point (e)x  in 
parameter space. 

(7) The vector field (e)p  is interpolated at an 

arbitrary point (e)x : (e) (e)

1

m

i i
i

a


 p p U , and the 

steady-state pressure coefficients can then be 

obtained as (e)
, ( )ROM

p sC p p q   , where q  is 

the dynamic pressure. 

(8) PT
,p usC  is obtained by Donov’s third-order piston 

theory. Then , compute the unsteady aerodynamics 
using Eq. (29). 

2.3.2 Error metrics  

The validation of the developed PT-ROM is 
performed through a comparison with the full-order 
CFD computations. The generalized aerodynamic 
force (GAF) on the surface can be defined as 

2

S

1
GAF= dS

2 pV C     (32) 

where   is structural mode shape, and pC  is the 

coefficient of pressure. 

Two separate error metrics are defined to evaluate 
the accuracy of the developed PT-ROM relative to 
CFD. First, the normalized root mean square error 

1L  is defined as a mean absolute difference 

between PT-ROM and CFD results at each time step. 
For a simulation over T  time steps, 1L  error can be 

written as 

 
   

ROM, CFD,1

1
CFD CFD

1
GAF GAF

100%
Max GAF Min GAF

T

i iiTL



 




 (33) 

where ROM,GAF i  and CFD,GAF i  are PT-ROM and 

CFD response values at time step i , respectively. 

The L  error is defined as 

 
   

ROM CFD

CFD CFD

Max GAF GAF
100%

Max GAF Min GAF
L


 


  

(34) 

It can be seen that L  error finds the maximum 

difference between PT-ROM and CFD results over 
all time steps and normalizes this quantity by the 

same range as in the 1L  error. 

3. NUMERICAL SIMULATIONS AND 
DISCUSSIONS 

3.1 Structural and Aerodynamic Models of 
the Control Surface 

The planform geometric and cross-sectional views 
of the airfoil are shown in Fig. 6. Figure 7 shows 
the finite element model of control surface, which 
was designed by mimicking the dynamic 
characteristics of the F-104 Lockheed Starfighter 
wing. The first two natural frequencies and mode 
shapes of the structure are shown in Fig. 8. 

 

Fig. 6. Geometric model of the control surface. 

As illustrated in Fig. 9, the generated CFD mesh is 
a vertically symmetric H-H grid with 53 points 
spanwise, 153 points chordwise, and 43 points 
extending vertically from the surface 
(approximately 56.1 10  cells). The majority of 
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Fig. 7. Finite element model of control surface. 

 

(a) Mode 1, first bending, 13.41 Hz 

 

(b) Mode 2, first torsion, 37.46 Hz 
Fig. 8. First two modes of control surface. 

grid points are clustered near the wing surface, 
leading edge and mid-chord since these locations 
correspond to the maximum flow gradients and the 
boundary layers in hypersonic flows are relatively 
thick. This set of grid systems does not include any 
flow sections upstream of the wing surface since the 
considered flow is hypersonic and disturbances 
cannot propagate upstream. 

 

Fig. 9. Grids for full-order CFD computations. 

The high-fidelity CFD solver uses an implicit, 
finite-volume algorithm based on upwind-biased 
spatial differencing to solve the Reynolds-Averaged 
Navier-Stokes (RANS) equations. The Menter’s 
k   turbulence model is used for closure of the 
RANS equations. Recently, the effectiveness of this 
turbulence model in the hypersonic regime has been 
verified (Roy, 2003). 

3. 2 Parameter Space And Bounds 

According to the expansion theorem, the structural 

response can be written as a superposition of the 
structural modes. In this study, for simplicity, only 
the first two vibration modes are used to generate 
the structural deformation, given by 

1 1 2 2( , , ) ( ) ( ) ( ) ( )w x y t a t x, y a t x, y     (35) 

where 1( )a t  and 2 ( )a t  are the first-order and 

second-order modal amplitudes, respectively. 

1( )x, y  and 2 ( )x, y  are the first-order and 

second-order mode shapes, respectively. 

To validate the PT-ROM adaptation to variations of 
multi-parameters, a total of five parameters are 
selected: Mach number, angle of attack, side-slip angle, 
and two modal amplitudes. The selected bounds for 
these input parameters are listed in Table 1. 

Table 1 Parameter space and bounds 
Parameter Bound 

Ma  5 ~ 10  

  4deg ~ 4deg  

  3deg ~ 3deg   

1a  0.5 ~ 0.5  

2a  0.5 ~ 0.5  

To validate the developed PT-ROM, two kinds of 
structural motions are specified in advance: 

Deformation mode 1 (DM1): The structural 
deformation is the combination of the first two 
natural vibrations; that is, 

1 2
1 1 2 2( , , ) ( ) ( )i t i tw x y t a x, y e a x, y e       (36) 

where 1  and 2  are the first-order and second-

order natural frequencies, respectively, and 1a  and 

2a  are specified amplitudes. 

Deformation mode 2 (DM2): Random vibration 
analysis of the wing is studied, and the filtered 
Gaussian white noise (FWGN) excitations of the 
structural modes are performed. 

3.3 Determination of the Number of POD Modes 
and the Sampling Points  

The number of POD modes and the sampling points 
has a great impact on the accuracy of the PT-ROM 
framework. Therefore, the appropriate number of 
POD modes and sampling points is first determined 
to attain the best balance between the model 
accuracy and computational efficiency. For this 
purpose, 200 sampling points are generated using 
the SLE algorithm. Next, a total of 200 snapshots 
are obtained from the full-order CFD computations. 
Using the 200 snapshots, the snapshot matrix is 
assembled. After performing SVD of the covariance 
matrix, the POD modes are extracted. The natural 
logarithms for these 200 eigenvalues of the 
covariance matrix are given in Fig. 10. It can be 
seen that the flow characteristics are dominated by 
the lower order modes. 

Further investigations on the effects of the retained  
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Fig. 10. Eigenvalues of the covariance matrix. 

performed. To do this, a total of 20 test points in the 
parameter space are arbitrarily selected. The 
variations of the mean and the standard deviations 

of 1L  and L  errors with increasing number of 

retained POD modes are shown in Fig. 11. It is clear 
from these results that as the number of POD modes 
increases, the mean and the standard deviations for 

both 1L  and L  errors decrease rapidly until the 

number of POD modes exceeds 20. Hence, the first 
20 POD modes are enough to characterize the flow 
field. 

 

 

Fig. 11. Mean and standard deviations of 1L  and 

L  errors vs the number of retained POD modes. 

Next, using the first 20 POD modes, the 
performances of the developed PT-ROM are further 
evaluated by varying the number of sampling points. 
As shown in Fig. 12, with an increase in the number 
of sampling points, the mean and standard 

deviations of 1L   and L   errors decrease rapidly 

until the number of sampling points exceeds 
approximately 200. 

 

 

Fig. 12. Mean and standard deviations of 1L  and 

L  errors vs the number of sampling points. 

From Figs. 11 and 12, the 1L   and L   errors of the 

PT-ROM constructing form 200 sampling points 
and 20 retained POD modes are less than 5%. This 
configuration will be used in the following 
simulations. 

3.4 Accuracy of the PT-ROM on the Boundary of 
Parameter Space 

The effects of Mach number on 1L   and L   errors 

are first studied. Six Mach numbers ranging from 5 
to 10 are selected for error analysis, while the other 

parameters remain a constant value: 4.0deg  , 

3.0deg  , 1 0.5a   and 2 0.5a  . As shown 

in Fig. 13, compared with classical piston theory, 
the developed PT-ROM provides an excellent 
approximation of the full-order CFD solution, and 

the 1L  and L  errors of PT-ROM are both less 

than 5%. 
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Fig. 13. 1L  and L  errors vs Mach number. 

Next, the accuracy of the developed PT-ROM is 
tested as the angle-of-attack varies. Tests are 
conducted at a constant Mach number, side-slip 
angle and oscillation amplitudes: 10Ma  , 

3.0deg  , 1 0.5a   and 2 0.5a  , but at an 

angle-of-attack ranging from 0deg  to 4deg . The 

airfoil shape of the F-104 is symmetric, the error 
values at the negative angle-of-attack are simply the 
same as those at the positive angle-of-attack, and so 
only the results at the positive angle-of-attack are 
plotted in Fig. 14. 

 

 

Fig. 14. 1L  and L  errors vs angle of attack. 

Finally, validation is performed under the condition 
of a constant Mach number, angle-of-attack and 
oscillation amplitudes, 10Ma  , 4.0deg  , 

1 0.5a   and 2 0.5a  , but with a varying side-

slip angle from 3deg  to 3deg . A total of 

seven side-slip angles are selected for error analysis, 
and the results are shown in Fig. 15. 

 

 
Fig. 15. 1L  and L  vs side-slip angle. 

From the above results, the 1L  and L  errors of the 

PT-ROM are both less than 5% in all tests, and the 
accuracy of PT-ROM is greatly improved compared 
with the second and third-order piston theory. The 
PT-ROM maintains the stability of the error in the 
parameter space. 

3.5 Validation of the Reduced-Order 
Aerodynamics Model 

A total of 20 sampling points are arbitrarily selected 
for evaluating the performances of PT-ROM in 
multidimensional parameter space. Figures 16 and 
17 show the comparison of the PT-ROM, piston 
theory, and CFD results for the minimum and 
maximum error cases, respectively. It can be seen 
that the steady component of the GAFs predicted by 
the PT-ROM agrees well with the CFD results. 
Since some important factors, such as the viscosity 
of flow, which has a primary effect on the steady 
component of the GAFs, cannot be considered in 
piston theory, as piston theory does not provide a 
very accurate prediction for the steady component 
of the GAFs. Moreover, for more complex 
configurations, piston theory may be fail due to its 
large prediction errors, whereas the PT-ROM 
stemming from CFD computations can be applied 
to any configurations. 

Table 2 summarizes the statistical errors of 20 
sampling points. The second-order piston theory has 

a lower 1L  and L  error than the third-order piston 

theory but has a wider band of error. Among these 
three models, the PT-ROM exhibits the highest 
accuracy. It is analyzed that because of steady 
aerodynamic ROM joining, the complex flow 
phenomena in the three dimensional flow field has 
obtained a more accurate description. 
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Fig. 16. Minimum error case: 5.64Ma  , 

2.11deg   , 0.12deg  , 1 0.46a  , 

2 0.41a  . 

 

 

 
Fig. 17. Maximum error case: 9.74Ma  , 

3.57deg  , 2.86deg  , 1 0.47a  , 

2 0.35a  . 

Table 2 Statistical errors of GAFs 
Aerodynamic 

model 
1L (%) L (%) 

Second-Order 
Piston Theory 

1.37-21.4 
(Avg.11.4) 

2.51-39.6 
(Avg.19.8) 

Third-Order 
Piston Theory 

1.54-16.7 
(Avg.9.85) 

2.67-32.4 
(Avg.15.1) 

PT-ROM 0.92-2.87 
(Avg.1.92) 

1.52-3.72 
(Avg.2.83) 

To evaluate the effectiveness of the PT-ROM under 
complex structural motions, limited bandwidth 
filtered Gaussian white noise (FWGN) excitations 
are applied to the wing, and the GAFs are predicted 
by the PT-ROM. The FWGN excitation signals are 
imposed on two structural modes. The band of 
frequencies is limited to 0~25 Hz, and the maximal 
amplitudes of two structural modes are set to 

1 2 0.5a a  . First, the steady solution is 

computed at a given Mach number, angle-of-attack 

and side-slip angle: 0.95Ma  , 4deg  , 

3deg  . Then, this solution is used as the initial 

condition for unsteady computation of the 
aerodynamic systems subject to external structural 
excitations. In Fig. 18, a comparison of the GAFs 
shows that the developed PT-ROM is in good 
agreement with the direct CFD calculations. For the 
unsteady analysis with 1600 time steps, the 
computational time using PT-ROM is only 15 min, 
while it is 17.6 h using the full-order CFD approach. 
The developed PT-ROM runs several orders of 
magnitude faster than a full-order CFD computation 
while preserving a high level of accuracy. 
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Fig. 18. PT-ROM results vs direct CFD results 
under FWGN excitation. 

4. CONCLUSIONS 

For hypersonic unsteady flow of small amplitude, 
the pulsation term caused by the unsteady effect is 
small relative to the steady component of pressure. 
Based on this fact, a novel ROM for hypersonic 
aerodynamic forces is developed, which uses POD 
and Kriging surrogates together for predicting the 
steady aerodynamic load, and the analytical 
expressions derived from piston theory for 
predicting the unsteady part. The numerical results 
demonstrate that the GAFs computed by using the 
PT-ROM agree well with those from direct CFD 
computations. Due to the capability of capturing the 
complex flow phenomena, the PT-ROM provides a 
higher accuracy than the traditional piston theory. 
Since steady CFD computations are only required to 
extract the POD bases, a significant reduction in 
computational time is achieved compared with 
unsteady CFD computations. Furthermore, the PT-
ROM also exhibits a successful ROM adaptation to 
the variation of more than two flight parameters. 
This means that there is no need to reconstruct the 
ROM with flight parameters changing. Once the 
PT-ROM is constructed, it can be efficiently used 
for various aeroelastic analyses. For aeroelastic 
analysis of the hypersonic vehicle, the coupling 
with the thermal problem is an important aspect of 
the problem, which will be considered for further 
application of the proposed ROM approach. 
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