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ABSTRACT 

The problem of wave generation by a horizontal ring of wave sources of the same time-dependent strength 
present in any one layer of a two-layer fluid is investigated here. The upper fluid is of finite height above the 
interface and is covered by a floating thin infinite elastic plate (modeling a thin sheet of ice) while the lower 
fluid extends infinitely downwards. Assuming linear theory, the problem is formulated as an initial value 
problem and the Laplace transform in time is employed to solve it. For time-harmonic source strength, the 
asymptotic representations of the potential functions describing the motion in the two layers for large time 
and distance are derived. In these representations, the two different coefficients for each of the surface and 
interface wave modes have the same numerical values although it has not been possible to prove their 
equivalence analytically. This shows that the steady-state analysis of the potential functions produces 
outgoing progressive waves at the surface and at the interface. The forms of the surface and interface waves 
are depicted graphically for different values of the flexural rigidity of the elastic plate and the ring source 
being submerged in the lower or upper layer. 

Keywords: Ring source potentials; Two-layer fluid; Thin elastic plate; Steady-state analysis. 

1. INTRODUCTION

Investigation of wave problems in water covered 
by a thin sheet of ice modeled as a thin elastic 
plate has gained considerable importance due to 
two reasons. One is due to investigation of the 
mechanism and effects of wave propagation 
through Marginal Ice Zone in polar regions while 
the other is due to their applications in the 
construction of Very Large Floating Structures 
like oil storage bases, off-shore pleasure cities, 
floating airport runways etc. In a single-layer fluid, 
significant ice-wave interaction problems were 
considered by Fox and Squire (1994), Squire and 
Williams (2008), Feng and Lu (2009) and others. 
During winter the Norwegian fjords consisting of a 
layer of fresh water on the top of a very deep layer 
of salt water are covered by an ice sheet and thus a 
two-layer fluid where the upper layer has an ice-
cover becomes a reality. A number of researchers 
investigated ice-wave interaction problems in a 
two-layer fluid. For example Das and Mandal 
(2007), Mohapatra and Bora (2012), Panda and 
Martha (2013) and others have analyzed various 
types of water wave problems in a two-layer fluid 
when the upper layer is covered by a thin sheet of 
ice modeled as an elastic plate. 

There has been a long standing interest in studying 

water wave generation problems by various 
disturbances present either on the surface or inside 
the water. If a body or a number of bodies are 
present in water, waves may be either generated by 
the movement of the body, or reflected from the 
body. The two cases are identical, and the 
resulting motion in the fluid can be described by a 
series of singularities placed on the surface of the 
body or bodies. These singularities are 
characterized by their giving rise to potentials 
which are typical singular solutions of Laplace’s 
equation in the neighborhood of the singularity. 
For the two-dimensional case these singularities 
are either of logarithmic type or of multipole type, 
and for the three-dimensional case these are point 
sources or point multipoles. Many authors have 
investigated different types of singularities that 
can be used in single-fluid problems. Thorne 
(1953), Chowdhury and Mandal (2006), Lu and 
Dai (2008) gave surveys of the fundamental line 
and point singularities submerged in a single-fluid 
of finite or infinite depth. Analysis of fluid motion 
due to various types of singularities present in a 
two-fluid medium can be found in Gorgui and 
Kassem (1978), Yeung and Nguyen (1999), Ten 
and Kashiwagi (2004), Manyanga and Duan 
(2011) and others. 

If an obstacle is in the form of a vertical body of 
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revolution having a common vertical axis of 
symmetry with the fluid motion, one needs to 
consider potential due to submerged horizontal 
circular rings of wave sources since the problem 
can then be formulated in terms of suitable 
distribution of rings of wave sources around the 
body. An offshore structure in the high sea for the 
purpose of oil prospecting may be modeled as a 
vertical cylinder of circular cross section. Hence 
consideration of velocity potentials due to 
submerged circular rings of wave sources is of 
importance (cf. Fenton (1978), Hulme (1981)). 
Rhodes-Robinson (1984), Mandal and Kundu 
(1987), Chowdhury and Mandal (2004) and 
others have investigated the problems of wave 
motion generated due to the presence of a ring 
source placed in a single-layer fluid when the 
upper surface is free or covered by an inertial 
surface or thin ice sheet modeled as a thin elastic 
plate. Problems dealing with the generation of 
internal waves at the surface separating two fluids 
due to the presence of a vertical body of 
revolution present in either of the fluids can be 
formulated in terms of a suitable distribution of 
ring of wave sources around the body as is done 
for a single fluid. Mandal and Kundu (1988) used 
Laplace transform technique to obtain the 
velocity potential due to a ring source of time-
dependent strength submerged in one of the fluids 
of a two-fluid medium when the upper fluid 
extends infinitely upwards, while the lower fluid 
is of finite constant depth and the two-fluid 
medium separated by an inertial surface 
composed of a thin uniform distribution of 
disconnected materials. Mandal and Chakrabarti 
(1995) investigated the problem of wave motions 
generated due to the presence of a ring source 
placed in either of the fluids of a two-fluid 
medium when the upper fluid is of finite height 
above the mean interface and bounded by a free 
surface while the lower fluid extend infinitely 
downwards. 

Here we consider the motion due to a horizontal 
ring of wave sources of time-dependent strength 
present in either of the fluids of a two-fluid 
medium when the upper fluid is of finite height 
above the mean interface and bounded by a thin 
elastic sheet modeling a thin sheet of ice, while 
the lower layer extends infinitely downwards. 
The problem is formulated as an initial value 
problem for the velocity potentials describing the 
motion in the fluids and Laplace transform in 
time is employed to solve it. After invoking the 
inverse transform, the potential functions are 
obtained and then their asymptotic 
representations for large time and large distance 
are derived. The derivation is carried out 
separately for the cases when the ring source is 
placed in the lower layer and also when it is 
placed in the upper layer. In the asymptotic 
representations, the two different coefficients 
each for surface and interface wave mode 
produce almost the same numerical results 
although it has not been possible to prove their 
equivalence analytically. This shows that the 
steady-state analysis of the potentials produces 

the existence of outgoing progressive waves at 
the surface and the interface. The surface and 
interface wave profiles are depicted graphically in 
a number of figures for different values of the 
flexural rigidity of the elastic plate and the ring 
source being submerged in the lower or upper 
fluid. 

2. MATHEMATICAL FORMULATION 

We consider the irrotational motion of two 
inviscid incompressible fluids with ρ1 and  
ρ2 (< ρ1) as the densities of the lower and upper 
fluids respectively. The upper fluid is of finite 
depth h and covered by a thin uniform ice sheet 
modeled as a thin elastic plate, while the lower 
fluid is infinitely deep. Here we use a cylindrical 
coordinate system (R,θ,y) in which the y-axis is 
taken vertically downwards passing through the 
center of the horizontal ring of radius a of 
uniformly distributed line sources each of 
strength m(t) submerged in either of the fluids at 
a depth η below the undisturbed floating thin 
elastic plate. Since the strength m(t) does not 
depend on θ, the motion of the fluid is 
axisymmetric. The plane y = 0 denotes the rest 
position of the thin elastic plate and the common 
interface of the two fluids is represented by the 
horizontal plane y = h. We assume the motion to 
start from rest at the instant when the sources on 
the ring simultaneously start operating. Thus the 
motion is irrotational and can be described by 

potential functions    , ,
i

j R y t , where the 

subscripts j = 1,2 refer to the lower and upper 
fluids respectively, i = 1,2 are taken for the cases 
of ring sources submerged in lower and upper 

fluids respectively. Then ( ) ( 1,2),i
j S j   satisfy 

the Laplace’s equation 

 2

2
, 0

i
jR

R y

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                               (1) 

except at points on the ring, where 
2
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 .   

If    2 ,
i

R t  denotes the depression of the upper 

surface below its mean position, then the 
linearized kinematic and dynamic boundary 
conditions on upper surface are given by: 
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being the flexural rigidity of the ice-sheet, h1 
being the very small thickness of the elastic plate, 
ρ being the density of the ice, E and ν being the 
Young’s modulus and Poisson’s ratio of the 
material of the elastic plate respectively. 

Eliminating  
2

i  between (2) and (3), we obtain 

the boundary condition on the elastic plate as  

 
   2

22 2
22

, 1
i i

i
D R g

y R yt

 
 
                  

  

(4) 

on y= 0. 

If    1 ,
i

R t  denotes the interface surface 

depression below the mean position, then the 
linearized kinematic and dynamic boundary 
conditions at the interface are given by the 
following equations: 

     
2 1 1
i i i

y y t

    
 

  
 on y = h,                       (5) 

 
 

 
 2 1

1 1

i i
i i

s g g
t t

 
 

     
  
 

 on y = h,      (6) 

where 2

1
s




 . 

Eliminating  
1

i  between (5) and (6), we obtain 

the interface boundary condition as 

       2

2 1 2 12
i i i i

s g s
yt

            
   

 on y = h. 

(7) 

Also condition at large depth is 

 
1 0

i   as .y                                        (8) 

At points near the ring 

   2 2
0( ) 0m t as R a y           (9) 

where   is  1
1  if the ring is in the lower fluid 

while   is  2
2  if the ring is in the upper fluid 

and 0 is the potential due to a ring of wave 

sources of constant unit strength in an unbounded 
fluid, given by (cf. Hulme (1981)) 

   0 0 00
2 .k ya e J ka J kR dk 

                (10) 

3. SOLUTIONS TO THE PROBLEMS 

In order to solve the boundary value problem 
given by Eqs. (1), (4), (5) and (7) − (9), we 
employ the Laplace transform technique. Let 

   , ,
i
j R y p  denote the Laplace transform of 

   , ,
i

j R y t  defined as 

         
0

, , , , 0 ,
i i pt
j jR y p R y t e dt p

     (11) 

then  i
j ’s satisfy the BVP described by 

 2

2
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            
  (12) 

except at points on the ring, 
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   (13) 

on y = 0, 

   
2 1 ,
i i

on y h
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 
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 (14) 

 
 
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  (15) 

on y = h, 

 
1 0 ,
i

as y    (16) 

   2 2
0( ) 0M p as R a y        (17) 

where Φ is  1
1  if the ring is in the lower fluid 

while Φ is  2
2  if the ring is in the upper fluid 

and M(p) is the Laplace transform of m(t). 

4. RING SOURCE SUBMERGED IN LOWER 
FLUID 

We first assume that the ring source is submerged 
in the lower fluid and solve the boundary value 
problem governed by the Eqs. (12)-(17). For this 

we represent      1
, , s j 1,2

,
j R y p   as 

   
     
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 
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
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




 (18) 

     
      
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2 20
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02
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Here      1 1 1
1 2 2( ), ( ), ( )A k B k C k  are unknown 

functions and are determined by using the 
conditions (13) − (15). 

The final results after rearrangement take the 
forms 

   

   

     

1 1
11 1 0

1 2 1 2
2 2 2 2

0 0
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(21) 

where 
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In order to obtain the velocity potentials  1
j  we 

employ Laplace inversion of Eqs. (20) and (21). 
This gives 

   
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(23) 

where 

0

1
( , ) sin ( ) ( ) .

t
I t v v t m d

v
     

When the ring source is of time-harmonic 
strength, say ( ) sin ,m t t  the potential functions 

 1
j  have  the following forms: 
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khe J ka J kR dk

  

       



  

  

 

 


 

(24) 

   

    
   

 
  
   

1 1
2 2 0

1 2 1 2

( )
0 0

1 1 20

1 2

0 0

sin ( , ) 4 ( )

, , ( , ) , , ( , )

cosh ( )

4 ( ) ( ) , , ( , )

, , ( , ) sinh

,

k h

k

tU R y a kE k

F S t F S t

e k h y J ka J kR dk

a a k E k F S t

F S t e ky

J ka J kR dk





   

       

    

   









  

 

  
 



 





 (25) 

where 

 2 2

sin sin
( , ) .

v t vt
S t v

v v

 







 

To isolate the steady-state term and transient term 
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in the Eqs. (24) and (25), we rewrite  1
j  as  

   
 

 

    
   

1 1
1 10

1
1

0
1

10

1 2 1 2

( )
0 0

2 sin ( , )

( , )
2

( ) ( )

4 ( ) ( )

, , ( , ) , , ( , )

cosh ,k y h

a t W k y

X k y
J kR dk

m k k

a a k E k

F T t F T t

khe J ka J kR dk

  

 

       





  



 
 



 





 

(26) 
   

 
 

 
  
   
    

   

1 1
2 20

1
2

0
1

1 20

( )
1 2

0 0 10

1 2 1 2

0 0

4 sin ( , )

( , )

( ) ( )cosh

4 ( ) , , ( , )

, , ( , ) cosh ( )

4 ( ) ( )

, , ( , ) , , ( , )

sinh ,

k h

k

a t W k y

X k y
J kR dk

m k k kh

a kE k F T t

F T t e k h y

J ka J kR dk a a k E k

F T t F T t

e kyJ ka J kR dk





  

     

   

 

       













 
 



 

 

 









 

(27) 
Where 

   2 2

sin
, ,

vt
T t v

v v 




       1
01 , ,k y k yW k y e e J ka        

   1
2 , sinh ,kW k y e ky

           
   

1
1 2 1 31

0

,

,k y h

X k y m k k a k k

e J ka  

     



           

      
         

1
1 2 1 32

4
0 1

1 3 0

,

sinh 1

cosh ,

k

k h

X k y m k k a k k e

ky J ka m k Kk Dk

a k k e k h y J ka









     
  

  

    
 

2 4
2

5 2 2

1 1 sinh cosh

sinh cosh ,

k k s Dk K kh kh

KDk kh s kh Kk

    

  

     2 2 2
3 1 cosh

sinh cosh ,

k K ks kh K s k

kh kh

     


 

 

    
    



4

4

1 cosh sinh

1 1 sinh

cosh .

k Ks k Dk K kh K kh

k s K k Dk K kh

K kh





    

    



 

(28) 

In order to find the expressions in the steady-state 

from the Eqs. (26) and (27), we now introduce 
Cauchy principal values at k = λ1,λ2 (λ1 < λ2) 
which are the only real positive roots of ∆(k) = 0. 
Also, this dispersion equation has one negative 
real root and four complex roots in the four 
quadrants of the complex k-plane (cf. Das and 
Mandal (2007)). Hence as t → ∞, using the 
Riemann Lebesgue lemma, we obtain 

     
   
   

     

       

1
1 1 1

1 10
1

12
0 11

1
0 1 2 0 21

,
2 sin , 2

4 cos ,

, ,

X k y
a t W k y

m k k

J kR dk a t N y

J R N y J R

  

  

  






 
   

  


  



 





 

(29) 

     
   

     

           

1 1
2 20

1
22

0
1

1 1
1 0 1 2 0 22 2

4 sin ,

,
4 cos

cosh

, , ,

a t W k y

X k y
J KR dk a t

m k k kh

N y J R N y J R

  

 

   
 




 
 

 
  
 



 

(30) 

where 

   
   

 
 

1
1 1

01
,

, ,
P k y

N k y J ka
H k






   
   

 
 

1
1 2

02
,

, ,
Q k y

N k y J ka
H k






  2
2 1 34 ,L k m m m 

      
   

1
2 2 1 1 21

1 3 1 1

, 2

2 cosh ,k y h

P k y m L a m a m

m m a m khe 



  

   

 

     1 2 1 2 1 12 2 ,H k L m m m m m L m L       

       
    

 
  

1
2 2 1 22

2 1 1 2

2
3

1 1

, 2

cosh sinh

2 cosh

sinh .

kh

kh

k

Q k y m L b m km e

k h y a m a m ky

m ke k h y

a m ky e 









   

   

 

  
In Eqs. (29) and (30) the integrals are in the sense of 
Cauchy principal value. Now to investigate the 
behavior of these integrals for large R, we put 

         1 2
0 0 02J kR H kR H kR  and rotate the 

contour in the complex k-plane for the integral 

involving    1
0H kR  in the first quadrant and for the 

integral involving    2
0H kR  in the 

fourth quadrant. For large R one must include 
the residue terms at k = λ1 and k = λ2, because 
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all other contributions to the integrals 
will be exponentially small. Thus as R → ∞, we find 

     
   

   
   

1 12
11 1

1

1
1 11

2
1

2

1
2 21

1
2 21

2
4 , sin

sin , cos
4

2
cos 4

4

, sin sin
4

, cos cos ,
4

a G y t
R

R N y t

R as
R

G y t R

N y t R

   


  

 


  

  





 

    
 

    
 

   
 

    
 

      (31) 

     
   

   
   

1 12
12 2

1

1
1 12

2
1

2

1
2 22

1
2 22

2
4 , sin

sin , cos
4

2
cos 4

4

, sin sin
4

, cos cos ,
4

a G y t
R

R N y t

R a
R

G y t R

N y t R

   


  

 


  

  





 

    
 

    
 

   
 

    
 

      (32) 

where 

   
   
   

1
1 1

1
1

,
, ,

X k y
G k y

m k k






   
   

   

1
1 2

2
1

,
, .

cosh

X k y
G k y

m k k kh



 

We expect that        1 1
1 1, ,j jG y N y 


  and 

        1 1
2 2, , 1,2 .j jG y N y j 


   It is difficult 

to prove analytically. However that these are the 
same can be shown numerically. For this purpose 
we present in Table 1 and Table 2 the numerical 

values of      1 1
, 1,2j jG N j


  for a 

representative set of values of different 
parameters (e.g. s = 0.4 

4
0.01, 0.5, 1, 1.5, 0.2

D a
Kh

h h hh

 
    

for which λ1 = 0.84 and λ2 = 2.3463) and a set of 
values of y. From these tables, it is obvious that 

       1 1
1 1, ,j jG y N y 


  and 

       1 1
2 2, , .j jG y N y 


 In fact for other 

values of the different parameters s, 
h


etc. and y, 

the numerical values of  1
jG  and  1

jN


for 

surface wave mode λ1 and  1
jG  and  1

jN


 for 

interface wave mode λ2 are seen to be the same. 

Thus, in the far-field after a long time, the 
potentials 
 1
j  behave as outgoing waves given by 

     
2

1 12
1 1

1

2
4 ,

cos ,
4

i
ii

i

a qi G y
R

R t

  


 


 

    
 


              (33) 

Table 1 Numerical values of 

       1 1
1 11 1, ,G y N y 


  for a set of of values 

of y  
 λ1 = 0.84 λ2 = 2.3463 

y (1)
1G  (1)

1N


 (1)
1G  (1)

1N


 
1.1 0.0910 0.0910 0.3753 0.3753 
1.3 0.0769 0.0769 0.2347 0.2347 
1.5 0.0650 0.0650 0.1468 0.1468 
1.7 0.0550 0.0550 0.0918 0.0918 
1.9 0.0465 0.0465 0.0574 0.0574 
2 0.0427 0.0427 0.0454 0.0454 

 

Table 2 Numerical values of 
       2 22 2

1 1
, ,G y N y   for a set of of 

values of y  
 λ1 = 0.84 λ2 = 2.3463 

y (1)
2G  (1)

2N


 (1)
2G  (1)

2N


 
0.1 0.2416 0.2416 -0.0962 -0.0962 
0.3 0.2061 0.2061 -0.1166 -0.1166 
0.5 0.1765 0.1765 -0.1632 -0.1632 
0.7 0.1518 0.1518 -0.2464 -0.2464 
0.8 0.1411 0.1411 -0.3071 -0.3071 
0.9 0.1314 0.1314 -0.3848 -0.3848 

where q1 = 1 and q2 = s, and 

     
2

1 12
2 2

1

2
4 ,

cos .
4

i
ii

i

a G y
R

R t

  


 


 

    
 


                 (34) 

5. RING SOURCE SUBMERGED IN UPPER 
FLUID 

In this section we find the velocity potentials  2
j  

( j = 1,2) due to a ring source submerged in the 
upper fluid and examine its behavior at the steady-
state at a large distance from the center of the ring. 

A solution for    2
, ,j R y p ’s ( j = 1,2) can be 

represented as 

   2 2 ( )
0 01 10

( ) ( ) ( ) .k y hA k e J ka J kR dk
      (35) 

 

 
  

2 ( )
0 02 0

2
0 20

2 0
02

( ) 2 ( )

( ) ( )cosh ( )

( )
( )sinh ( ) .

cosh

k yM p a e J ka

J kR dk B k k h y

J ka
C k ky J kR dk

kh

 
  



  

  





  (36) 
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The functions      2 2 2
1 2 2( ), ( ), ( )A k B k C k  are 

unknown and are determined by using the 
conditions (13) − (15). These functions when 
substituted into the Eqs. (35) and (36) produce 

   2 2
11 1 0

( )1 2 1 2
2 2 2 2

0 0

( ) ( , ) 4 ( ) ( )

( , , ) ( , , )

( ) ( ) ,

k y h

M p U R y as c k E k

F F
e

p p

J ka J kR dk



     
 



 

  
    

   
 



 (37) 

   2 2
12 2 0

1 2 1 2
2 2 2 2

0 0

1 2
1 2 20

1 2
0 02 2

( ) ( , ) 4 ( ) ( )

( , , ) ( , , )

cosh ( )
( ) ( )

cosh

( , , )
4 ( ) ( )

( , , ) sinh
( ) ( ) ,

cosh

M p U R y a d k E k

F F

p p

k h y
J ka J kR dk

kh

F
as c k E k

p

F ky
J ka J kR dk

khp



     
 

  


  






  
    

   




 


 
  





 

(38) 

where 

 2 ( )1
1 0

1

0 0

( )
( , ) 4

( )

( ) ( ) ,

k y hc k
U R y as e

m k

J ka J kR dk


  



  

   2 ( )
2 0

1
0 0 0

1

0 0

1
0

1

0 0

( , ) 2

( )
( ) ( ) 4

( )

cosh ( )
( ) ( )

cosh

( )
4 sinh

( )

sinh
( ) ( ) ,

cosh

k y k y

kh

U R y a e e

d k
J ka J kR dk a

m k

k h y
J ka J kR dk

kh

c k
a e k s

m k

ky
J ka J kR dk

kh

 



 

    



 

 

 




    
  









1( ) cosh (sinh cosh ),c k kh k k k   
4

2( ) ( 1)cosh cosh ,c k gk Dk kh k 




1( ) cosh ( )( sinh cosh )

sinh ,

d k k k h s kh kh

s k

 



  




 

4
2( ) ( 1) cosh ( ) sinh

cosh sinh (1 )

cosh cosh ( ) ,

d k gk Dk k h s kh

kh s k k s

kh k h



 



  

   

  
2 2 4

3( ) (1 ) ( 1)cosh cosh ( ),d k s g k Dk kh k h    

32 1 1 2
1 2

1 1 1
, ,

mc m c m

c m m
 

 

1 3 3 12 1 1 2
1 2

1 1 1 1
, .

d m d md m d m

d m d m
  

   

To determine the potentials due to a source of 
time-harmonic strength, we take Laplace 
inversion of (37) and (38) and then substitute 
m(t) = sinσt. This yields  

   

 

2 2
11 1 0

1 2 1 2

( )
0 0

sin ( , ) 4 ( ) ( )

( , , ) ( , ) ( , , ) ( , )

( ) ( ) ,k y h

tU R y as c k E k

F S t F S t

e J ka J kR dk

  

       



 

  
 

 


 

(39) 

   

 





2 2
12 2 0

1 2 1 2

0 0

1 1 20

1 2

0 0

sin ( , ) 4 ( ) ( )

( , , ) ( , ) ( , , ) ( , )

cosh ( )
( ) ( )

cosh

4 ( ) ( ) ( , , ) ( , )

sinh
( , , ) ( , )

cosh

( ) ( ) .

tU R y a d k E k

F S t F S t

k h y
J ka J kR dk

kh

as c k E k F S t

ky
F S t

kh

J ka J kR dk

  

       

    

   





  
 

  
 



 




 

(40) 

Using Riemann Lebesgue lemma and rotating the 
contour in an appropriate manner as has been 
done in section 4, we find that for large R and 

large t the potentials  2
j ’s ( j = 1,2) have the 

following representations: 

   
 

 
 

2 22
11 1

1

2
1 11

22
1 21

2

2
2 21

2

2
4 ( , )sin

sin( ) ( , )cos
4

2
cos( ) 4 ( , )

4

sin sin( ) ( , )cos
4

cos( ) ,
4

as G y t
R

R N y t

R as G y
R

t R N y t

R

   


  

  


   







 

  

  


  

  


 

(41) 

   
 

 
 

2 22
12 2

1

2
1 12

22
1 22

2

2
2 22

2

2
4 ( , )sin

sin( ) ( , )cos
4

2
cos( ) 4 ( , )

4

sin sin( ) ( , )cos
4

cos( ) ,
4

a G y t
R

R N y t

R a G y
R

t R N y t

R

   


  

  


   







 

  

  


  

  


 

(42) 

where 



N. Islam et al. / JAFM, Vol. 11, No. 4, pp. 1047-1057, 2018.  

 

1054 

 
 2

2 1
01

( , )
( , ) ( ),

( )

P k y
N k y J ka

H k






 
 2

2 2
02

( , )
( , ) ( ),

( )

Q k y
N k y J ka

H k






  


2
2 2 1 1 21

( )
1 1 3

( , ) 2 ( )( )

2 ,k y h

P k y m L c m c m

c m m e



 

   



  





2
2 2 1 1 22

2 1 1 2

3 1 3 3 1

1 3

( , ) 2 ( ) ( )

cosh ( ) ( )sinh

2 ( )cosh ( )

sinh ,

Q k y m L d m d m

k h y s c m c m ky

m d m d m k h y

sc m ky


   

   

  

 

 
 2

2 1
1

( , )
( , ) ,

( )

X k y
G k y

k




 
 2

2 2
2

1

( , )
( , ) ,

( ) ( )cosh

X k y
G k y

m k k kh




 2 ( )
4 01 ( , ) ( ) ( ),k y hX k y k e J ka  

 








2
1 4 02

5

2
6

1 5 6

2
5

4
6 6

( , ) ( ) ( )sinh ( )

( )( cosh sinh

sinh sinh ) ( )

( ) (1 ) ( ) ( )cosh

cosh ( ) (1 ) ( )cosh

cosh ( 1) ( ) ( )

cosh ( ) sinh cosh (

X k y sm k k kyJ ka

k Ks kh k kh

ks kh K kh K k

d k k s k k kh

k h k s s k kh

k Kk Dk k k

k h s k k h

 



 

  

  

   

    

    

    

   

0

)

( ),

y

J ka



 4 5( ) sinh ( )cosh ,k K K k k k     

4
5( ) ( 1 ),k k Dk K   

6( ) ( sinh cosh ).k s kh kh    

As in section 4, here also, it can be shown 

numerically that    2 2
1 1( , ) ( , )j jG y N y 


  and 

   2 2
2 2( , ) ( , )( 1,2).j jG y N y j 


   

Thus, in the far-field after a long time, the 

potentials  2
j  behave as outgoing waves given 

by 

   2
2 22

1 1
1

2
4 ( , )

cos( ),
4

i
ii

i

as G y
R

R t

  


 


 

  


               (43) 

   2
2 22

2 2
1

2
4 ( , )

cos( ).
4

i
ii

i

a G y
R

R t

  


 


 

  


                 (44) 

6. SURFACE WAVES AND INTERFACE 
WAVES 

In this section we present the upper surface 
profile and the interface profile at the steady-
state. For this, we observe that the displacements 
at these surfaces are related to the potential 
functions as 

( ) 2
( )2
23 0

( ) 2
( )1
13 0

1
( , ) Re ( ,0, ) ,

1
( , ) Re ( , , )

i
t i

i
t i

g
R t R d

h h y

g
R t R h d

h h y


  




  



    
  

    
  




 (45) 

When the ring source is submerged in the lower 
fluid, Fig. 1 depicts the surface displacement and 
the interface displacement for the surface wave 

mode and the interface wave mode against 
R

h
 

for fixed s = 0.4 0.01, 1.5, 0.2,
a

h h h

 
    

4
0.01, 1, 50.

D
Kh t

h
   From these figures 

we notice that for the surface wave mode, the 
amplitude of the surface waves is greater than 
that of the interface waves, and both the surface 
and interface waves are in phase. On the contrary, 
for the interface wave mode, the amplitude of the 
surface waves is smaller than that of the interface 
waves, and the surface and interface waves are 
180o out of the phase. When ring source is 
submerged in the upper fluid, Fig. 2 depicts the 
surface displacement and interface displacement 
for the surface wave mode and the interface wave 

mode against 
R

h
 for fixed s = 0.4, 0.01,

h




4
0.5, 0.2, 0.01, 1, 50.

a D
Kh t

h h h

       

The curves are somewhat similar to those for ring 
source submerged in lower fluid and dis-play the 
same characteristics. 

To display the effect of the flexural rigidity of the 
elastic plate on the wave motion generated due to 
the presence of a ring source in the lower fluid, 

the dimensionless interface displacement 
(1)
1

h



and the surface displacement 
(1)
2

h


 for surface 

wave mode and interface wave mode are 

presented graphically against 
R

h
 in Figs. 3 and 4 

respectively. For plotting all the graphs in these 

two figures we choose s = 0.4, 0.01,
h


  

1.5, 0.2, 1, 50
a

Kh t
h h

     and vary 
4

D

h
 

as 
4

D

h
= 2,1,0.5. It is observed from Fig. 3 that 

for surface wave mode, the wave amplitude of the 
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interface wave increases with the decreasing 

values of 
4

D

h
. However, for interface wave 

mode, no variation in the interface wave profile is 
noticed. This is in contrast to the surface wave 
profile where the amplitude of the surface wave is 
seen to increase with the decreasing values of 

4

D

h
 irrespective of surface / interface wave 

modes (see Fig. 4). 

To analyze the effect of the flexural rigidity of 
the elastic plate on the wave motion generated 
due to the presence of a ring source in the upper 
fluid, the dimensionless interface displacement 

(2)
1

h


 and surface displacement 

(2)
2

h


 for surface 

wave mode and interface wave mode are 
presented graphically in Figs. 5 and 6. The graphs 
in these figures display the same characteristics 
as those in Figs. 3 and 4. Wave amplitudes of the 
surface and the interface waves for the surface 
wave mode due to a ring source placed in the 
upper fluid are slightly large compared to those 
generated by the source when it is situated in the 
lower fluid. On the contrary, for the interface 
wave mode, the amplitudes of the surface and the 
interface waves due to a ring source in upper 
fluid are less than those due to a ring source 
placed in the lower fluid. 

 

Fig. 1. Ring source submerged in lower fluid: 

surface wave (1)
2( / )h  and interface wave 

(1)
1( / )h  against R/h for fixed s = 0.4  

4
0.01, 1.5, 0.2, 0.01, 1,

50.

a D
Kh

h h h h
t

 



    



7. CONCLUSION 

The velocity potentials due to a submerged 
horizontal ring of wave sources of time-
dependent strength present in either of the fluids 
of a two-fluid medium are obtained when the 
upper layer is of finite height above the mean 
interface and bounded by a thin  

 
Fig. 2. Ring source submerged in upper fluid: 

surface wave (2)
2( / )h  and interface wave 

(2)
1( / )h  against /R h  for fixed s = 0.4, 

4
0.01, 0.5, 0.2, 0.01, 1,

50.

a D
Kh

h h h h
t

 



    


 

elastic plate modeling a thin floating sheet of ice, 
while the lower layer extends infinitely 
downwards. The asymptotic representations of 
the wave motions for large time and large 
distance are derived for the case when the ring 
source is placed in the lower layer and also when 
it is placed in the upper layer. In these asymptotic 
representations, the two different coefficients for 
surface wave mode produce almost the same 
numerical results although it is difficult to prove 
their equivalence analytically. The same 
comment applies to the two different coefficients 
for interface wave mode. This shows that in the 
steady-state analysis, the potentials provide the 
existence of outgoing progressive waves. The 
dimensionless surface and interface wave 
displacements are depicted graphically for both 
the wave modes. It has been observed that for the 
surface wave mode, the amplitude of the surface 
waves is greater than that of the interface waves, 
and both the surface and interface waves are in 
phase. On the contrary, for the interface wave 
mode, the amplitude of the surface waves is  
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Fig. 3. Ring source submerged in lower fluid: 

plot of interface wave (1)
1( / )h  against /R h  

for fixed s = 0.4, 0.01, 1.5,
h h

 
   

0.2, 1, 50.
a

Kh t
h

    

 
Fig. 4. Ring source submerged in lower fluid: 

plot of surface wave (1)
2( / )h  against R/h for 

fixed s = 0.4, 0.01, 1.5,
h h

 
 

0.2, 1, 50.
a

Kh t
h

    

 
Fig. 5. Ring source submerged in upper fluid: 
plot of interface wave (2)

1( / )h  against R/h 

for fixed s = 0.4, 0.01, 0.5,
h h

 
   

0.2, 1, 50.
a

Kh t
h

    

 
Fig. 6. Ring source submerged in upper fluid: 
plot of surface wave (2)

2( / )h  against R/h for 

fixed s = 0.4, 0.01, 0.5,
h h

 
   

0.2, 1, 50.
a

Kh t
h

    
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smaller than that of the interface waves, and the 
surface and interface waves are 180o out of phase. 
Surface and interface waves are presented 
graphically for different values of the flexural 
rigidity of the elastic plate for both the wave 
modes. It is observed that for surface wave mode 
the wave amplitudes of the surface and interface 

waves increase with the decreasing values of 
4

D

h
and for interface wave mode the wave amplitudes 
of the interface waves are the same but the 
amplitude of the surface wave increases with the 

decreasing values of 
4

D

h
. 
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