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ABSTRACT 

An electrified liquid sheet was investigated by the linear analysis method. The sheet was injected into a 
dielectric viscous gas bounded by two horizontal parallel flat plates with a transverse electric field. To take 
into account the gas boundary layer thickness, the velocity profile of the liquid sheet must be considered 
and derived. By analyzing the liquid and gas domain, the relation between the growth rate and the 
wavenumbers for electrified liquid sheets was derived, and solved using the spectral method whose accuracy 
is higher than those of the finite element method and the finite difference method. Two modes, namely the 
sinuous mode and varicose mode were also investigated. The results revealed that the maximum growth 
rate of the sinuous disturbance wave is greater than that of the varicose one for the electrified liquid sheet. 
Moreover, the effects of the electrified Euler number and other parameters on the instability of the electrified 
liquid sheets have been tested. It is found that the growth rate is faster for an electrified liquid sheet than a 
non-electrified one. The electrical Euler number, the liquid Reynolds number, the Weber number and the 
momentum flux ratio can promote the breakup of a liquid sheet. However, the increase in the ratio l of the 
distance between the liquid sheet and flat plate to the liquid sheet thickness has an opposite influence with 
the other parameters. 

Keywords: Instability; Electrified planar liquid sheet; Velocity profile；Spectral method；Linear analysis. 

NOMENCLATURE 

U     velocity along the x-axis 

V     velocity along y-axis

1     liquid density 

2     gas density 

p     pressure perturbation 

      viscosity

h     half-thickness of liquid sheet 

  local air boundary layer thickness 

u perturbation along x-axis

v     perturbation along y-axis

ijd     rate of deformation tensor 

     displacements from the equilibrium position 

kd    dominant wavenumber 

1U     liquid mean velocity 

We    Weber number 

     liquid surface tension 

Re1    liquid Reynolds number 

Re2    gas Reynolds number 

     growth rate of perturbation 

     velocity potential 

     phase parameter 

t      time 
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1. INTRODUCTION 

Electrospraying and electrospinning have been extensively 
emphasized in the past decades owing to many applications 
in industry, agriculture, medical care and others. The electric 
fields are used to control the track and size of the droplets, 
which are sensitive to the applied voltage (Yang (2013), 
Duan (2014)). 

The instability of the electrified liquid sheets has been a 
subject of the numerous investigations. Since the first studies 
by Savart (1833), the breakup of the flat sheets has been 
investigated by numerous other researchers. Squire (1953) 
and Hagerty et al. (1955) investigated a uniform thickness 
inviscid liquid sheet in an inviscid gas environment, and 
analyzed the characteristics of the sinuous (Fig.1a) and 
varicose (Fig.1b) modes. Their results showed that the 
surface tension always tended to damp out any disturbances. 
The aerodynamic force caused by the interaction between 
the liquid sheet and the ambient gas were responsible for the 
instability, which were in good agreement with the 
experiment results. Ibrahim (1998) studied the evolution of 
the antisymmetrical and symmetrical disturbances of a 
moving viscous liquid sheet in a quiescent inviscid gas using 
the spatial instability theory. The breakup of a conical liquid 
sheet under the combined influence of the sinuous and 
varicose modes at the liquid-gas interfaces was 
experimentally and theoretically investigated (Fu et al. 
2010). It is reported that the disturbance growth rate of the 
varicose mode is more stable than that of the sinuous one. 
The conclusion was successfully confirmed by their 
experiment. Moreover, the breakup mechanisms of the 
Newtonian liquid sheets have been performed by many 
theoretical and experimental investigations (Yang (2013), Li 
(1991), Lin (1990)). 

In the theoretical works cited above, the instability of a liquid 
sheet in an inviscid gas medium was performed (Ibrahim 
(1998), Lin (1990), Dombrowski (1963), Taylor (1959), Li 
(1993)). However, the effect of the viscous gas surroundings 
on the breakup of the liquid sheets should be considered in 
practice. Because a liquid sheet issued from the nozzle with 
a nonuniform velocity. It is necessary to investigate the 
instability behavior of a liquid sheet with the nonuniform 
velocity profile. Tomotika (1935) considered the solution to 
include the effect of the viscous surroundings. Their 
solutions are often applied as the theoretical solution of the 
practical problems even now. Henceforth, many 
investigations on the instability of the liquid sheets have 
been performed. Teng et al. (1997) performed on a specific 
wall bounded configuration with the viscosity and velocity 
profiles of the surrounding air using the linear stability 
analysis. By considering the inviscid liquid sheet emanated 
from a nozzle into an otherwise quiescent inviscid gas, 
Ibrahim (1998) compared the sheets with the uniform 
velocity profile with that with the parabolic velocity profile. 
The conclusion is that the parabolic velocity profile reduced 
the liquid-gas relative velocity across the interface and 

decreased the aerodynamic instability. Therefore, the liquid 
sheet with the parabolic velocity profile is more stable than 
that with the uniform profile. The effect of a parabolic 
velocity profile moving through the viscous ambient gas 
with velocity on the liquid sheet instability was 
experimentally and theoretically investigated (Lozano et al. 
2001). Their results found that the air velocity being constant, 
the disturbance growth rate decreased with the increase of 
the liquid velocity. However, the velocity profiles were not 
derived in detail. 

      

(a) the sinuous mode     （b）the varicose mode 

Fig. 1. Schematic diagram of a liquid sheet 

The effect of the Electric fields on the breakup of the liquid 
sheet was investigated by using the experimental and 
theoretical methods (Georgiou (1991), Lee (2002),Tilley 
(2001), Savetta-seranee (2003), Papageorgiou (2004), Ozen 
(2006)). Grandison (2007) considered the waves 
propagating on the surface of a two-dimensional inviscid 
liquid layer, bounded by a second incompressible inviscid 
fluid, and in the presence of an electric field. It was found 
that the electric field competed directly with the Kelvin-
Helmholtz instability. They had the same shortwave 
behavior but contributed the opposite signs to the growth rate.  

The objective of this paper is to investigate the temporal 
instability of the electrified liquid sheets in a surrounding 
viscous gas. The gas is bounded by two horizontal parallel 
electrodes. Firstly, the velocity profile of the liquid sheets is 
derived. Secondly, the dispersion relation between the 
growth rate and the wavenumbers for the electrified liquid 
sheets are also derived in detail. Finally, the differences 
between the instability of sinuous and the varicose 
disturbances, and the effects of the electric fields on the 
instability of the liquid sheets are also investigated.  

2. ELECTRIFIED LIQUID SHEET MODEL 

The Fig. 2 shows the model of the constant density fluid 
sheet surrounded by a viscous gas with a thickness of 2h. 
The gas is bounded by two horizontal parallel electrodes 
located at an equidistance of (+h) from the centerline of the 
liquid sheet. The inner liquid has a high electric conductivity, 
and the outer gas is an insulating dielectric. The centerline 
velocity of the liquid sheet is

1U . The direction of the liquid 
sheet parallels is in the x-direction. 
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h   h 
h h

1U

 

Fig. 2. Sketch of the flow configuration 

2.1  Base Flow Velocity Profile 

The governing equations for the liquid sheets and viscous 
gas consist of the conservation laws of the mass and 
momentum, as follows 
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x y
                            (1) 

2 2

2 2
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         (2) 

where subscript =1, 2 represents the liquid and gas phase, 
respectively.  denotes the density, U denotes the velocity 
along the x-axis. V is the velocity along y-axis, and  is the 
viscosity. 

The liquid sheet and gas are steady flows 0
U

t




. The 

liquid and gas velocities are independent of x-axis, 0
U

x




. 

V denotes velocity along y-axis 0V  . Equation (2) yields 
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              (5) 

The unknown coefficients A, B and liquid and gas velocities 
U at the unperturbed interface are calculated by the 
following boundary conditions (Lozano, 2001): 

(a) the tangential viscous stresses balance at the 
unperturbed interface, y h   . 

(b) the central velocity of the liquid sheet is equal to 
1U ,

0y  . 

(c) the air velocities are equal to zero at the electrodes, 

( )y h   . 

(d) the air pressure gradient is equal to the liquid pressure 
gradient, y h  . 

(e) the gas and liquid velocities are equal at the 
unperturbed interface, y h   

1 1A U                         (6) 
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2.2  Liquid Phase 

The governing equations of the liquid sheets consist of the 
conservation laws of the mass and momentum, as follows: 

1 1 0
 

 
 
u v

x y
        (12) 
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1 1 1
1 1 1
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The boundary conditions at the interface 

( ( , ))y h x t   are linearized about y h  and only 
the first-order perturbation are retained, where ( , )x t  
and ( , )x t  are the upper and lower interface 
displacements from the equilibrium position. The boundary 
conditions are as follows: 
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Continuity of v 

1 2( ) ( )  v h v h          (16) 

Continuity of tangential stress 
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           (17) 

Normal stress jump 
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Kinematic condition 

1 1
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        (19) 

2.3  Gas Phase 

In this paper, the liquid sheet is surrounded by a viscous 
gas. The gas is bounded by two horizontal parallel 
electrodes located at an equidistance of ( h  ) from the 

centerline of the liquid sheet to the horizontal parallel 
electrodes. The governing equations for the viscous gas are 
the conservation laws of the mass and momentum, as 
follows 
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Similar to the liquid phase, the boundary conditions of the 
viscous gas are as follows 

Continuity of u 

2 ( ) 0 u b              (23) 

Continuity of v 

2 ( ) 0 v b              (24) 

Kinematic condition 

2 2

   
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 
v U

t x
        (25) 

where  

2.4  Electrical Field 

In electriostatic, the electrical potential perturbation Ve 
satisfies the Laplace equation (Li (2007)) 

2 0 eV                   (26) 

The electric boundary conditions are the electrical potential 
which is V0 at the liquid sheet and is zero at the electrode: 

0 
e y h

V V              (27) 

0
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e y h
V               (28) 

The electric field intensity is 

0
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 e

V
E V

h
            (29) 

The electric fields are used to increase the disturbance of the 
liquid sheet. 

b h  
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2.5  Governing Equation 

The normal stress jump is continuous at the interface, and 

the boundary condition can be written as: 
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where  is the surface tension, 0 is the electrical permittivity, 

by the electric field intensity (29) 
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The first term of Eq. (32) on the right is solved by the Taylor 

Series Expansion, 
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The two-dimensional constant-density flow problem can be 

conveniently solved in terms of the stream function, 

( , , )x y t , formulation ( u
y





, v
x
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
 ). By the 

Eqs. (13) and (21), the governing equations can be obtained 

as: 
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and the Eqs. (15-19) of the boundary conditions can be 

linearized as: 
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Equations (35-41) can be expressed as the perturbed 
functions in a normal mode decomposition: 
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For convenience, the above governing Eqs. (35-36) can 
be expressed in the non-dimensional form. For the 
sinuous mode ( , ) ( , )x t x t   , while for the 
varicose mode ( , ) ( , )x t x t   . In this way, we can 
obtain the Orr-Sommerfeld equations, 
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The non-dimensional boundary conditions (37-41) are as 

follows 
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The governing equations can be solved by the numerical 
method. The disturbance growth rate is numerically obtained 
by the spectral method, the prototype of which is the well-
known Fourier method (Orszag (1971), Peyret (2002), Shen 
(2006)). The accuracy of the spectral method is higher than 
those of the finite element method and the finite difference 
method. The Fourier method represents the solution as a 
truncated series expansion, which solves the periodic 
problems. For the nonperiodic problems, the Chebyshev and 
Legendre methods are usually adopted. In this paper, we will 
solve this problem by the Chebyshev method.  

3. RESULTS AND DISCUSSION 

In this paper, the effects of the electrified liquid sheet on the 
disturbance growth rate are investigated. The effect of 
Various parameters on the instability of the electrified liquid 
sheets have been tested. 

3.1  Comparison of Electrified and Non-
Electrified Liquid Sheet 

Figure 3(a) shows the effect of the electric fields on the 
disturbance wave growth rate. The parameters are held 
constant to be l=1.0, Re1=510, We=100, Q=0.001, Eu=1.0. It 
can be seen that all the curves monotonically increase until 
a maximum value, and subsequently decrease. The 
maximum value is caused by the electric fields. The 
disturbance growth rate of the electrified liquid sheet is 
greater than that of the non-electrified liquid sheet, as shown 
in Fig. 3(a). The electric fields can accelerate the breakup of 
the liquid sheet. 

For the inspection of Fig. 3(b), the variation of the 
disturbance growth rate with the wavenumber of electrified 
liquid sheet for both the sinuous mode and varicose mode, 
respectively. For these plots, the parameters are hold 
constant to be l=0.8, Re1=510, We=100, Q=0.001, Eu=1.0. 
The disturbance growth rate of the sinuous mode is larger 
than that of the varicose one, which denotes that the effect of 
the sinuous disturbance wave on the breakup of the liquid 
sheets is dominant. The similar conclusions were obtained in 
the previous investigations (Yang et al. (2013), Ibrahim 
(1998)). For this reason, only the sinuous mode is 
investigated herein. However, the effects of the velocity 
profile of the liquid sheet and gas viscosity on the instability 
of the liquid sheet were neglected in their studies.  

3.2  Effect of the Electrical Euler Number 

To investigate the effect of the electrical Euler number 
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on the disturbance wave growth rate, six values are 
chosen from 0 to 4 with other parameters held constant 
(l=1, Re1=510, We=100, Q=0.001 for the electrified 
liquid sheet, and Eu=0 for the non-electrified liquid 
sheet). It is well known that the electrical Euler number 
indicates the strength of the electrical field. Figure 4 (a) 
demonstrates that the disturbance growth rate increases 
with the increase of the electrical Euler number. This is 
because the instability is enhanced by the electrical 
Euler number. In the terms of physics, the electrical 
field can provide more energy to promote the electrified 
liquid sheet breakup. With the electrical Euler number 
increasing, the maximum growth rate increases, as 
shown in Fig. 4 (b). 

 

(a) 

 

(b) 

Fig. 3. Effects of the electrical Euler number 

3.3  Effect of the Liquid Reynolds Number 

Figures 5 and 6 show the effect of the Reynolds number of 
the liquid and gas on the disturbance wave growth rate by 
increasing the Re1 from 510 to 1020 with other parameters 
fixed to be Eu=1, l=1, Re2=180, We=100, Q=0.001 for the 
electrified liquid sheet, and Eu=0 for the non-electrified 
liquid sheet, respectively. In Fig. 6, the gas Reynolds number 
is increased from 9 to 162 with other parameters held 
constant (Eu=1, l=1, We=100, Q=0.001, Re1=1700 for the 
electrified liquid sheet, and Eu=0 for the non-electrified 
liquid sheet). 

 

(a) 

 

(b) 
Fig. 4. Effects of the electrical Euler number 

Figures 5 (b) and 6 (b) show that all the curves have a range 
in which the growth rate is positive. The maximum growth 
rate increases drastically with the increase in the electrified 
liquid Reynolds number, but the ambient gas Reynolds 
number have the opposite effect. The gas Reynolds number 

2 2 2 2Re U   is reciprocally proportional to the liquid 
viscosity 2. The increase of the gas Reynolds number 
decreases with the increase of the gas viscosity. The physical 
mechanisms of the above trend are as follow: In present 
study, the liquid Reynolds numbers 

1 1 1 1Re U   and 
the gas Reynolds numbers 

2 2 2 2Re U    can be 
changed by varying the liquid velocity U1 and gas velocity 
U2, respectively. The gas-liquid relative velocity produced at 
the interface causes the aerodynamic instability. The larger 
gas-liquid relative velocity leads to a stronger aerodynamic 
interaction. In this case, the liquid sheets have more energy 
to overcome the liquid surface tension, viscosity dissipation 
and other factors, behave a greater instability. Therefore, the 
increase of the liquid Reynolds numbers and the decrease of 
the gas Reynolds numbers tend to accelerate the 
development of the disturbance waves.  

In addition, the electrified liquid sheet is much more unstable 
than the non-electrified liquid sheet, as shown in Figs. 5 (a) 
and 6 (a). The results are the same as the forenamed analysis 
(Li (2011), Yang (2013)). 
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(a) 

 

(b) 

Fig. 5. Effects of the liquid Reynolds number 

3.4 Effect of the gas-liquid density ratio 

Figure 7 demonstrates the effect of the gas-liquid density 
ratio Q on the disturbance growth rate of the electrified 
liquid sheet by changing Q from 0.001 to 0.005, and other 
parameters kept constant to be Eu=1, Re1=510, We=100, l=1 
for the electrified liquid sheet, and Eu=0 for the non-
electrified liquid sheet, respectively. 

It is clear that the disturbance wave growth rate increases 
with the increase in the gas-liquid density ratio, and the 
liquid sheet of the electrified Newtonian liquid sheet is 
more unstable than that of the non-electrified liquid sheet 
in Fig. 7 (b). In the terms of physics, the gas-liquid 
density ratio Q is changed by changing the gas density. 
The aerodynamic instability at the interface becomes 
stronger with the increase of the gas density, which will 
make the electrified liquid sheet more unstable. Because 
the gas density increases with the increase of the gas 
pressure, a higher gas pressure can promote the breakup 
of the liquid sheet. The similar results were obtained by 
Liu et al. (1998). 

Moreover, from the inspection of Fig. 7 (a), the disturbance 
of the electrified liquid sheet is more unstable than that of 
the non-electrified liquid sheet. 

 
(a) 

 

(b) 

Fig. 6. Effects of the gas Reynolds number 

 

(a) 

 

(b) 

Fig. 7. Effects of the gas-liquid density ratio 
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3.5 Effect of the Weber number 

The effect of the Weber number on the disturbance wave is 
described in Fig. 8 (a). Five values are calculated with other 
parameters invariable Eu=1, l=1, Re1=510, Q=0.001 for the 
electrified liquid sheet, and Eu=0 for the non-electrified 
liquid sheet, respectively. The variation of the maximum 
growth rate is plotted in Fig. 8 (b). The disturbance wave 
growth rate increases with the increase of the liquid Weber 
number. The physical mechanisms of the above trend are as 
follows: The Weber number is directly proportional to the 
thickness of the liquid sheet, the Weber number increases 
with the increase of the liquid sheet thickness. Therefore, a 
thicker sheet is more unstable. Moreover, the Weber number 
is changed by varying the liquid surface tension, which 
resists the occurrence and development of the instability. The 
maximum growth rate increases with the decrease of the 
surface tension, and the breakup of the electrified liquid 
sheet will require less energy. Consequently, the increase of 
the Weber number enhances the occurrence and 
development of the electrified liquid sheet. It will take 
shorter time for the electrified liquid sheet to breakup. 

Furthermore, the instability range increases with the increase 
of the Weber number. 

3.6  Effect of Length 

Figure 9 (a) show the effect of the ratio of distance between 
the horizontal electrode and liquid sheet to the liquid sheet 
thickness on the disturbance growth rate by varying l from 
0.7 to 1.2 with other parameters invariable Eu=1, We=100, 
Re1=510, Q=0.001 for the electrified liquid sheet, and Eu=0 
for the non-electrified liquid sheet, respectively. 

From the inspection of Fig. 9 (b), it is obvious that the 
maximum growth rate increases substantially with the 
decrease of the ratio l. In the terms of physics, the strength 
of the electrical field decreases with the increase in the 
distance of horizontal electrode , which is directly 
proportional to the ratio l. Consequently, the strength of the 
electrical field becomes weak with the increase in the ratio l. 
It can be concluded that a higher l damps the breakup of the 
electrified liquid sheet. 

Moreover, from the inspection of Fig. 9 (a), the disturbance 
of the electrified liquid sheet is more unstable than that of 
the non-electrified liquid sheet. 

3.7 Convergence Verification 

The spectral method which is fast convergence and high 
accuracy is used for solving the eigenvalue problems of the 
instabilities and other mechanics problems (Orszag, 1971; 
Peyret, 2002). Equations (43-51) can be solved by the 
Chebyshev spectral method. To verify the method convergence, 
the calculate values N were chosen from 20 to 200 with keeping 
other parameters constant (Re1=850, l=1, We=100, and 
MFR=0.27)). The growth rates are converged with the increase 
of the values N (N is amount of calculation), as shown in Fig. 10. 
When N=60, a series of good convergent results have been 

shown in Fig.10. N=200 is adopted in this paper. 

 
(a) 

 

(b) 

Fig. 8. Effects of the Weber number 

 

(a) 

 

(b) 

Fig. 9. Effects of l. 
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Fig. 10. Effect of N on growth rate 

4. CONCLUSION 

In this paper, the temporal instabilities of the electrified 
liquid sheets are investigated. The liquid sheets are 
surrounded by a viscous gas between two vertical parallel 
electrodes. As a novel contribution, the liquid and gas 
velocity profiles are considered. The effect of various 
parameters on the maximum growth rates has been obtained 
by solving the governing equations, which are used to 
investigate the breakup mechanism of the electrified liquid 
sheets. 

As a result of the linear analysis described above, some 
conclusions may be drawn as follows: 

1.  For all parameters, the maximum growth rate of the 
electrified liquid sheets is much more unstable than that 
of the non-electrified liquid sheets. 

2. The maximum growth rates of the sinuous mode are 
much higher than that of the varicose mode.  

3. The increase of electrical Euler number, liquid Reynolds 
number, Weber numbers and gas-liquid density ratio can 
promote the breakup of the electrified liquid sheets. 

4. The ratio of the distance between the horizontal 
electrode and the liquid sheet to the liquid sheet 
thickness and the ambient gas Reynolds number can 
restrain the breakup of the electrified liquid sheets. 
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