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ABSTRACT 

In this work, the numerical simulation of the non-isothermal steady co-extrusion fiber spinning with flow-
induced crystallization is explored. The model is based on the formulation originally proposed by China et al. 
in which Newtonian and Phan-Thien-Tanner (PTT) fluids are considered the core and the skin layer, 
respectively. The polymeric flow rate fraction, Deborah dimensionless number and the PTTs parameters on 
the temperature, the velocity and the crystallization profiles are analyzed. The numerical results show: the 
temperature profile is sensitive to the polymeric layer flow rate and the deformation parameters (shear 
thinning and extensional), the tensile stress induced crystallization parameter has a strong influence at the 
onset of the process, increasing drastically temperature and crystallinity. 

Keywords: Polymer processing; PTT model; FIC. 

NOMENCLATURE 

A cross sectional area 
A0 transversal section area at z = 0 
σ stress tensor 
σrr stress in the radial direction 
σzz stress in the axial direction 
  the flow rate fraction of the skin-layer  
  shear thinning/thickening PTT parameter 
  the extensional PTT parameter 
z axial direction 
D strain tensor 

c  core layer viscosity 
s skin layer viscosity 

V0 initial velocity 
VL final velocity 
E elastic modulus 
 relaxation time
L velocity gradient 
tr σs  trace of stress tensor 

fH heat of crystallization per unit mass  

Cp heat capacity of the skin fluid 
X the crystallinity 
ρ  skin fluid density  
X  maximum crystallinity 

Tmax maximum crystallization temperature 
Ta environment temperature 
T0 temperature at z = 0 of the fiber 
F draw force applied at z = L 
  flow-induced crystallization factor  
n avrami index 
a dimensionless area 
v dimensionless velocity 

ii  dimensionless stress 
  dimensionless crystallinity parameter  
 dimensionless temperature
  dimensionless axial position 
M viscosity ratio 
N dimensionless first normal stress 

difference  
G dimensionless axial force 
St Stanton number 
De Deborah number 
Dr draw ratio 

*
fH  dimensionless crystallization heat 

0

f

p

H X

C T


w dimensionless axial strain 
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1.  INTRODUCTION 

Many economic and technical advantages have 
been found in co-extrusion, it has gained wide 
recognition a polymer processing technique 
capable of achieving unique product 
performance, by combining the properties of 
different materials at lower cost Hufenus et al. 
(2012), Perret et al.(2013), Reifler et al. (2014). 
Modeling and simulation of co-extrusion process 
require simultaneous consideration of constitutive 
and mass, momentum and energy conservation 
equations. The complete understanding of the 
process needs to take into ac-count important 
features reported in the literature like 
discontinuities at the interface, non-Newtonian 
behavior, encapsulation phenomena and the 
imple-mentation of numerical techniques (Liu 
and Beris 1988). 

The fiber spinning theory has been studied by 
many research groups Kase and Matsuo (1965), 
Sung et al. (2005), Denn et al. (1975), Ziabicki 
(1976), Joo et al. (2002). Important aspects of 
stability and instability phenomenon observed in 
the spinning process have attracted researchers 
attention for both academic and industry Pearson 
and Matovich (1978), White and Ide (1978), Fisher 
and Denn (1976), Gelder (1971), Beris and Liu 
(1988). The transient solution of the fiber spinning 
with and without flow-induced crystallization 
(FIC) is indispensable to developing strategies for 
stabilization and optimization Lee and Park (1995). 
The FIC involves complex cinematics and thermal 
conditions, the phase transition is extremely 
sensitive to flow deformation and the material 
exhibits a non-Newtonian behavior. Consequently, 
a good under-standing of FIC dynamics is crucial 
in high-speed melt spinning modeling. Complete 
reviews of FIC can be found in McHugh (1990), 
Eder et al. (1990), Sung et al. (2005). 

In regard of the interaction of two fluids, Lee and 
Park (1995) studied the draw resonance 
instability using a model where Newtonian and 
Upper-Convected Maxwell fluids (UCM) as the 
core and the skin layer, respectively. For an 
isothermal spinning flow, Ching-China and Jyh-
Chau (1996) analyzed the influence of flow-rate 
ratio, Deborah number and deformation 
parameters (extensional and shear) on the spinline 
velocity. In their model Newtonian and PTT 
fluids were considered the core and the skin 
layer, respectively. For the non-isothermal co-
extrusion flow, Nordberg and Winter (1990) used 
the Warner model like the skin layer. They 
reported that it is possible to predict the stability 
of the process through the viscosity ratio at the 
interface and the normal stress difference ratio. 

In the present work, the non-isothermal co-
extrusion fiber spinning with flow-induced 
crystallization is analyzed. The present model and 
the numerical simulation is an extension of the 
formulation originally proposed by Ching-China 
and Jyh-Chau (1996) in which Newtonian and 
PTT fluids are considered the core and the skin 

layer, respectively. The crystallization is taken 
into account using the kinetic equation used by 
Sung et al. (2005). The analysis is limited to the 
draw down region, where the fluids are stretched 
to form a thin fiber; the inertia, gravitational and 
surface tension are neglected. The influence of 
the polymeric flow rate fraction, the PTTs 
parameters model, the Deborah number and the 
flow induced crystallization is analyzed. 

2.  MATHEMATICAL MODEL 

2.1 Assumptions 

A simplified scheme of the co-extrusion fiber 
process is shown in Fig. 1. According to material 
properties and process conditions such as; 
incompressible and viscous fluid, low Reynolds 
number (ratio of inertial forces to viscous forces) 
and low weight material. The main assumptions 
of the model are: i) steady-state and non-
isothermal flow, ii) the core and skin layer are 
Newtonian and PTT fluids, respectively, iii) 
crystallization kinetics for the skin layer is 
considered, iv) viscous and viscoelastic force are 
included and v) gravity, inertia and sur-face 
tension are neglected. 

 

Fig. 1. Schematic diagram of the co-extrusion 
spinning process. 

2.2  Governing Equations 

According to the above assumptions, the mass 
and momentum equations are: 

 
0,zAV

z





                                                     (1) 

    1 0.s s c c
zz rr zz rrA

z
             

  (2) 

The first term in Eq. (2) is the axial tension 
contributed by PTT skin fluid while the second 
term is caused by the Newtonian core layer. 

2.3  Constitutive Equations 

For the Newtonian core layer, the stress tensor σc 
is proportional to the strain rate D as follows: 
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2 Dc                                                         (3) 

The radial and axial stress tensor components are, 
respectively 

, 2 .c c c cr z
rr zz

V V

r z
    

   
 

             (4) 

The PTT constitutive equation, known for its 
robustness and accuracy in describing extensional 
deformation processes, is employed for the skin 
layer. The exponential PTT model is: 

  
exp( )

. . . 2 D,

s s

s s s s

tr
E

V L L

  

    



   
                (5) 

2 ,s
rr zz rr zztr                          (6) 

L V D,                                                      (7) 

where E, trσs, λ and L are the elastic modulus, the 
trace of stress tensor, the relaxation time and the 
velocity gradient tensor, respectively. The 
dimension-less parameters ε and ξ represent the 
extensional and the shear thinning/thickening 
effects, respectively. 

In the case of steady state uniaxial flow, Eq. (5) 
for radial and axial stresses is Ching-China and 
Jyh-Chau (1996): 

 

exp( ( 2 )) (

1 ) .

rr
rr zz rr zs

sz z
rr

V
z

V V

z z

    


  


 



 
   

 

           (8) 

 

exp( ( 2 )) (

2 1 ) 2 .
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zz zz rr zs

sz z
zz

V
z

V V

z z

    


  


 



 
  

 

          (9) 

2.4  Energy Equation 

Considering absence of resistance to radial heat 
transfer by conduction between layers and in the 
axial direction but accounting the heat exchange 
be-tween skin layer and surrounding and the 
crystallization kinetic the energy equation is: 

 2
( ),f

z a z
pp

HT h X
V T T V

z C zC A




 
   

 
 (10) 

where ∆Hf , h, Ta, X, Cp and ρ are the heat of 
crystallization per unit mass, the heat transfer co-
efficient, the environment temperature, the 
crystallinity, the heat capacity and the density of 
skin fluid, respectively. 

2.5  Crystallization Equation 

For the crystallization kinetics, the model used by 
Joo et al. (2002) and Sung et al. (2005) is 
implemented here. In this model the 
crystallization rate is a function of temperature 
and of the molecular orientation. Then, in 
uniaxial extensional flow this molecular 

orientation is related to the first normal stress 
difference as. 

1

max

2max

(ln( )) ( )

exp( 4ln 2( ) ( )),

n

n
z

zz rr
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V n X X K

z X X

T T

D E
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






 

 
 

 

    (11) 

where X and X∞ are the crystallinity and the 
maximum crystallinity, respectively. Tmax is the 
fluid temperature at the maximum crystallization 
rate, Kmax is the maximum crystallization rate, κ is 
the flow-induced crystallization factor and n is 
the Avrami index that in the case of uniaxial 
extension is one. 

The set of Eqs. (1, 2, 8, 9, 10 and 11) is placed in 
dimensionless form using the following scaling 
parameters a, v, τii, x, θ, θa, vy, km, d and ζ defined 
as: 

0

0 0 0

max max
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2.6  Dimensionless Equations  

0,
dav

d
                                                          (12) 

3(1 ) 0
d dv

a N aGM
d d

 
 
 

   
 

                 (13) 

exp (3 2 )

2(1 ) 2 ,

zz zz

zz
zz

De
N

G

d dv dv
De v G

d d d

 

  
  

   
 

 
   

 

        (14) 

exp (3 2 )

(1 ) 3(1 ) 3

zz

zz

De
N N

G

dN dv dv dv
De v N G

d d d d

 

  
   

   
 

 
     

 

 (15) 
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              (17) 

Where 
* / , ,s s
f f p o zz rrH H X C T N M      

/ 2c s
o   and 0 0 /sG A V FL  are; the 

dimension-less crystallization heat, the first 
normal stress difference, the ratio of the core and 
skin viscosity in the fiber and the dimensionless 
axial force, respectively. Finally 

1/2
0 03.55 /t pS hL C V A  is Stanton number and 

0 /De V L  is Debora number. 
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Fig. 2. Velocity profile as a function of 
dimension-less position for (a) extensional and 

(b) extensional+ shear deformations. 

2.7  Boundary Conditions 

The dimensionless bounday conditions for 
velocity, cross area, first normal stress 
difference, axial stress, temperature and 
crystallinity at the beginning and at the end of 
the fiber are: 

0

0

0;

1, 1, 1, , 1, 0

1; ,

zz c

L
r

at

a v N t x

V
at v D

V


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


     
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    (18) 

where Dr is the draw ratio indicating the relation 
between 

the take up velocity VL and the velocity at the 
beginning of the fiber V0. Dr determines the final 
condition for all the others variables, with this 
procedure reduce the order and grade of the 
differential equation for the velocity and the Eqs. 
(12-13) are integrated: 

1,av                                                               (19) 

3(1 )
,

v dv
N GM

d


  


                                (20) 

The value of integration constants Eqs. (19-20) 
are set to unity (there is no loss of generality in 
the solution) Ching-China and Jyh-Chau (1996). 
Substitution of Eqs. (19-20) into Eqs. (14) and 
(17) is made. A set of simultaneous first-order 
ordinary differential equations is obtained; this 
set is solved by numerical procedures Shoichiro 
(2001): 

 

Fig. 3. Extensional rate profile as a function of 
dimensionless position for (a) extensional and 

(b) extensional + shear deformations 
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 
 and 

the corre-sponding boundary condition for Eq. 
1

3
w

MG
 at ζ = 0 Ching-China and Jyh-Chau 

(1996). 

3.  RESULTS AND DISCUSSIONS 

In this section, the numerical predictions of the 
non-isothermal co-extrusion fiber spinning with 

(25) 
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flow-induced crystallization are presented. The 
influence of the PTT’s parameters model (ε,ξ = 
0), the polymeric flow rate fraction and the flow 
induced crystallization on the main variables are 
analyzed. 

3.1  Solution Method 

The set of Eqs. (21)-(25) along with the corre-
sponding boundary conditions (Eq. 18) are solved 
numerically using the shooting method Shoichiro 
(2001). 

3.2  Velocity Profile 

Figure 2 shows the effect of the polymeric flow 
rate fraction on the velocity profile. In Fig. 2a, 
when (ε = 0,ξ = 0) the Upper Convected Maxwell 
(UCM) is recovered, notice that increasing   
makes the velocity profile becomes linear, this 
behavior is associated with the material elasticity. 
The upper and lower limits ( 1   and 0  ) 
correspond to elastic and viscous contributions of 
the material, respectively Denn (2008), Bird et al. 
(1987). 

Similar numerical results were reported by Ching-
China and Jyh-Chau (1996) using the UCM for the 
mixture PET/PP. The case of extensional 
deformation (ε = 0.015,ξ = 0) and varying , the 
same behavior is obtained but in lower magnitude 
except for a viscous fluid 0  . The Fig. 2b show 
the cases of shear (ε = 0,ξ = 0.5) and 
extensional/shear deformations (ε = 0.015,ξ = 0.5), 
all the velocity curves are closer and similar of the 
results reported by Ching-China and Jyh-Chau 
(1996) for the polymeric isothermal co-extrusion, 
the shear thinning effect is dominant in the PTT 
model and instability phenomena could happen for 
higher extensional rates. 

3.3  Extensional Rate Profile 

In Fig. 3 shows the extensional rate as a 
function of the axial position for different 
values of polymeric flow rate fraction, Fig. 3a 
shows that lower extensional rate is the UCM 
with 1   and higher extensions for (ε = 

0.015,ξ = 0) reducing  . At the beginning of 
the fiber there is a reduction of the ex-tensional 
rate, which can be explained as a yield stress 
or the required energy for the material starts to 
flow, after this point a linear behavior for an 
elas-tic material with small extension and 
higher deformations at the end of the fiber for 
an extensional viscous fluid are exhibit. 
Considering both deformations 
extensional/shear (ε = 0.015,ξ = 0.5) the result 
is a single curve with separation at the end of 
the fiber Fig. 3b. 

The effect of the elastic force reduces the 
velocity because the material tends to recover 
its original form and part of the total energy of 
the system is used in this process, the viscous 
case all the energy is employed in diffusional 
process. 

3.4  Axial Stress Tensor 

In Fig. 4 the axial stress tensor T zz as a 
function of the position is presented, for the 
UCM with 1  , T zz increases up to reach a 
constant value at the beginning of the process, 
it is known that UCM reports an unreal 
behavior for large deformations. The 
polymeric flow rate fraction has strong 
influence in this process Fig. 4a, Takeshi et al. 
(1996) used the UCM with 0.5   for the 
ratio 5/5 PET/PP system, They reported the 
same behavior of this work. A significant 
increase of T zz can be obtained incorporating 
the extensional parameter in the PTT model, if 
shear deformation is also included, the later 
dominates the process and modifies the 
behavior to a single curve reaching higher 
tensile stresses, see Fig. 4b. 

 

Fig. 4. Axial stress as a function of 
dimensionless position for (a) extensional and 

(b) extensional + shear deformations 

High-speed non-isothermal melt spinning is 
associated with a concentrated neck-like 
deformation process and the development of high 
tensile stresses that result in the so-called flow (or 
axial stress) induced crystallization (FIC). In Fig. 
5 shows the crystallization percentage as a 
function of the axial position varying the 
polymeric flow rate fraction   and the 
crystallinity parameter control κ. For κ = 0, no 
induced crystallization is considered, however the 
crystallinity increases up to reach a constant 
value Fig. 5a. Doufas et al. (2000) published 
similar results for a Nylon-66 fiber, They 
reported that the crystallinity is dependent on the 
polymeric flow rate. Extensional deformation 
augmnted the crystallinity percentage keeping 
the same behavior Figs. 5a-5c. 
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Extensional 

 

 

 

 
Fig. 5. Crystallization profile as a function of 

dimensionless position for extensional 
deformation 

Increasing κ the crystallization pro-cess is faster 
but its percentage is reduced, except for a viscous 
fluid where the crystallinity percentage is 
augmeted Figs. 5a-5c. In Fig. 6 the crystallinity 
profile for a extensional/shear deformation is 
shown, the crystallinity porcentage increases but 
the shear thinning effect dominates the process 
due to all the curves are closer varying the 
polymeric flow rate fraction κ except for a 
viscous fluid where is sensible to this process. 

3.6  Temperature Profile 

The temperature profile as a function of the axial 
position without crystallization is shown in Fig. 7. 
The temperature decreases monotonically along the 
fiber due to the heat transfer by convection 
mechanism, this effect is considered in the model 
by the Stanton dimensionless number. 
 

Extensional + Shear 

 

 

 

 
Fig. 6. Crystallization profile as a function of 
dimensionless position for extensional/shear 

deformation3.5 Crystallization Profile 

In Figs. 7a and 7b all curves have the same behavior, 
the temperature along the fiber is dependent on the 
type of deformation and on the polymeric flow rate 
fraction. Takeshi et al. (1996) using a non-
isothermal model reported similar results. Including 
the shear thinning effect, the temperature decrease 
monotonically having the same behavior of the 
previous one, but the curves are closer indicating the 
strong influence of the shear parameter 
 ξ = 0.5 and more viscous dissipation is generated 
Fig. 7b. 

The temperature profile taking into account the 
crystallinity kinetic process is shown in Fig. 8. 
In this figure exhibits anincrement of the 
temperature due to crystallization effect, this 
behavior is reported in the numerical predictions 
of polymeric fiber extrusion by Eder et al. 
(1990), McHugh (1990). A strong influence of 
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the stress induce crys-tallization on the 
temperature profile is at the be-ginning of the 
process, see Figs 8a and 8b. The higher 
increment of the temperature is reached when 
the process takes into account a shear thinning 
fluid and the stress induced crystallization Fig. 
9. After this process the temperature decreases 
monotonically due to the convection heat 
transfer to the environment 

 

Fig. 7. Temperature profile as a function of 
dimensionless position for (a) extensional and 

(b) extensional + shear deformations 

4. CONCLUSIONS 

The numerical simulation of the non-isothermal 
steady co-extrusion fiber spinning with flow-
induced crystallization is performed. The 
formulation originally proposed by China et al. is 
extended, Newtonian and PTT fluids are 
considered the core and the skin layer, 
respectively. 

The numerical results of the non-isothermal fiber 
spinning process without crystallization but 
taking into account the extensional and shear 
thinning/thickening deformation, exhibit the same 
behavior of the isothermal case reported by 
Ching-China and Jyh-Chau (1996). The extension 
rate, tensile stress tensor and temperature profiles 
are in-fluenced by the polymeric flow rate 
fraction and thinning parameters of the PTT 
model. 

Higher axial stress tensor are reached when the 
shear thinning parameter is included in the PTT 
model, the shear thinning effect dominates the 
process, obtaining a single curve. 

The extensional rate as a function of the position 
shows a linear behavior for high elastic fluid, this 
behavior is lost when viscous contribution is 
increased. 

The extensional rate, stress tensor and 
temperature profiles are affected when the flow-
induced crystallinity. The degree of crystallinity 
profile show a monotonic increased up to reach 
a constant value. On the other hand, the tensile 
stress has a strong influence on the degree of 
crystallinity at the be-ginning of the fiber 
extruded, the zone where the crystallinity is 
constant depend on the viscoelastic flow 
fraction. 

Extensional 

 

 

 

 
Fig. 8. Crystallization profile as a function of 

dimensionless position for extensional 
deformation varying the crystallinity 

parameter κ 
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Extensional + Shear 

 

 

 

 
Fig. 9. Crystallization profile as a function of 
dimensionless position for extensional + shear 

deformations varing the crystallinity 
parameter κ 
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