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ABSTRACT 

In this research article, we investigated the weakly non-linear effect of gravity modulation for the temperature 
dependent viscous fluid in a horizontal porous layer in the presence of internal heat source. We use power series 
expansion in terms of the amplitude of gravity modulation, which is considered to be small for double-diffusive 
convection in porous media. We graphically show the effect of internal heat source, solute Rayleigh number, 
Lewis number, Vadász number, thermo-rheological parameter, the amplitude of gravity modulation, the 
frequency of modulation on the heat and mass transfer using Ginzburg-Landau equation. The effect of gravity 
modulation is found significant and is more effective for the low values of frequency of modulation. 

Keywords: Ginzburg-Landau equation; Gravity modulation; Porous media; Temperature dependent viscosity; 
Double-diffusive convection; Weakly non-linear stability. 

NOMENCLATURE

Latin Symbols 

A amplitude of convection  
a1 amplitude of gravity modulation 
d depth of the fluid layer 
g acceleration due to gravity 
K permeability of the porous medium 
kc critical wave number 

Le Lewis number, T

S
Le






Nu Nusselt number 
p reduced pressure 

RaT thermal Rayleigh number, 0
KTg

T
T

Td
Ra








RaS solute Rayleigh number, 0
KSg

S
T

Sd
Ra








Ri internal heat source parameter
2

i
T

Qd
R




S solute concentration 
S solute difference across the porous layer 

Sh Sherwood number 
T temperature 

T temperature difference across the porous layer 
t time

T  coefficient of thermal 

expansion 

γ  heat capacity ratio 
 
 

γ
c m

c f






0δ  small parameter variation 

of viscosity with temperature 
ε  perturbation parameter 

S  solutal diffusivity 

T  thermal diffusivity 

  dynamic viscosity of the fluid 

 kinematic viscosity, 
0ρ

 
  
 

 

ρ  fluid density 

τ  slow time τ = ε2t 
φ  porosity 
ψ  stream function 
Ω  frequency of modulation 

Other symbols 

2
1

2 2

2 2x y

 


 
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V thermorheolgical parameter 
V = δ0∆T 

Va Vadász number 
2

K T

d
Va




  

(x,z) horizontal and vertical co-ordinates 
  
Greek Symbols 

S  coefficient of solute expansion 

2  
2

2
1 2z


 


 

 

Subscripts 
b basic state 
c critical 
0 reference value 
 
Superscripts 
' perturbed quantity  
* dimensionless quantity  
St stationary 

 

1. INTRODUCTION 

Horton-Rogers-Lapwood convection attracts 
many researchers in recent years as it come across 
many natural convection and in most geological, 
physical, mechanical engineering, chemical 
engineering, geophysical problems. Documented 
review in this area are mainly provided by Ingham 
and Pop (2005), Vadász (2008), Nield and Bejan 
(2013), Vafai (2005). Double-diffusive convection 
in which two components having different rates of 
diffusivity assent to the instability arises in oceans, 
where heat and salt concentration exist with 
different gradients and diffuse at differing rates, in 
our atmosphere where temperature and 
concentrations have different diffusive rates at 
different altitudes with respect to the sea level, 
magma chambers, polymeric liquids, geothermal 
energy extraction, oil re-covery process, nuclear 
waste disposal and the migration of moisture 
through air contained in fibrous insulation. 
Kuznetsov and Nield (2008), Kuznetsov and Nield 
(2010), Kuznetsov and Nield (2011), Bhadauria 
(2012) undertook the thermal instability of double 
diffusive convection in porous media. 

Under the micro-gravity environment gravity field 
is a randomly fluctuating field and thus the gravity 
modulation of the system leads to the variable 
coefficients in the governing equations of thermal 
instability in porous media and involves the 
vertical time-periodic vibrations of the system. 
This leads to the appearance of a modified gravity, 
collinear with actual gravity, in the form of a time-
periodic gravity field perturbation and is known as 
gravity modulation or g-jitter in literature. Gravity 
modulation can be taken as an effective 
mechanism to control the heat transfer by an 
external regulation. Documented article in this 
area are given by Malashetty and Padmavathi 
(1997), Rees and Pop (2000), Rees and Pop 
(2001), Rees and Pop (2003), Govender (2005), 
Kuznetsov (2005), Kuznetsov (2006b), Kuznetsov 
(2006a), Strong (2008), Strong (2009), Razi et al. 
(2009), Vanishree and Siddheshwar (2010), 
Siddheshwar et al. (2012a), Swamy et al. (2013), 
Swamy (2014).  

There are a large number of practical situations in 
which convection is driven by the internal heat 
source. Due to internal heating of earth, there is 
atemperature gradient between the interior and the 

exterior of the earth’s crust which causes 
convection in earth crust also application of 
internal heat source may be found in radioactive 
decay of un-stable isotopes, metal waste form 
development for spent nuclear fuel, weak 
exothermic reaction which can take place within 
porous materials moreover internal heat source is 
the main energy source of celestial bodies which is 
generated by radioactive decay and nuclear 
reaction. Related research article in this area is 
provided by Tveitereid (1977), Bejan (1978) , 
Alex et al. (2001), Saravanan (2009), Cookey et 
al. (2010), Nouri-Borujerdi et al. (2007), Nouri-
Borujerdi et al. (2008), Capone et al. (2011), 
Bhadauria (2012), Bhadauria et al. (2013). 

The viscosity of a fluid is one of the property 
which varies as temperature varies but most of the 
articles kept it as a constant with respect to 
temperature, for some fluids it is less and for some 
fluids it is significant. Temperature dependent 
viscosity fluid gives rise to variation in the top and 
bottom structures and referred as a non-
Boussinesq effect. Nonlinear energy stability 
theory has been derived by Richardson and 
Straughan (1993) for the problem of convection in 
porous medium when the viscosity depends on the 
temperature for vanishingly small initial data 
thresholds, Payne et al. (1999) has been studied the 
unconditional nonlinear stability for temperature 
sensitive fluid in porous media, further more Payne 
and Straughan (2000) extend their analysis for the 
cases when the viscosity variation may be 
quadratic or when convection is penetrative. Qin 
and Chadam (1996) studied the nonlinear energy 
stability by considering the temperature dependent 
viscosity and inertial drag by taking higher-order 
approximations for the viscosity-temperature and 
density-temperature relation, Nield (1996), 
Holzbecher (1998) studied the thermal instability 
for the variable viscosity fluid in porous layer 
using the FAST-C(SD) code for numerical 
modeling, Rees et al. (2002), Siddheshwar and 
Chan (2004), Vanishree and Siddheshwar (2010) 
investigated the linear thermal instability for the 
temperature dependent fluid using weighted 
residual technique, Siddheshwar et al. (2012b) 
studied the effects of variable viscosity and the 
gravity modulation on the heat transfer in an 
anisotropic porous medium, Srivastava et al. 
(2013) analyse the non-linear effect of internal 
heat source and gravity modulation on the heat 
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transfer for variable viscosity fluid in an 
anisotropic porous layer. 

The simultaneous appearance of solid and liquid 
phases during the solidification of metallic 
alloys referred as mushy zones (Worster 
(1991)), also during the solidification of metals 
there is a temperature difference between upper 
and lower layer of molten metals which solidify 
slowly and in which the heat consumed by the 
molten metals works as the internal heat source. 
In the present paper the study of extraction of 
metals from ores where a mushy layer is formed 
during solidification of a metallic alloy is of 
particular interest. The quality and structure of 
the resulting solid during the solidification of 
binary alloys can be controlled by influencing 
the transport process externally, which can be 
done by thermal modulation, gravity 
modulation, and rotation or by internal heating. 
However, in the present study, internal heating 
and gravity modulation of the system was used 
as an external means to influence the transport 
process, thereby controlling the quality and 
structure of the resulting solid. If one were to 
quantify heat and mass transports in porous 
media in the presence of gravity modulations, 
then the linear stability analysis is inapplicable 
and the nonlinear stability analysis becomes 
inevitable. Numerical analysis of the Ginzburg-
Landau equation is simpler than numerical 
solution of the equations of motion. In addition, 
analysis of stability of some simple (for 
example, periodic) solutions of the Ginzburg-
Landau equation allows researchers to simplify 
the analysis of spatiotemporal dynamics of 
complex flows in fluid mechanics, while 
investigating a weakly non-linear stability of 
systems Ginzburg-Landau equation arise as a 
consequence of the solvability condition in a 
large category of problems in contin-uum 
mechanics. In the light of the above, we make a 
weakly nonlinear analysis of the problem using 
the Ginzburg-Landau equation and, in the 
process, quantify the heat and mass transports 
in terms of the amplitude governed by the 
Ginzburg-Landau equation. There are no 
reported studies on this aspect of the problem. 

2.  GOVERNING EQUATIONS 

We consider an infinitely extended horizontal 
porous layer saturated by variable viscosity 
Newtonian fluid with temperature-dependent 
viscosity confined between the planes z = 0 and z 
= d, which is heated and salted from below. We 
choose Cartesian frame of reference as, origin in 
the lower boundary and the z-axis vertically 
upward direction.The gravity force is acting in 
vertically down-ward direction, we consider only 
free-free boundaries. A uniform adverse 
temperature gradient ∆T and concentration 
gradient ∆S is maintained be-tween the surfaces. 
Further the density variation is considered under 
Boussinesq approximation. The governing 
equations under above considerations are given 
by 

.q 0,                                                               (1) 

0ρ q
ρg( ) K.q,

φ
p t

t


   


                           (2) 

2
0γ (q. ) ( ),T

T
T T Q T T

t


     


               (3) 

2φ (q. ) ,S
S

S S
t


   


                                   (4) 

0 0 0ρ ρ 1 β ( ) β ( ) ,T ST T S S                      (5) 

2
0 1 0

ˆg( ) 1 ε cos( ) ,t g a t k                              (6) 

0
2

0 0

( ) ,
1 ε δ ( )

T
T T

 
 

                                  (7) 

where, q = (u,v,w) is velocity (m/s), φ is 
porosity of the matrix, p is the pressure (Pa), g 
is the acceleration due to gravity (m/s2), µ is 
viscosity (Ns/m2) and is taken as in the sense 
that 1/µ is linear in the temperature because the 
steady state temperature profile in the Horton-
Rogers-Lapwood problem in the vertical 
coordinate z is linear, this gives a situation 
where 1/µ is linear in z, the ordinary differential 
equation that now arises is one whose 
coefficients are linear in z and this allow us to 
solve the equation using a comparatively simple 
series method. ρ is density (kg/m3), T and S 
represents temperature (K) and concentration 
(kg/m3) respectively. K is the inverse of the 
permeability tensor (m2) , κT is the thermal 
diffusivity tensor (m2/s), Q = Q0 /(ρc)f and Q0 is 
the volumetric internal heat source (W/m3) and 
the magnitude of the internal heat generation 
can vary with the temperature of the elements, 
ρ0 is reference density, g0 is mean gravity, a1 is 
amplitude of gravity modulation, Ω0 is the 
frequency (s−1), ε is the quantity that indicates 
smallness in order of magnitude of modulation 
and t is time . Furthermore κS is the solute 
diffusivity (m2/s), βT is thermal expansion 
coefficient (K−1) and βS is density coefficient for 

salinity (kg−1m3), 
(ρ )

γ
(ρ )

c m

c f
  is the heat 

capacity ratio where c is the specific heat (J/kg 
K) and subscript f and m stands for fluid and 
medium, also for simplicity γ  and φ is taken 
unity in this paper. We consider only two-
dimensional disturbances in our study, 
introducing the stream function ψ and 
eliminating the pressure term and then 
nondimensionalizing the resultant equations 
using the substitution 
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* * * * 2

* * *
0

( , , ) ( , , ) , (γ / ),

ψ=( )ψ , ( ) , ( )

T

T

x y z x y z d t t d

T T T T S S S





 

    
          (8) 

The nondimensionlized (after dropping the 
asterisks for simplicity) Eqs. (2-4) are: 

2
2

1 0

2
1 0

2 2

2 2

1 ( ψ)
(1 ε Cos( ))

(1 ε Cos( ))

( ) ψ

ψ ψ
,

T

S

T
Ra a t

Va t x
S

Ra a t
x

T
x z

x x z z



 

  
   

 


  


  
     

          

      (9) 

2 2

2 2

(ψ, )
,

( , )i
T T

R T
t x zx z

    
        

             (10) 

21 (ψ, )
,

( , )

S S
S

t Le x z

 
  

 
                                 (11) 

where 
2

0

1
( )

1 ε ( )
T

V T T
 

 
 and the 

appearance of ε2 indicates that the viscosity 
variation is weak as ε is small quantity. 

2

T

d
Va

K




  is the Vadász number or Darcy-

Prandtl number 
β KT

T
T

g Td
Ra




  is thermal 

Rayleigh number, 
β KS

S
T

g Sd
Ra




  is solute 

Rayleigh number, 
2

i
T

Qd
R


  Internal heat source 

parameter, T

S
Le




  is Lewis number, 0δV T   

thermo-rheological parameter. 

The boundary conditions for solving Eqs. (9-11) 
are 

ψ 0, 1 1 0T and S at z                   (12) 

ψ 0, 0 0 1.T and S at z                 (13) 

The boundaries of a porous medium can be 
either free or rigid. We know that under 
laboratory conditions free boundaries are less 
accessible to the experiments therefore; one has 
to consider the rigid boundaries. However, in 
real situations like geothermal regions the 
porous layer under consideration cannot be 
isolated from the surrounding region to avoid 
the penetration of the fluid; therefore we have to 
consider only free surfaces. Further, the 
mathematical analysis of the problem becomes 
easier to handle, therefore for mathematical 
convenience also the free-free boundary 
conditions are used. 

The conduction profile is given by 

Sin (1 )
ψ 0, ( )

Sin

( ) 1

i
b b

i

b

R z
T z

R

and S z z


 

 

              (14) 

Using ( )bT   Eq. (9) reduces to 

2
2

1 0

2
1 0

2 2

2 2

1 ( ψ)
(1 ε Cos( ))

(1 ε Cos( ))

( ) ψ

ψ
,

T

S

T
Ra a t

Va t x
S

Ra a t
x

T
x z

z z





  
   

 


  


  
     
 


 

    (15) 

where 
0 2

1
( )

Sin (1 )
1 ε

Sin

b
i

i

T
R z

V
R





 
 
 

  

 

and 
2

* 0
0 .

Tz

d




   

Now imposing finite amplitude perturbations 
on the basic quiescent state given by Eq. (14) 
as 

Sin (1 )
ψ ,

Sin
i

i

R z
T

R


                           (16) 

and  1S z     

Substituting the above Eq. (16) in Eqs. (10, 11, 15) 
we have 

2
2 *

1 0

2 *
1 0

2 2

2 2
2

2

2

2

1 ( ψ)
(1 ε Cos( ))

(1 ε Cos( ))

1
ψ

Sin (1 )
1 ε

Sin

ε Cos (1 ) ψ
,

Sin (1 )
Sin 1 ε

Sin

T

S

i

i

i i

i
i

i

Ra a t
Va t x

Ra a t
x

x zR z
V

R

V R R z

zR z
R V

R



  
   

 


  

  

         
  

 


 
 

  

  (17) 

2 2

2 2

dT ψ

dz

(ψ, )
,

( , )

b

i

x t

R
x zx z

 
 

 
    

         

                 (18) 

2ψ 1 (ψ, )

( , )x t Le x z

    
   

  
                  (19) 

Boundary conditions to solve Eqs. (17-19) are 
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ψ 0, 0 and 0 0,at z                  (20) 

ψ 0, 0 and 0 1.at z                   (21) 

We now introduce the following asymptotic 
expansion 

2 4
0 2 4ε ε ...,T cRa R R R                            (22) 

2 3
1 2 3ψ εψ ε ψ ε ψ ...,                                (23) 

2 3
1 2 3ε ε ε ...,                                  (24) 

2 3
1 2 3ε ε ε ...,                                      (25) 

where R0c is the critical value of the Rayleigh 
number at which the onset of convection takes 
place in the absence of gravity modulation. 

Since the exponential growth of linearised 
disturbances is proportional to the difference of 
the Rayleigh number from the critical value 
therefore, we assume the variation of time only 
at the slow time scale τ = ε2t , and arranging the 
systems at different order of ε. 

At the lowest order, we have 

 

2
1 0

2
1

2

1

1

1

dT
0

dz
1

0

ψ

0,

c S

b
i

R Ra
x x

R
x

x Le



      
      

    
 
   
 
 

            (26) 

Solution at the lowest order subject to the 
boundary conditions (20, 21) are given by 

 1ψ τ Sin Sin(π ),cA k x z                                (27) 

  
 

2

1 2 2

4π

δ 4π

τ Cos Sin(π ),

c

i i

c

k

R R

A k x z

  
 

  

                            (28) 

 1 2
τ Cos Sin(π ),

δ
c

c
k Le

A k x z 
                     (29) 

where 2 2 2δ πck   is the critical wave number. 

The critical value of the Rayleigh number and the 
corresponding wave number for the onset of 
stationary convection is calculated numerically 
and the expression for Rayleigh number is given 
by 

   2 2 4 2

0 2 2 2

δ 4π δ

4π δ

i i c S
c

c

R R k Ra Le
R

k

  
    (30) 

2.1  Amplitude Equation And Heat And 
Mass Transport For Stationary 
Instability 

At the second order, we have 

 

2
1 0

2
1

2

2 21

2 22

2 23

dT
0

dz
1

0

ψ

,

c S

b
i

R Ra
x x

R
x

x Le

R

R

R

      
      

    
  
      

   
   

              (31) 

where 

21 0,R                                                             (32) 

    
3 2

2
22 2 2

2π
τ Sin 2π ,

δ 4π

c

i i

k
R A z

R R
   

 
   (33) 

 
2

2
23 2

π
τ Sin 2π

2δ
ck Le

R A z


                           (34) 

The second order solution subject to the boundary 
condition (20, 21), is given by 

2ψ 0,                                                             (35) 

  
 

3 2
2

2 22 2

2π
τ Sin 2π ,

δ 4π

c

i i

k
A z

R R
     

 
  (36) 

 
2 2

2
2 2

τ Sin 2π ,
8πδ
ck Le

A z                              (37) 

The horizontally averaged Nusselt number and 
Sherwood number, Nu and Sh, for stationary mode 
of convection (the mode considered in this 
problem) is given by : 

2π

2
0

0
2π

0

0

2π

(τ) 1 ,

2π

c

c

kc

z

kc b

z

k
dx

z

Nu

k dT
dx

dz





 
  

      
 

  
     





                  (38) 
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0

0

2π

(τ) 1 ,

2π

c

c
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z
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z

k
dx

z
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k dS
dx
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





 
  

      
 

  
     





                  (39) 

One can notice here that the gravity modulation is 
effective at O(ε2) and effects Nu(τ) and Sh(τ) 
through A[τ] as shown next. Substituting 
expressions of 2  and 2  in the above expression 

(38, 39) and simplifying, we get 
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 
  

 
4 2

2

22 2

(τ) 1

4π Sin
τ ,

Cos δ 4π

c i

i i i i

Nu

k R
A

R R R R

 

   
  

 

       (40) 

 
2 2 2

2
(τ) 1 τ

4δ
cLe k

Sh A                                   (41) 

At the third order, we have 

 
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1 0

2
1
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3 31

3 32

3 33
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c S
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i
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x x
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      
      

    
   
       
   
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where 
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 
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

      
   
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   (43) 

1 2 1
32

ψ
,

τ
R

x z

  
 

  
                                  (44) 

1 2 1
33

ψ

τ
R

x z

   
 

  
                                     (45) 

and 
* 2
0 0
2 2

.
ε ε Tz

d


 

    

Substituting the value of 1 1 2 1ψ , , ,   and 2  in 

the above equations to get the expressions of 
R31,R32,R33. 

Applying the solvability condition for the 
existence of third order solution, 

 
2π

1
31 1 32 1 33 10 0

ˆˆψ̂ 0ck R R R dxdz              (46) 

where (∧) represents adjoint solution of the first-
order system, we get the non-autonomous 
Ginzburg-Landau equation with time periodic 
coefficients in the form 

 31 2 3τ τ τ 0,A A A A A A                               (47) 

where 
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   (49) 
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π δ
.

8δδ δ 4π

c c S c S

i i

k k LeRa k Le Ra
A

R R

      
 

 (50) 

The Ginzburg-Landau equation given by (47) is a 
Bernoulli equation and obtaining its analytical 
solution is difficult due to its non-autonomous 
nature. Therefore, it has been solved numerically 
by the in-built function NDSolve of Mathematica 
7.0, subject to the initial condition A[0] = a0, where 
a0 is the chosen initial amplitude of convection. In 
our calculations, we may assume R2 = R0 to reduce 
the parameters by one. 

3.  RESULTS AND DISCUSSIONS 

We perform weakly nonlinear analysis of gravity 
modulation for temperature dependent viscosity 
fluid in closely packed porous media, there-fore, 
the Darcy model is considered for the governing 
equation for linear momentum. The work of 
Nield (1996) has been used for the thermo-
rheological relationship of temperature 
dependent viscosity of the fluid. We investigated 
the effect gravity modulation and thermo-
rheological parameter on heat and mass 
transport. We consider the effect of gravity 
modulation to be of order O(ε2) this will provide 
us only small amplitude vibrations. Such an 
assumption will help us in obtaining the 
amplitude equation of convection in a rather 
simple and elegant manner and is much easier to 
obtain than in the case of the Lorenz model. In 
order to study the heat and mass transfer, we need 
to perform the nonlinear analysis. We use gravity 
modulation as an external regulation of 
convection to control the heat and mass transfer 
as desired by the need. We consider the gravity 
modulation, internal heat source and temperature 
dependent viscous fluid for either enhancing or 
inhibiting convective heat transport as is required 
by a real application. 
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Vadász (1998) pointed out that there are some 
modern porous medium applications, such as 
mushy layer in solidification of binary alloys and 
fractured porous medium, where the value of Va 
may be considered to be of unity order, therefore 
the time-derivative term in the present study has 
been retained. Further this is the reason that we 
have kept the values of Va around one in our 
calculations, and retained the local acceleration 

term 
1

.
q

Va t




 

The values of Nu(τ) and Sh(τ) are obtained 
numerically from the expressions of Nu(τ) and 
Sh(τ) by using the numerical value of amplitude 
obtained from the Ginzburg-Landau equation. 
We use the values to plot the curve for NuC(τ) 
and ShC(τ) versus τ and is presented in the Figs. 
1–14. Figures 1-7 correspond to heat transfer 
and Figs. 8-14 correspond to mass transfer. A 
close observation of Eqs. (40, 41) in 
conjunction with Eq. (47) reveals that Nu(τ) and 
Sh(τ) depends on Lewis number Le, solute 
Rayleigh number RaS, Vadász number Va, 
thermo-rheological parameter and amplitude of 
g-jitter. 

 

Fig. 1. Variation of Nusselt number with time 
for different values of Ri 

 

Fig. 2. Variation of Nusselt number with time 
for different values V 

From the Figs. 1–14 it is observed that initially the 
value NuC(τ) and ShC(τ) is one showing that, 
initially there is no convection and heat transport 
is prevailed by conduction alone and as time 
increases heat and mass transport increases shows 
that convective regime takes place and remains 
oscillatory for further elapses of time. We take  
ε = 0.3 for numerical computations. 

From Fig. 1 we observe that to increase in the 
value of internal heat source parameter the heat 

transfer increases it means that if we increase 
the strength of the internal heat source heat 
transfer increases. Figure 2 shows the variation 
of Nusselt number with time for the different 
values of the thermo-rheological parameter and 
is clear that to increase in the value 

 

Fig. 3. Variation of Nusselt number with time 
for different values RaS 

 

Fig. 4. Variation of Nusselt number with time 
for different values Le 

 

Fig. 5. Variation of Nusselt number with time 
for different values a1 

 

Fig. 6. Variation of Nusselt number with time 
for different values Ω 
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Fig. 7. Variation of Nusselt number with time 
for different values Va 

 

Fig. 8. Variation of Sherwood number with 
time for different values of Ri 

 

Fig. 9. Variation of Sherwood number with 
time for different values V 

 

Fig. 10. Variation of Sherwood number with 
time for different values RaS 

of thermo-rheological parameter the heat transfer 
increases this indicates that fluids having high 
viscosity variation enhancement in the heat 
transfer is high. Figure 3 reveals that for the 
increasing value of solute Rayleigh number heat 
transfer increases that is, if we increase the so-lute 
gradient the heat transfer increases. Figure 4 
 

 

Fig. 11. Variation of Sherwood number with 
time for different values Le 

 

Fig. 12. Variation of Sherwood number with 
time for different values a1 

 

Fig. 13. Variation of Sherwood number with 
time for different values Ω 

 

Fig. 14. Variation of Sherwood number with 
time for different values Va 

shows the effect of Lewis number on the Nusselt 
number with respect to time and is observed that 
from the graph that to increase in the Lewis 
number the heat transfer increases it means that, 
if we fix the solutal diffusivity and increase the 
thermal diffusivity or decrease the solutal 
diffusivity and fix the thermal diffusivity heat 
transfer increases. From Fig 5 we observe that to 
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increase in the amplitude of modulation heat 
transfer increases it means that if the difference 
between actual gravity and mean gravity 
increases heat transfer increases. Figure 6 shows 
the effect of the frequency of modulation on the 
heat transfer and it is observed that for the 
increasing value of frequency of modulation heat 
transfer decreases this indicates that, if we 
decrease the time period of the oscillation heat 
transfer de-creases therefore we can control the 
heat transfer either to enhance or to inhibit by 
choosing appropriate frequency of modulation as 
required by the real life applications, 
furthermore, for the higher value of the frequency 
of modulation the effect of gravity modulation 
become weak this means that for the system 
having small time period for gravity modulation 
does not produce significant variation on the heat 
transfer also the effect of gravity modulation 
disappears for the higher values of frequency of 
modulation. From Fig 7 shows that for the 
increasing value of Vadász number heat transfer 
in-creases that is, if we increase the Prandtl 
number and fix the Darcy number or fix the 
Prandtl number and decrease the Darcy number 
the heat transfer increases, furthermore, it is 
observed that Vadász number is more effective 
on the heat transfer for its lower values so we 
keep it around unity in our numerical 
computations. 

Figure 8 shows the variation of Sherwood 
number for the different value of internal heat 
source parameter with respect to time and is 
clear from the graph that for the increasing 
value of internal heat source parameter the mass 
transfer decreases that is if increase the strength 
of the heat source mass transfer decreases. From 
Fig. 9 we observe that to increase in thermo-
rheological parameter mass transfer increases it 
means that for the fluids having viscosity 
variation high the rate of mass transfer high. 
From Fig. 10 it is clear that for the increasing 
value of solute Rayleigh number mass transfer 
increases this means that if we increase the 
solute gradient the mass transfer increases. 
Figure 11 reveals the effect of the Lewis number 
on the Sher-wood number with respect to time 
and it is cleat that from the graph that to increase 
in Lewis number mass transfer increases this 
indicates that if we fix the solutal diffusivity and 
increase the thermal diffusivity or decrease the 
solutal diffusivity and fix the thermal diffusivity 
mass transfer increases. Figure 12 shows that 
for the increasing value of the amplitude of 
modulation mass transfer increases it means that 
if the difference between actual gravity and 
mean gravity increases mass transfer in-creases. 
From Fig. 13 we observe that the effect of 
frequency of modulation is to decrease the mass 
transfer for its increasing value this means that 
if we decrease the time period of the oscillation 
mass transfer decreases therefore, we can 
choose the frequency of gravity modulation to 
control the mass transfer either to enhance or to 
inhibit as required by the real life applications, 
furthermore, for the higher value of frequency 

of modulation the effect of gravity modulation 
is frail on the mass transfer. From Fig. 14 it is 
clear that to increase in the value of Vadász 
number mass transfer increases it means that if 
we increase the Prandtl number and fix the 
Darcy number or fix the Prandtl number and 
decrease the Darcy number the mass transfer 
increases. 

Variation of streamlines, isotherms, isohalines at 
different instant of time is shown graphically in 
Figs. 15–17. From Figs. 15a–15d it is clear that the 
magnitudes of streamlines initially increases as 
time increases and after reaching a certain value it 
starts oscillations, Fig. 16a–16d shows the 
variation of isotherms at the different instant of 
time and if found that from the graph initially 
isotherms are flat and parallel shows the heat 
transport is only by conduction and as time 
increases isotherms starts oscillating showing 
convective regime is in place and then forms 
contour showing that as time increases convection 
contributes in heat transport, similar behaviour is 
observed for isohalines in Fig. 17a–17d, moreover, 
it is clear that from the Figs. 15–17 after reaching 
some instant there is no changes in streamlines, 
isotherms, isohalines. 

4.  CONCLUSION 

We perform the weakly nonlinear analysis using 
the Ginzburg-Landau equation for double 
diffusive convection in an infinite horizontal 
porous layer which is heated and salted from 
below, saturated with temperature sensitive fluid 
in the presence of gravity modulation and internal 
heat source. We studied the effect of gravity 
modulation and temperature dependent viscosity 
on the heat and mass transfer. We found that the 
gravity modulation is an effective mechanism to 
control the heat and mass transfer. The effect of 
frequency of modulation is significant to control 
the heat and mass transfer for the physical 
problem, furthermore for the large value of 
frequency of modulation the effect of gravity 
modulation is very frail. We found that the Vadász 
number is more pronounced on the heat and mass 
transfer when we take its value around unity, for 
its higher values the effect of Vadász number is not 
significant on the heat and mass transfer, however, 
the effect of gravity modulation keeps its own 
nature. The following conclusions has been made 
from our analysis, for the increasing values of 
parameter: 

1. Internal heat source parameter Ri : heat transfer 
increases, mass transfer decreases. 

2. Thermo-rheological parameter V : heat transfer 
increases, mass transfer increases. 

3. Lewis number Le : heat transfer increases, mass 
transfer increases. 

4. Solute Rayleigh number RaS : heat transfer 
increases, mass transfer increases. 

5. Vadász number Va : heat transfer increases, 
mass transfer increases. 
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(a) τ = 0.1 

 

(b) τ = 6 

 

(c) τ = 7 

 

(d) τ = 8 

Fig. 15. Variation of stream lines with time 
 

 

(a) τ = 0.01 

 

(b) τ = 6 

 

(c) τ = 7 

 

(d) τ = 8 

Fig. 16. Variation of isotherms with time 

 

6. Frequency of modulation Ω: heat transfer 
decreases, mass transfer decreases. 

7. amplitude of modulation a1: heat transfer 
increases, mass transfer increases. 
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