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ABSTRACT 

In the present study, the performance of the vorticity confinement method has been improved by combining it 
with the vortex feature detection methods. In the conventional vorticity confinement method, the only parameter 
to apply or not to apply vorticity confinement is the non-zero value of vorticity. On the other hand, the presence 
of vorticity in some cases, like the boundary layer and the shear layer flows, does not imply the presence of 
vortices. Applying the vorticity confinement at these points can lead to errors, in addition to loss of solution 
time. In order to solve this problem, using the combination of vorticity confinement method and four methods 
of vortex feature detection (non-dimensional ܳ, non-dimensional ߣଶ, non-dimensional modified ∆, and the ܵ −Ω correlation) the vorticity confinement term is applied only in vortex regions. In order to investigate the effects 
of this combination, the compressible Euler equation has been investigated for the problem of two-dimensional 
stationary single vortex at Mach number 0.5. The results indicate significant positive effects in reducing the 
solving time, decreasing the sensitivity of the solution to the amount of confinement parameter and significant 
elimination of the oscillation. 

Keywords: Threshold function; Confinement parameter; Vortex; Oscillations. 

NOMENCLATURE ݁ internal energy Ԧܨ   confinement parameter  ሬܸԦ velocity vectorܧ velocity magnitude in y direction ݒ flux vector in x direction  ሬܹሬሬԦ flow quantitative vector ܩԦ flux vector in y direction  ௧݂௦ௗ  threshold function ℎ total energy ߮ vorticity magnitude ො݊ unit vector perpendicular to the vortex line   density ߩ pressure ߛ heat capacity ratio Ԧܵ source term  ߱ vorticity ݑ velocity magnitude in x direction  

1. INTRODUCTION

Problems of vortex dominant flows have many 
applications in fluid mechanics, like the flow 
around skyscrapers, behind airplanes, etc. 
However, the numerical solution to these 
problems is facing a serious challenge. Due to 
the errors induced from the discretization of the 
equations, the vortices in the flow are diffused 
and dissipated at a higher rate than the reality, 
and this affects the validity of the results. To 
solve this problem, various solutions have been 

proposed, including using finer grids, adaptive 
grid solution, and the use of high order schemes 
for discretization. Despite the efficiency of 
these methods, their use is associated with 
increasing computational load and complexity 
of numerical codes. Furthermore, the vorticity 
confinement method presents a simple and low 
cost solution to solve this problem; this has led 
to an interesting topic on this research. 

For the first time, Steinhoff et al., introduced the 
vorticity confinement methods for 
incompressible flows during 1992 to 1995 in 
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their researches (Steinhoff, 1994; Steinhoff et al., 
1994; Steinhoff and Raviprakash, 1995; 
Steinhoff et al., 1992; Steinhoff et al., 1995). In 
the solution proposed by Steinhoff, the error 
caused by the artificial viscosity was 
compensated by adding a source term to the 
momentum equation. After presenting the early 
papers on vorticity confinement, many attempts 
were made to extend this method to the 
compressible flows. In 1997, Pevchin et al. 
proposed a very complex formulation based on 
the flux splitting method (Pevchin et al., 1997). 
In 1998, Yee tried to use the incompressible 
confinement term directly in the compressible 
flow equations; which lead to an unstable 
formulation (Yee, 1998). Finally, Hu et al. in 
2002 proposed a stable formulation of vorticity 
confinement for the compressible flow equations 
(Hu et al., 2002). Then, several studies have been 
conducted in this field. Among the recent works, 
the following researches can be mentioned: Sadri 
et al. used high-order fluxes along with the 
vorticity confinement method to solve the Euler 
equations in 2015 (Sadri et al., 2015). O`regan et 
al. used the vorticity confinement method to 
simulate the airplane wingtip vortices. They used 
two methods of Unsteady Reynolds Averaged 
Navier-Stokes equations and LES for modeling 
the turbulent flow (O'Regan et al., 2016). In 
2016, Costes et al. proposed a vorticity 
confinement method with a 3-order accuracy, and 
used this method for Euler and Reynolds 
Averaged Navier-Stokes equations (M Costes et 
al., 2016). In 2017, Petropoulos et al. increased 
the accuracy of this method to fifth order 
(Petropoulos et al., 2017). 

 Despite the benefits of the vorticity confinement 
method, there is a fundamental problem in the way 
of generalization of this method. In order to get a 
correct solution, the confinement parameter must 
be specified by the user. Many efforts have been 
made to eliminate or mitigate this problem. In 
2001, Lohner et al. presented an equation which 
related the value of the confinement parameter to 
the vorticity gradient (Lohner et al., 2001). In 
2003, Costes and Kowani proposed an equation 
that related the confinement parameter to local 
vorticity value (Michel Costes and Kowani, 2003). 
Robinson in 2004 correlated the value of the 
confinement parameter to helicity(Robinson, 
2004). The research by Malek Jafarian and 
Pasandideh Fard in 2007 provided three 
confinement parameters (Jafarian and Fard, 2007). 
In 2008, Butsuntorn and Jameson proposed a 
formula relating the confinement parameter to the 
cell volume and helicity value (Butsuntorn and 
Jameson, 2008). In 2009, Han and Iaccarino 
introduced an equation for the confinement 
parameter using the difference in the results of 
upwind and central difference schemes(Hahn and 
Iaccarino, 2009). In addition, Bagheri Esfeh and 
Malek Jafarian in 2011, proposed a new method 
for calculating the confinement parameter 
(Bagheri-Esfeh and Malek-Jafarian, 2011). In 
spite of introduction of these schemes, the use of 
the vorticity confinement method still requires the 

user involvement (in order to properly determine 
the confinement parameter). Another solution to 
solve the problem is to reduce the sensitivity of the 
results to the confinement parameter value. This 
issue was investigated by Pierson and Povitsky in 
2013. Using TVD scheme, they could reduce the 
sensitivity of the results to the confinement 
parameter value (Pierson and Povitsky, 2013). 

Despite the researches carried out in the field of 
vorticity confinement, a fundamental problem still 
remains. In this method, in most cases only the 
non-zero vorticity is the factor for vortex 
detection; therefore, the method is applied at each 
point of the solution domain where vorticity has a 
non-zero value. However, the vorticity value is not 
necessarily a reason for the existence of vortex. 
This causes an error in the results. In addition, it is 
worth noting that in conventional vorticity 
confinement formulation, computations are 
performed at all points of the domain, thus, part of 
the computational time and power is wasted. This 
problem can be solved somewhat by applying the 
non-zero vorticity condition; however, as noted 
above, the vorticity value cannot be used as a 
proper condition to detect the location of the 
vortices. Resolving this problem can increase the 
accuracy of the method and reduce the solution 
time. Therefore, it is necessary to investigate the 
effect of combining the vortex detection methods 
and vorticity confinement method. 

Compared to other phenomenas (shocks, etc.), the 
definition of a vortex is more difficult. The center 
of the vortex can be related to areas of low 
pressure, low density and high vorticity. 
Moreover, this phenomenon is also known for its 
internal region structure. Due to these various 
features, different solutions are also provided for 
detection of the vortex. As a result, there is no 
comprehensive and single definition for the 
vortex. For example, a vortex can be considered as 
a ring whose surface has a constant velocity, 
however, this definition is not accurate for cases 
like shear and boundary layer flows. Especially 
when the local shear rate is equal to or greater than 
the vorticity rate. Nevertheless, in computational 
fluid dynamics (CFD) researches, the vorticity 
value is commonly used to define a vortex. Despite 
the relative efficiency of this definition, this can 
cause some problems (Kamkar et al., 2009). 
Instead of using vorticity, a more comprehensive 
definition was described by Lugt in 1979, in which 
vortex is referred to as a set of material particles 
rotating around a common center (Lugt, 1979). 
The other method, known as the Q-criterion, was 
presented in 1988 by Hunt et al. In this method, 
the parameter Q represents the difference between 
the local rotation and the shear strain rate (Hunt et 
al., 1988). The method developed by Levy et al. in 
1990 used the concept of helicity to detect vortex 
centers (Levy et al., 1990). Helicity is the dot 
product of velocity and vorticity. Levy's method 
utilizes an eigenform of helicity which is non-
dimensionalized by a function of velocity and 
vorticity and has a value in the domain of -1 to 1. 
In this method, it is assumed that the convective 
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motion of the particles in the vortex is in the 
direction perpendicular to the vorticity lines, so the 
values close to -1 and 1 represent the regions 
inside the vortex. While this method is very 
suitable for straight vortices, it is difficult to deal 
with curved vortices. Others, like Chong et al. 
(1990), used the eigenvalues of velocity gradient 
matrix. As, an imaginary root pair represents a 
rotating area. This method is often known as the Δ 
method, in which positive Δ values represent 
vortex. Δ is determined by the characteristic 
equation of the velocity gradient matrix (Chong et 
al., 1990). Another approach based on the 
prediction-correction mechanism was proposed by 
Banks and Singer in 1994 to identify the vortex 
centers with more sensitivity (Banks and Singer, 
1994). Another remarkable method was 
introduced by Sujudi and Haimes in 1995. This 
method was based on the critical point theory. In 
this method, the points with zero velocity and the 
indefinite streamline slope are considered as 
critical points (Sujudi and Haimes, 1995). In 
addition, Jong and Hussein developed a method 
called λ2 in 1995. Their method is based on the 
eigenvalues of a matrix (indicator of the area with 
minimum pressure) (Jeong and Hussain, 1995). In 
1999, Strawn et al. proposed a method of detecting 
a vortex core similar to the Sujudi method. In their 
method, the vortex center was detected by the local 
maximum vorticity (Strawn et al., 1999). Horiuti 
and Takagi in 2005 created a method based on the 
detection of vortex sheets like structure rather than 
vortex tube like structure. Their method detects 
areas with large and continuous values of strain 
rate and rotation rate as vortex sheets. This method 
is known as the ܵ Ω correlation method (Horiuti 
and Takagi, 2005). In 2009, Kamkar rewrote ܳ, ߣଶ, ∆ and ܵ Ω correlation methods as non-
dimensional functions(Kamkar et al., 2009). 

So far, only the vorticity value has been used to 
determine the vortex in the vorticity confinement 
method. But this criterion dose not provides the 
correct result, in some cases, like shear layer and 
boundary layer flows. Considering the 
importance of correctly detecting vortex region, 
vortex feature detection methods have been used 
to determine these regions in this study by 
Combining the four vortex feature detection 
methods ( ܳ, ߣଶ, ∆ and ܵ─Ω correlation) with 
vorticity confinement method, four new methods 
have been proposed.  These methods and the 
conventional method are briefly referred to as ܦܨ −  respectively. These ,ܥܸܥ and ܥܸܥ
methods have been compared with ܥܸܥ method 
in terms of solving time, sensitivity of the 
numerical solution to confinement parameter 
value, and oscillations. The results indicate a 
significant effect of ܦܨ −  on the above ܥܸܥ
cases. 

2. GOVERNING EQUATIONS 

In the present study, the combination of the 
compressible vorticity confinement method with 
two-dimensional Euler equation has been 

investigated. Equation (1) shows this equation in 
the vector form. డௐሬሬሬԦడ௧ + డிԦడ௫ + డ Ԧீడ௬ = Ԧܵ                                              (1) 

In Eq. (1), ሬܹሬሬԦ represents the vector of the flow 
quantities, in addition,  ܨԦ and ܩԦ represent fluxes in 
x and y directions, respectively. These quantities 
have been shown in Eqs. (2), (3) and (4). 

ሬܹሬሬԦ =                                                              (2)݁ߩݒߩݑߩߩ

Ԧܨ = ൦ ଶݑߩݑߩ + ℎݑߩݑݒߩ ൪                                                     (3) 

Ԧܩ = ൦ ଶݒߩݑݒߩݒߩ + ℎݒߩ ൪                                                     (4) 

ℎ and  are calculated using Eqs. (5) and (6). ℎ = ݁ + ఘ                                                     (5)  = ሺߛ − 1ሻ × ߩ × ቄ݁ − ௨మା௩మଶ ቅ                       (6) 

In addition, Ԧܵ (source term) represents the 
compressible vorticity confinement (Eq. (7)). 

Ԧܵ = ێێێۏ
ۍ ߩ0 Ԧ݂. ଓ̂ߩ Ԧ݂. ଔ̂ߩ Ԧ݂. ሬܸԦۑۑۑے

ې
                                                       (7) 

One of the advantages of the vorticity confinement 
method is simplicity to adding it to the numerical 
solution, since the confinement term is added to 
the equations as a source term. This is true for 
incompressible and compressible problems. The 
confinement term acts in such a way that, 
according to Fig. 1 and Eq. (8), serves to convect ሬܹሬሬԦ back towards the vortex center as it diffuses 
away. This convection must be in the direction 
perpendicular to the constant vorticity plane (in 3-
D space) or constant vorticity lines (in 2-D space). 

 

Fig. 1. vorticity confinement method 

In the following, the terms of the source vector will 
be discussed further: Ԧ݂ = ܧ− ො݊ × ሬ߱ሬԦ                                                (8) 

Where Ԧ݂ terms are calculated as follow. The 
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vorticity value and its absolute magnitude are 
calculated in the solution domain, at first: ሬ߱ሬԦ௭ = డ௩డ௫ − డ௨డ௬                                                   (9) ߮ = −| ሬ߱ሬԦ௭| = − ඥ߱௭ଶ                                      (10) 

Then, the unit vector perpendicular to the vortex 
line is calculated using the gradient of the absolute 
vorticity. ො݊ = ∇ሬሬԦఝห∇ሬሬԦఝห = ߮௫௦ଓ̂ + ߮௬௦ଔ̂                                  (11) 

Where, the values ߮௬௦ and ߮௫௦ are calculated 
through Eqs. (12) and (13). ߮௬௦ = ିఝටఝೣమାఝమ                                           (12)  

߮௫௦ = ିఝೣටఝೣమାఝమ                                               (13) 

By substituting from Eqs. (11) to (8) source terms 
of the momentum equations (Eq. (7)) are 
calculated in x and y directions as Eqs. (14) and 
(15).  Ԧ݂௫ = ܧ− × ൫߱௭ሬሬሬሬԦ߮௬௦൯                                     (14) Ԧ݂௬ = ܧ− × ሺ߱௭ሬሬሬሬԦ߮௫௦ሻ                                     (15) 

Which, ܧ is called the confinement parameter and 
is responsible for controlling the value of the 
vorticity confinements term. On the other hand, by 
extending the Eq. (7), the vector of the source 
terms is rewritten as Eq. (16). 

Ԧܵ = ێێۏ
ۍێ ߩ0 Ԧ݂௫ߩ Ԧ݂௬ߩ൫ݑ Ԧ݂௫ + ݒ Ԧ݂௬൯ۑۑے

ېۑ
                                     (16) 

The final form of the source term appears as Eq. 
(17), by substituting the Eqs. (14) and (15) in (16). 

Ԧܵ = ێێێۏ
ۍ ܧߩ−0 ሬ߱ሬԦ௭߮௬௦ܧߩ ሬ߱ሬԦ௭߮௫௦−ܧߩ ሬ߱ሬԦ௭൫߮ݑ௬௦ − ۑۑۑے௫௦൯߮ݒ

ې
                        (17) 

Despite the advantages of the vorticity 
confinement method, two major problems still 
remain. The first problem is related to determining 
the value of the confinement parameter, which 
must be adjusted with user intervention. The low 
values of this parameter cause the loss of the 
efficiency of the vorticity confinement. In 
addition, its excessive large value leads to 
oscillation and unrealistic results. In conventional 
methods, calculation of the vorticity confinement 
is performed throughout the solution domain, and 
hence, at each point of the solution domain where 
the vorticity has a value, this term has a value as 
well, since affects the solving process. This, in 
some cases, like boundary layer and shear layer 
flows, applies vorticity confinement in points 
outside the vortex. It can lead to errors in addition 
to increasing the computational load. The vortex 

feature detection methods are based on the 
establishment of a threshold function. 
Performance of these methods are such that the 
points where the value of the threshold function is 
greater than a predetermined value is recognized 
as a vortex. Despite the difference among these 
methods, all of them somehow use a velocity 
gradient matrix (for a two-dimensional flow in 
accordance with Eq. (18)). 

ሬܸԦߘ = డ௨డ௫ డ௨డ௬డ௩డ௫ డ௩డ௬                                                (18) 

This matrix is divided into two symmetric and 
asymmetric parts S and Ω, respectively. ߘሬܸԦ = ܵ + Ω                                                     (19) 

Equations (20 and 21) are used to calculate these 
matrices. ܵ = ఇሬሬԦା൫ఇሬሬԦ൯ଶ                                                  (20) 

Ω = ఇሬሬԦି൫ఇሬሬԦ൯ଶ                                             (21) 

In Eqs. (20) and (21), ߘሬܸԦ் represents the 
transposed velocity gradient matrix. 

ߘ ሬܸԦ் = డ௨డ௫ డ௩డ௫డ௨డ௬ డ௩డ௬                                       (22) 

S and Ω are calculated, according to the Eqs. (23) 
and (24): 

[ܵ] =  డ௨డ௫ ଵଶ ቀడ௨డ௬ + డ௩డ௫ቁଵଶ ቀడ௨డ௬ + డ௩డ௫ቁ డ௩డ௬                    (23) 

[Ω] =  0 ଵଶ ቀడ௨డ௬ − డ௩డ௫ቁଵଶ ቀడ௩డ௫ − డ௨డ௬ቁ 0                   (24) 

The norm of matrix M is defined as Eq. (25). ԡܯԡ =  భమ                                  (25)[ሻ்ܯܯሺ݁ܿܽݎݐ]

Square norm of matrices S and Ω are calculated as 
Eqs. (26) and (27). ԡܵԡଶ = ቀడ௨డ௫ቁଶ + ቀడ௩డ௬ቁଶ + ଵଶ ቀడ௨డ௬ + డ௩డ௫ቁଶ

           (26) ԡΩԡଶ = ଵଶ | ሬ߱ሬԦ|ଶ                                                 (27) 

2.1 Non-Dimensional Q Method 

The Non-dimensional Q method is based on the 
vortex detection according to the norm value of 
matrices S and Ω. Hunt et al. established a 
relationship between these two matrices. They 
proposed the parameter Q in accordance with Eq. 
(28)(Hunt et al., 1988). ܳ = ଵଶ ሺԡΩԡଶ − ԡܵԡଶሻ                                      (28) 

By dividing the Eq. (28) into ԡSԡଶ, the Non-
dimensional form is obtained as Eq. (29). The 
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resulting term is known as the threshold function 
and is calculated as follows(Kamkar et al., 2009). 

௧݂௦ௗ = ଵଶ ቀԡஐԡమԡௌԡమ − 1ቁ                                (29) 

Since, according to Eq. (27), the term ԡΩԡଶ 
denotes vorticity, its zero value will indicate lack 
of vorticity. Therefore, the threshold function 
tends to -0.5, in the areas outside the vortex. 

௧݂௦ௗ → − ଵଶ                                            (30) 

On the other hand, the high values of ԡΩԡଶ 
indicates high intensity vorticity, in which the 
value of the threshold function tends to infinity. 

௧݂௦ௗ → ∞                                                  (31) 

In cases, like the boundary layer and the shear 
layer flows, again the value of the threshold 
function tends to -0.5, since the strain (ԡܵԡଶ) is 
larger than vorticity (ԡΩԡଶ). Therefore these 
regions will not be identified as a vortex.  

2.2 Non-dimensional ࣅ method 

A low pressure region can represents the center of 
a vortex. In this case, the compressive force 
generated by this region is in equilibrium with a 
centrifugal force. However, in a non-rotating 
transient flow, it is also possible to create a low-
pressure region. Therefore, it is not possible to 
determine the position of the vortex only by 
relying on the presence of a low pressure region. 
Nevertheless, Jong and Hussein used this feature 
of the vortex center as the basis to create a feature 
detection scheme. At first, they considered an 
incompressible Navier-Stokes equation(Jeong and 
Hussain, 1995). By simplifying and neglecting the 
viscosity, the transient strain, the material 
derivative of the velocity and density gradient, the 
equation turned into an eigenvector-eigenvalue 
problem as Eq. (32). [ܵଶ + Ωଶ − [ܫߣ ܺ = 0                                    (32) 

In Eq. (32), ܺ  and ߣ represent the eigenvector and 
the eigenvalue, respectively. Negative eigenvalues 
indicate the presence of a low-pressure region on 
the plane specified with the corresponding 
eigenvector. Two negative eigenvalues will 
indicate the center of the vortex. ߣଶ < 0 indicates 
the existence of a vortex, if three eigenvalues 
(three-dimensional problem) are considered as ߣଵ ≤ ଶߣ ≤  .ଷߣ

Like the threshold function defined in the non-
dimensional Q method, also in this method, for 
ease of use in various problems, λଶ was non-
dimensionalized by the second norm of matrix ܵ 
(Eq. (33)). The negative coefficient was applied in 
order to make the term positive in vortex region, 
(Kamkar et al., 2009). 

௧݂௦ௗ = − ఒమԡௌԡమ                                      (33)  

2.3 Non-dimensional modified ∆ method 

Chong et al. provided a method similar to the ߣଶ 
method, with the difference that the matrix is the 

velocity gradient matrix (Eq. (34)). ݀݁ߘൣݐ ሬܸԦ − ൧ܫߣ = 0                                           (34) 

 This method leads to a third-order equation as Eq. 
(35), In 3D case (Chong et al., 1990). ߣଷ + ଶߣܲ + ߣܳ + ܴ = 0                                  (35) 

Which, the values of P, Q and R are calculated in 
accordance with Eqs. (36) to (38). ܲ = ߘൣ݁ܿܽݎݐ− ሬܸԦ൧                                             (36) ܳ = ଵଶ ቀܲଶ − ݁ܿܽݎݐ ቂ൫ߘ ሬܸԦ൯ଶቃቁ                          (37) ܴ = ߘ]ݐ݁݀− ሬܸԦ]                                                (38) 

It is worth noting that the Eq. (37) is identical with 
the definition in the Non-dimensional Q method. 
The solution of Eq. (35) yields to three real roots 
or one real root and two imaginary roots. The 
second case occurs when the value of Δ is positive 
according to Eq. (39). ∆= 4ܴܲଷ − ܲଶܳଶ + 4ܳଷ − 18ܴܲܳ + 27ܴଶ > 0   (39) 

In this case, the roots are as  ߣ, ߣ ±  ߣ .ߣ݅
magnitude shows the rotational strength.. 
Therefore, it is used to define the threshold 
function (Eq. (40))(Kamkar et al., 2009). 

௧݂௦ௗ = ఒԡௌԡ                                        (40) 

It is worth noting that in this method, the norm of 
matrix S has been used for non-dimensionalization 
(contrary to the previous methods, which used the 
square of this parameter for non-
dimensionalization). 

܁ 2.4 − Ω  Correlation method 

Unlike the previous methods, this method was 
designed to track the vortex sheet rather than the 
vortex tube. In this method, an eigenvalue problem 
is defined like Δ and ߣଶ methods. Horiuti et al. 
proposed a eigenvalue problem as (Eq. 
(41))(Horiuti and Takagi, 2005). [ܵΩ + Ωܵ − [ܫߣ ܺ = 0                                   (41) 

According to this , the second answer (in terms of 
magnitude) is known as λ+ and the threshold 
function is defined as Eq. (42) (Kamkar et al., 
2009). 

௧݂௦ௗ = ఒశԡௌԡమ − 1                                       (42) 

3. NUMERICAL SOLUTION METHOD 

 Equation (1) is integrated around each cell in the 
domain using the finite volume method and the central 
difference scheme. This leads to Eq. (43), which ܴ  ܵܪ
is calculated in accordance with Eq. (44). ሬܹሬሬԦାଵ = ሬܹሬሬԦ + ܵܪܴ (43)                                       ܵܪܴ = ∆௧∆௫×∆௬ ൬ܨԦାభమ − Ԧିభమܨ + Ԧାభమܩ − Ԧିభమܩ −   ൰      (44)ܦܣ
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Equation (43) is solved by the fourth order explicit 
Runge-Kutta method as Eqs. (45-48)(Jameson et 
al., 1981).  WሬሬሬԦ = WሬሬሬԦ୬ − ଵRHS൫ߙ ሬܹሬሬԦ൯                               (45) WሬሬሬԦଵ = WሬሬሬԦ୬ − ൫WሬሬሬԦ൯                               (46) WሬሬሬԦଶܵܪଶܴߙ = WሬሬሬԦ୬ − ൫WሬሬሬԦଵ൯                               (47) WሬሬሬԦ୬ାଵܵܪଷܴߙ = WሬሬሬԦ୬ −  ൫WሬሬሬԦଶ൯                           (48)ܵܪସܴߙ
The term AD (Eq. (44)) denotes the artificial viscosity 
fluxes added to the solution to eliminate oscillations 
and increase the stability. These fluxes are 
combinations of the second order terms to avoid 
oscillations, as well as the fourth order terms in order 
to increase stability. The time steps used in the 
solution are calculated locally at first, and then the 
smallest one is chosen as the time step in the entire 
domain of solution. The terms WሬሬሬԦ, WሬሬሬԦଵ, and WሬሬሬԦଶ 
represent the values of WሬሬሬԦ in the middle steps of the 
solution. Moreover, the Rung-Kutta coefficients are ߙଵ = ଵସ, ߙଶ = ଵଷ, ߙଷ = ଵଶ, and ߙସ = 1. 

4. PROBLEM DEFINITION 

a single fixed vortex has been used as the case study 
in the present work.  The domain is a square with 
dimensions of 1 × 1 ݉ଶ. The initial conditions, was 
used in accordance with Povitsky and Ofengeim Eqs. 
(49) and (50) (Povftsky and Ofengeim, 1999). ܷఏ = ோோ                        ܴ < ܴ                           (49) ܷఏ = ଵோ ቀ ோమோோమିோమቁ − ܴ ቀ ோோమିோమቁ ܴ < ܴ < ܴ    (50) 

Using the above equations, a single vortex, a 
combination of free vortex and forced vortex, was 
obtained according to Fig. 2 (ܴ and  ܴ were 
considered as 0.05 and 10 × ܴ, respectively). 

 

Fig. 2. Schematic of a single vortex 

4.1  Solution Grid 

The grid used in this study is a simple orthogonal 
grid of 100 × 100. 

5. RESULTS 

5.1 Vorticity Confinement Method 

In the following, the combinations of the 
methods of ܳ, ߣଶ, ∆ and ܵ − Ω with the ܥܸܥ 
method, are shown briefly with ܳܦܨ −  ,ܥܸܥ

2ܮܦܨ − ܦܦܨ ,ܥܸܥ − ܱܵܦܨ and ,ܥܸܥ −  ,ܥܸܥ
respectively. In the first step, the single vortex 
problem was investigated without applying the 
vorticity confinement method (briefly shown 
with W/CVC) to study the performance of the 
numerical solution code and the artificial 
viscosity. To compare, the velocity profiles 
were investigated on the vortex diameter for 
simplicity (Fig. 3). 

 

Fig. 3. Comparison of the initial velocity 
profile with the velocity profiles after 100, 500 

and 1000 time steps (without vorticity 
confinement) 

Since the problem under study is an inviscid flow, 
there must be no decrease in the velocity profile. 
However, according to Fig. 3, the velocity reduction 
is evident in the numerical solution. This is because 
of numerical discretization error. In the next step, the 
numerical solution of the vortex was performed using 
the confinement parameter of 0.001 (Fig. 4). It is 
observed that the application of the vorticity 
confinement method has improved the results. This 
improvement is not significant due to the very small 
amount of the confinement parameter (ܧ = 0.001), 
however, the increase in the confinement parameter 
increases the effect of this method; this increase can 
leads to some problems. Figure 5 demonstrates the 
effects of using the excessive confinement parameter 
ܧ) = 0.1). However, in addition to some 
oscillations, the maximum value of velocity is 
exceeds its initial value. These issues make the 
determination of the confinement parameter difficult. 
The vortex feature detection method can be used to 
solve these difficulties. 

 

Fig. 4. Comparison of the initial velocity 
profile with the velocity profiles after 1000 
time steps (with and without the vorticity 

confinement method) 
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5.2 Vortex Feature Detection Methods 

In the present study, four feature detection 
methods, described in 2, have been used. The 
results are as follow (Fig. 6). It can be seen that 
despite the precision used in the feature detection 

 

Fig. 5. Comparison of the initial velocity 
profile with the velocity profile after 1000 time 

steps (using the confinement parameter 0.1) 

methods, still, points outside the vortex region are 
also marked as vortices. To remove these points, 
the filtering operation had to be performed. In the 
non-dimensional Q method, this process was 
performed as follows. In the first step, a criterion 
was defined for maximum error as Eq. (51). Sത୬୭୧ୱୣ = ୩ଵ Q୫ୟ୶                                            (51) 

Where, the value of ݇ was 0.01. Finally, any point 
where the value of the parameter Q is less than Sത୬୭୧ୱୣ, was considered to be outside the vortex. 
The results can be seen in Fig. 7. The question is, 
whether the size of the mesh can affect the results 
or not. Figure 8 shows the results of the non-
dimensional Q method with different numerical 
solution grids (after filtering). 

 

Fig. 6. Locus of the vortex obtained from the a) 
non-dimensional ۿ, b) ૃ, c) ∆, d) ܁ − Ω 

methods 
(Before filtering) 

The surfaces detected as a vortex, decreases as 
the number of grids are increased. However, the 
rate of this decrease is reduced by decreasing 
the mesh size so that the difference between the 
results of the 100 * 100 and 150 * 150 grids is 
much less than the difference between those of 

the 30 * 30 and 50 * 50. As in any case, at least 
70% of the vortex surface was covered. 
Therefore, the size of the solution grid can be 
ignored. As noted above, the vorticity 
confinement method is ineffective in lower 
values of the confinement parameter In 
addition, oscillations occur that produce non-
physical flows at higher values of parameter. In 
addition to generating errors, applying this 
method to locations outside the vortex leads to 
waste of time. Vortex feature detection methods 
can overcome these difficulties, partially. This 
will discuss in the next section. 

 

Fig. 7. Locus of the vortex obtained from the 
a) non-dimensional ࡽ, b) ࣅ, c) ∆, d) ࡿ − Ω 

methods 
(After filtering) 

 

Fig. 8. Locus of the vortex obtained from the 
non-dimensional Q method in a solution grid 

of a) 30 * 30 b) 50 * 50, c) 100 * 100,  
d) 150 * 150 

5.3 Investigation of the Effect of 
Combination of Vorticity 
Confinement Method with Vortex 
Feature Detection Methods 

In order to investigate the effect of combination 
of vortex feature detection and vorticity 
confinement methods, the results were 
compared with conventional method. This 
comparison was performed for three values of 
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the confinement parameter (0.001, 0.01, and 
0.1) (Figs. 9 to 11). Using the lowest value of 
parameter (0.001), in general, the results are 
close to each other in all five cases (Fig. 9). But 
when the value increases to 0.01, the difference 
between the results of the ܥܸܥ method and the ܦܨ −  ,methods is significant. Nevertheless ܥܸܥ
the ܦܨ −  methods still offer an acceptable ܥܸܥ
value (Fig. 10). The over-confinement is 
evident in the results of the ܥܸܥ and 2ܮܦܨ  methods, with further increase in the ܥܸܥ−
confinement parameter (ܧ = 0.1), (Fig. 11). 
Both methods give similar results in terms of 
maximum velocity, however, oscillations are 
observed outside of the vortex core when using 
the ܥܸܥ method. But all ܦܨ −  methods are ܥܸܥ
oscillation free. In addition, except for the 2ܮܦܨ −  method, other methods still ܥܸܥ
present acceptable results. It can be said that 
these methods have somehow resisted the over-
confinement and oscillation errors (Fig. 11). To 
better understand the effect of the suggested ܦܨ −  methods in the present work, their ܥܸܥ
results were compared with the results of the ܥܸܥ method (Figs. 12 to 16). Figures 12 to 16 
represents the velocity profile of single vortex, 
derived from CVC and FD-CVC methods using 
confinement parameters of 0.001, 0.01 and 0.1. 
It can be seen that increasing the confinement 
parameter (using CVC method), the maximum 
velocity increases and it exceeds the initial 
maximum one at the value of 0.1 (Fig. 12 ). Also 
some oscillations occur at this value. In 
contrast, increasing the confinement parameters 
in FD-CVC methods do not lead to oscillation 
(Figs. 13 to 16). In addition, maximum velocity 
does not exceed its initial value using FD-CVC 
methods, except FDL2-CVC method (Fig. 14) . 
Another interesting point is that the results of 
FDQ-CVC and FDD-CVC methods (Figs. 13 
and 15) show the rate of increase in maximum 

velocity is reduced by increasing the 
confinement parameter value. Therefore, it can 
be concluded that, generally FD-CVC methods 
are less dependent on the value of confinement 
parameter than the original method and they 
have reduced the negative effects of high values 
on the results . 

 

Fig. 9. Comparison of the initial velocity profile 
with the velocity profiles derived from CVC 
method and the FD-CVC  methods using the 

confinement parameter of 0.001 after 1000 time 
steps 

 

figure 17 shows the changes in the maximum 
velocity magnitude during 10000-time steps, 
using FDQ-CVC, CVC and without CVC. Small 
values of Ec (0.001) leads to decrease of 
velocity magnitude over time. CVC method 
results in over confinement but FDQ-CVC  
leads to a steady-state solution, Using  Ec=0.01. 
Using large value of confinement parameter 
(Ec=0.1), CVC method suffers from severe 
oscillations. On the other hand, maximum mean 
velocity Converges over time to steady-state 
solution using FDQ-CVC method. 

 

 

Fig. 10. Comparison of the initial velocity 
profile with the velocity profiles derived from ࢂ method and the ࡰࡲ −  methods using ࢂ
the confinement parameter of 0.01 after 1000 

time steps  

 

Fig. 11. Comparison of the initial velocity profile 
with the velocity profiles derived from ࢂ 

method and ࡰࡲ −  methods using ࢂ
 the confinement parameter of 0.1 after 1000 time 

steps  
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Fig. 12. Comparison of the initial velocity profile 
with the velocity profiles derived from ࢂ 

method using the confinement parameters 0.001, 
0.01 and 0.1 after 1000 time steps 

 

Fig. 13. Comparison of the initial velocity profile 
with the velocity profiles derived from ࡽࡰࡲ  method using the confinement parameters ࢂ−

0.001, 0.01 and 0.1 after 1000 time steps  

 

Fig. 14. Comparison of the initial velocity profile 
with the velocity profiles derived from ࡸࡰࡲ  method using the confinement parameters ࢂ−

0.001, 0.01 and 0.1 after 1000 time steps  

 

Fig. 15. Comparison of the initial velocity profile 
with the velocity profiles derived from ࡰࡰࡲ  method using the confinement parameters ࢂ−

0.001, 0.01 and 0.1 after 1000 time steps  

 

Fig. 16. Comparison of the initial velocity profile 
with the velocity profiles derived from ࡻࡿࡰࡲ  method using the confinement parameters ࢂ−

0.001, 0.01 and 0.1 after 1000 time steps  

 

Fig. 17. Variation of maximum velocity vs. 
time steps for CVC and FDQ-CVC methods 

with different confinement parameters 

 

5.4 Comparison of the Classical Method 
and the Combined Method in 
Separate Meshes 

Less sensitivity and lack of oscillation errors in 
the ܦܨ −  methods can provide another ܥܸܥ
opportunity to save time. Similar result or better 
one, on a fine grid, can be obtained than the one 
using coarse grid with large confinement 
parameter. In Fig. 18, the comparison of the 
velocity profile derived from the ܥܸܥ method on 
a 100 × 100 grid with the result of the FDL2 ܧ) method on a 60 × 60 grid ܥܸܥ− = 0.08) is 
shown that the results are similar. It`s worth 
noting that, this trick is not possible for ܥܸܥ   
method due to oscillations (Fig. 18).  

5.5 ANALYSIS OF THE ERROR 
DIFFUSION PROCESS IN THE 
VORTICITY CONFINEMENT 
METHOD 

One of the advantages of the FD-CVC methods 
is the lack of oscillation in velocity profiles at 
high values of the confinement parameter. To 
analysis this, the vorticity contours obtained by 
the FDQ-CVC method was compared with 
similar results of CVC method (Figs. 21 and 22). 
When using FDQ-CVC method, the vorticity 
contours are not observed outside the vortex core, 
and the vortex retains its circular shape (Fig. 19). 
But, the entire domain filled with several vortices 
and the vortex has lost its natural shape, using 
CVC (Fig. 20). To understand why this happens,  
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Fig. 18. Comparison of the initial velocity profile 
with the velocity profile obtained by the ࢂ 

method using the confinement parameter 0.01 on 
a 100 × 100 solution grid, the CVC method using 

the confinement parameter 0.08 on a 60 × 60 
solution grid, and the ࡸࡰࡲ −  method ࢂ

using the confinement parameter 0.08 on a 60 × 
60 solution grid, after 1000 time steps  

the vorticity contours were plotted in time steps of 
100, 200, 300, and 400 using the CVC method 
(Fig. 21). According to Fig. 3, the vortex in this 
problem consists of two sections, free and forced, 
the vorticity value is zero in the free section 
(R>R_C). But it was observed that at the 
beginning due to a numerical error, vorticity has a 
value in the free vortex section, and these regions 
grow with time (Fig. 23). The reason for this 
phenomenon can be explained as the vorticity 
confinement method has been created as a way to 
compensate for the errors caused by numerical 
solutions. However, this method can never 
completely prevent numerical errors. Therefore, this 
method has the potential to add an error to numerical 

solution. In such a way that, at each time step, small 
errors are created as unrealistic values of vorticity. In 
the next step, since the only factor of application of 
confinement term is the vorticity value, hence, 
artificial vortices are also mistakenly influenced by 
the vorticity confinement method. Therefore, the 
small errors normally disappeared due to the 
diffusion process, are maintained and amplified by 
vorticity confinement. This will be repeated in the 
next time steps. As a result, the errors increase. This 
is more evident especially at high confinement 
parameter values (here 0.1) or large solution times. 
the ܦܨ −  .method can be effective In this case ܥܸܥ
If the numerical errors bring unrealistic values of 
vorticity in the solution domain; since the feature 
detection method does not allow applying vorticity 
confinement at these points, the error is not amplified 
and the artificial vortices will be eliminated. 
Therefore, the numerical solution will be largely free 
of the oscillation in the ܦܨ −  .methods ܥܸܥ

5.6 Investigation of the Effect of ۴۲ −  Methods on the Solution ۱܄۱
Time 

As stated previously, vorticity confinement uses 
vorticity for recognition of vortex region. The 
presence of vorticity alone is not a reason for the 
existence of a vortex. This can lead to errors in the 
numerical solution. Furthermore, the calculations 
of vorticity confinement outside the vortex regions 
increase calculation time. Therefore, a method is 
required which detects the vortex regions from 
non-vortex ones and apply the vorticity 
confinement method at right  

Fig. 19. Vorticity contours obtained by the ࡽࡰࡲ −  method using the confinement ࢂ
parameter of 0.1 after 1000 time steps  

Fig. 20. Vorticity contours obtained by the ࢂ method using the confinement parameter 
of 0.1 after 1000 time steps  

places (FD-CVC), which is the subject of the 
present study. In addition to preventing errors, this 
method can increase the speed of numerical 
solution. The effectiveness of the FD-CVC 
methods can greatly depend on part of the solution 
domain occupied by the vortex. So this issue has 
been considered in the investigations. To evaluate 
this effect, the problem of a single vortex has been 
considered. The first step of calculating the 
solution time is, preforming vorticity confinement 

all over the domain and recording time for these 
calculations (CVC method). Then, the vortex area 
is specified each time by a vortex feature detection 
method and vorticity confinement is performed in 
that area (FD-CVC methods). This process is 
repeated 10,000 times in the present study. Finally, 
average amount of time spent for a time step is 
compared among five methods. To study the effect 
of vortex center dimension (Rc) to the solution 
domain (L) ratio, these calculations have been 
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performed for four values of (Rc/L). The results 
(Fig. 22) indicate the fact that in most of Rc/L 
values, the proposed combined methods 
performed the vorticity confinement in less time. 
Only in high values of this parameter, the use of 
these methods is not associated with time saving 
(which is rare in practical applications). It was also 

observed that FDQ-CVC has the fastest solution, 
followed by FDL2-CVC in the second place, and 
finally the FDSO-CVC and FDD-CVC. It is worth 
noting that the reported values correspond to a 100 
× 100 grid, which is only for a single time step, and 
the difference is more evident with the smaller 
grids.

Fig. 21. Vorticity contours obtained by the ࢂ method using the confinement parameter of 0.1 after a) 
100, b) 200, c) 300, and d) 400 time steps

Fig. 22. Comparison of solution time on 
100 × 100 grid for different methods  

6. CONCLUSION

In the present study, the combination of 
compressible vorticity confinement method with the 
vortex feature detection methods was proposed to 
limit the effect of vorticity confinement on vortex 
regions. The following results were obtained for the 
non-viscous compressible flow of a single vortex 
with a Mach number of 0.5: 

 All ܦܨ − methods have higher solution ܥܸܥ
speed than the ܥܸܥ in real conditions.

 The sensitivity of the results to the
confinement parameter value is reduced using
three ܳܦܨ − ܦܦܨ ,ܥܸܥ − ܱܵܦܨ and ,ܥܸܥ .methods ܥܸܥ−

 All ܦܨ − methods show higher ܥܸܥ
resistance to oscillation compared to ܥܸܥ.
This property allows achieving results similar
to those of a finer grid, using high values of
confinement parameter on coarse ones. This
capability is limited in ܥܸܥ method due to the
occurrence of oscillations at high values of
confinement parameter.
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