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ABSTRACT 

Hydrodynamic stability of Dean flow is studied using two semi-analytical methods of differential transform 
method (DTM) and Homotopy perturbation method (HPM). These two methods are evaluated to examine the 
effectiveness and accuracy of the solution of considered eigenvalue problem. Very good accordance is 
achieved between our semi-analytical results compared to existing numerical data. Based on our analysis, in 
the similar number of truncated terms, HPM is more accurate in comparison with DTM. We also concluded 
that for the higher wave numbers, HPM provide more accurate results with less truncated terms compared to 
the DTM. Finally, we found the critical Dean number 35.927 corresponding to wave number of 3.952 for 
onset of instability of Dean flow. 

Keywords: Hydrodynamic stability; Dean flow; Differential transform method; Homotopy perturbation 
method. 

1. INTRODUCTION

Dean flow is a common phenomenon in nature and 
different macro-scale industries (Bottaro 1993; 
Norouzi et al.  2014) including internal cooling in 
turbines blades, fluid machineries (Kumar and 
Nigam 2005), turbo-compressor devices, heat 
exchangers (Aider et al.  2005) and etc. Moreover, 
study on hydrodynamic stability of Dean flow has a 
chnology, T value to improve of the micro/nano 
electromechanical systems (MEMS/NEMS) 
(Fischer et al. 2015; Norouzi and Biglari 2013) such 
as lab-on-a chip devices (Kemna et al. 2012; Yang 
et al. 2011). In Dean flow, secondary flow as a 
motion of counter-rotating vortex superimposed on 
the stream-wise flow is produce by centrifugal 
forces (Drazin 2004). Imbalance between gradient 
of pressure and the centrifugal forces in radial 
direction cause to hydrodynamic instability of Dean 
flow under specific critical flow condition. By this 
instability, an extra pair of counter-rotating vortices 
will be observed.  

In literature, an additional vortex is identified as 
Dean Vortices (Dean 1928). Hydrodynamic stability 
of Dean flow is comprehensively investigated by 
various researchers experimentally, numerically and 
mathematically (Joseph et al. 1975; Cheng et al.  
1976; Ghia and Sokhey 1977; Crane and Burley 
1976; Dennis 1982; Hille et al. 1985; Cookson et al. 

2010; Li et al. 2016). Calculation of spatially 
evolving modes, where these modes are function of 
wave number (i.e. eigenvalue parameter) is the 
major approach to evaluate of eigenvalue problem 
corresponding to linear hydrodynamic stability 
(Drazin 2004). 

A conventional discretization method such as finite 
difference method (FDM) is nedded to solve 
characteristics value problems via matrix methods, 
numerically. For example, hybrid theoretical–
analytical approach is used to investigate of Dean 
flow by Zhiming and Yulu (1997). They linearized
the Navier-Stokes equations via perturbation 
method. Then linearized equations are solved by 
FDM and Galerkin method. Stability of Dean flow 
using Galerkin method with a simple set of 
polynomial expansion functions is investigated by 
Walowit et al. (1964). Deka and Takhar (2004) 
evaluated the stability of Dean flow with Runge–
Kutta approach incorporated with shooting method. 
Accuracy and efficiency of Chebyshev spectral 
methods to solve linear eigenvalue problems was 
investigated by Orszagl (1971). Moreover, the 
capability of Chebyshev spectral methods in study 
of Dean flow is studied by some scholars 
(Yamamoto et al. 1998; Mondal et al. 2015; Helal 
et al. 2016). For example, Yanase et al. (2002) 
conducted a study on the laminar Dean flow 
stability using of spectral method. Under the 
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symmetry condition, they found the steady solutions 
using method of Newton-Raphson. Several 
numerical methods to solve eigenvalue problem are 
presented by Canuto et al. (1988). They found that 
difficulties due to applying the boundary conditions 
in Chebyshev collocation matrix method, 
Chebyshev-tau method is more suitable. Deka and 
Paul (2013) studied the Dean flow via DTM, semi-
analytically. As regards, they didn’t evaluate the 
effectiveness and accuracy of their semi-analytical 
solution under different truncated terms of the 
solution. 

Based on cited works and to our best of knowledge, 
the prior researchers did not examine the 
effectiveness and accuracy of different semi-
analytical approaches for solving the eigenvalue 
problem corresponding to linear hydrodynamic 
stability of Dean Flow. Therefore, main objective of 
the current study is to evaluate of two different 
semi-analytical methods to investigate of Dean flow 
stability. To this accomplishment, the differential 
transformation method (DTM) by Zhou (1986) and 
the Homotopy perturbation method (HPM) by He 
(2005) as efficient methods for solving eigenvalue 
problems are considered. We found that the HPM 
solves the eigenvalue problem corresponding to 
linear hydrodynamic stability of Dean flow with 
less computational cost (i.e. lower truncated terms 
required to approach to the archival data) compared 
to DTM. As regards, higher accuracy (i.e. high 
order) of the HPM compared to the DTM is the 
main advantage of the HPM. 

2. PHYSICAL MODEL OF THE PROBLEM

As illustrated in Fig. 1, we consider the steady, 
incompressible and viscous flow through the curved 

path, where  0.5 2 1d R R  . In Fig. 1, r  ,  and

Z  are usual cylindrical coordinates, where 
the Z axis coincides by the axis of the cylinder. 
Inner and outer radiuses are identified by ,1 2R R ,

respectively. 

Fig. 1. Schematic of the problem. 

We have steady form of Navier-Stokes equation in 

case of velocity vector of   , ,U u u uzr   and 

fluid pressure p  and under the condition of uni-

directional fluid flow, as follows 
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 are density, kinematic 

viscosity an constant azimuthal gradient of pressure, 
respectively. Based on Eq. (1), velocity distribution 
of the basic flow is in form of parabolic plane 
Poiseuille flow as follows 
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If we consider a spatially periodic small 
perturbation ( v ) mounted on the motion (i.e. under 
steady condition) of Eq. (2), we have 

( , , ) ( )cos .tu r z t V v V e v r z     
 

(5)

According to Eq. (5), the stability of fluid flow 
motion is significantly dependent on the 
exponential temporal factor   (Walowit et al. 
1964). In the current study, instability of Dean flow 
is evaluated via marginal spatially state 0  . 
Linearized disturbance equations for Dean flow 
stability can be obtained by substitution of Eqs. (4) 
and (5) into Eq. (1) and some manipulations as 
follows (Drazin 2004; Deka and Paul 2013): 
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where the boundary conditions are  

0 @ 0,1u Du v x    (7) 

here, ( )u x
 

and ( )v x  are velocity functions, 

/D d dx  is an operator, d   is real constant

wave number, ( ) (1 )g x x x  and 272Dn
where Dn  is the well-known Dean number (Drazin 
2004; Mahapatra et al. 2009). Dean number defined 
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by 1Re /Dn d R  where, d  is the gap between 

the parallel curved walls, 1R is the inner radius of the 

curved walls and Re is the azimuthal  Reynolds 
number that is Re /mV d  . Linear hydrodynamic 

stability of Dean flow Eq. (6) may be redefine by the 
sixth order equation as follows 

 3 22 2 ( (1 )(1 2 ))D v x x x v      (8) 

with the boundary conditions  

2 2 2 2( ) ( ) 0 @ 0,1v D v D D v x        

Continued, we evaluated two semi-analytical 
methods of DTM and HPM for finding the critical 
Dean number ( cDn ) at a specified value of   via 

solving the Eqs. (8) and (9). It should be noted that 

the critical Dean number (
0.5

72
c

cDn  
 
 
 ) is 

corresponding to the minimum of eigenvalue 
parameter c  (Mahapatra et al. 2009). 

For the convenience of the readers, basic concepts 
of the DTM and the HPM are presented in 
Appendixes A and B. For more detail about our 
considered method, readers can refer to original 
paper of Zhou (1986) for the DTM and pioneering 
paper of He (2005) for the HPM. 

3. SOLUTION OF THE PROBLEM
BY DTM AND HPM

In the present section, the DTM and the HPM are 
used to solve Eq. (8) corresponding to the boundary 
conditions Eq. (9). 

3.1 Solution by DTM 

If we change the variables v f  and x  , 

Eqs. (8) and (9) may be redefine as  
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And the considered boundary conditions are 
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By implementation of differential transform into 
Eq. (10) according to the fundamental mathematical 
operations of DTM (see Table A1 in Appendix A), 
recurrence relation is obtained as follows 
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According to DTM (Hassan 2002; Chen and Ho 
1996), the boundary conditions of Eq. (11) are as 
follows 
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3(5)f c  and according to Eq. (13), we obtain that 
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By calculating up to the Nth term of  f N  and 

substituting them into the upper limit of Eq. (13), 
the system of homogenous equations are arranged 
as follows 
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Now, we may make the system of equations 
according to Eq. (15) in form of matrix equation  as 
follows 
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The condition where the determinant of B in Eq. 
(16) must disappear will provide an equation to

specify 272Dn   under given value of  .

3.2 Solution by HPM 

According to HPM (He 2005), we make the 
Homotopy of Eq. (10) as  
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 Now, the general solution in form of power series 
has following form 
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By substituting f from Eq. (18) into Eq. (17) with 
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We obtained the general solution of Eq. (18) by 
solving the set of differential Eq. (20). Afterward, the 
general solution corresponding to the boundary 
conditions (i.e. Eq. (11)) resulted to an equation to 

determine the solution for 
272Dn   under the

given value of  . Continued, semi-analytical results 
of DTM and HPM are presented and discussed. 

4. RESULTS AND DISCUSSION

In the current section, we obtained the critical 
values of Dean number ( Dnc ) by solving the

eigenvalue problem governed on Dean flow 
stability using the DTM and the HPM. Our semi-
analytical results are also compared with numerical 
solution. To achieve the numerical solution, Eq. 
(10) in association with Eq. (11) is solved using the
spectral method, numerically. To this
accomplishment, we expanded all variables with
Chebyshev polynomials (Boyd 2002; Orszag 1971).
In the current study, to assure the accuracy of our
numerical results, we applied 120 truncation terms
(Yanase et al. 2002; Yamamoto et al. 1994).
Critical Dean Numbers calculated by the HPM and

DTM at several real constant wave numbers   
under different number of truncated terms (i.e. N) 
are shown in Figs. 2 and 3, respectively. Figures 2 
and 3 show our semi-analytical results are in very 
good accordance with our numerical solution, under 
all intended  . It is evident that the effectiveness 
of both semi-analytical methods is dependent on the 
value of  . Indeed, the number of truncated terms 
(N) needed to approach into our numerical data is
increased by enhancement of the wave number
( ). Figures 2 and 3 also show that at higher  ,
the HPM is more effective than the DTM. Indeed, 
HPM handles our intended eigenvalue problem with
less computational cost. 

For assessment of the accuracy of our solutions, 
semi-analytical results are compared with numerical 
solution by spectral method and we obtain the 
relative errors in tables 1 and 2 in respective for 
DTM and HPM. Table 1 and 2 show that both two 
semi-analytical methods of DTM and HPM are 
applicable for solving the eigenvalue problem 
occurring in linear hydrodynamics stability of Dean 
flow, whereas, the HPM has higher accuracy and 
effectiveness compared to DTM. Therefore, 
continued, the HPM is used to study the onset of 
Dean flow instability. 

This fact may be related to more precise initial 
guess for the HPM compared to the DTM that 
resulted to faster and more accurate approximation 
for HPM. Moreover, due to implementation of 
Homotopy (i.e. small embedding parameter) in the 
HPM, it seems that the HPM compared to the DTM 
has a greater compatibility and consistency with 
linear hydrodynamic stability analysis which 
includes small disturbances. 

Critical Dean numbers at different wave number   
is presented in Fig. 4. As stated in pioneering works 
related to hydrodynamic stability analysis (Dean 
1928; Walowit et al. 1964; Deka and Takhar 2004; 
Deka and Paul 2013; Ali et al. 1977), the minimum 
of critical Dean numbers ( ,mincDn ) and its 

corresponding   are the criteria for onset of 
instability. The results of Fig. 4 is achieved with 
HPM (N=17) where N is high enough to provides 

        1 61 . 10c c ce Dn N Dn N Dn N
     (here, 

 cDn N
 
is the critical Dean number calculated by

the HPM under N number of truncated terms). 
Table 3 is also shows the ,mincDn obtained from 

Fig. 4 compared with archival data presented in Ref. 
(Dean 1928; Walowit et al. 1964; Deka and Takhar 
2004; Deka and Paul 2013; Ali et al. 1977). 
According to Table 3, we obtained the 

35.927cDn   corresponding to 3.952   for the 

onset of Dean flow instability by using the HPM 
(N=17), which have acceptable accordance with 
archival data. 

It’s notable that, linear hydrodynamic stability 
analysis is founded on the linearized equation of 
perturbation and nonlinear terms are ignored in 
this analysis. However, due to accordance between 
the theory of linear hydrodynamic stability and the 

(20)
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experimental tests for Dean flow (Drazin and Reid 
2004; Brewster et al. 1959), the nonlinearities are 

safe to be neglected for stability analysis of Dean 
flow.  

Fig. 2. Eigenvalue parameter,
 
Dnc  , obtained by DTM at several   under different truncated terms.

Fig. 3. Eigenvalue parameter,
 
Dnc  , obtained by HPM at several   under different truncated terms.
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Table 1 Eigenvalue parameter,
 
Dnc  , achieved by DTM at several   under different number of

truncated terms compared to our numerical solution. 

α 
DTM at several N Numerical 

solution 
Error (%) 

N=10 
Error (%) 

N=35 N=10 N=20 N=25 N=35

1 84.33984575 84.26576920 84.26577080 84.26577318 84.26577614 0.088 3.51E-06 

2.5 37.35080205 41.23199468 41.23240397 41.23242243 41.232429078 9.414 1.61E-05 

7 25.19785888 35.33724587 38.24497484 38.39982479 38.399848201 34.380 6.09E-05 

10 23.61180957 38.96940595 47.20980919 46.03309240 46.03320058 48.707 2.35E-04 

Table 2 Eigenvalue parameter, Dnc  , achieved by HPM at several   under different number of

truncated terms compared to our numerical solution. 

α 
HPM at several N Numerical 

solution 
Error (%) 

N=3 
Error (%) 

N=15 N=3 N=7 N=10 N=15 

1 83.90006267 84.26508431 84.26569937 84.26577560 84.26577614 0.434 6.36E-07 

2.5 41.54188851 41.23604743 41.23260276 41.23243031 41.232429078 0.75 2.98E-06 

7 38.90006713 38.38549856 38.39854903 38.39984629 38.399848201 1.302 4.97E-06 

10 43.57502767 46.08751976 46.02972968 46.03319608 46.03320058 5.34 9.77E-06 

Fig. 4. Eigenvalue parameter of critical Dean number (Dnc) at different wave number  . 

Table 3 ,mincDn  and corresponding   from HPM (N=17) compared to archival data. 

Method of solution   2
,min ,min72c cDn  ,mincDn

Present study HPM (N=17) 3.952 92939.125 35.927 

A
rc

hi
va

l d
at

a.
 Dean 1928 Fourier expansion 3.954 93053 35.95

Walowit et al. 1964 Galerkin method 3.96 92794.32 35.90

Deka and Takhar 2004 
Runge–Kutta Fehlberg 

method 
3.96 92912 35.922

Deka and Paul 2013 
Differential transform 

method 
3.950 92911.753 35.922 

Ali et al. 1977 Finite difference method 3.950 92782 35.897 

5. CONCLUSION

We applied two semi-analytical methods of DTM 
and HPM to solve the eigenvalue problem 
governing on linear hydrodynamics stability of 
Dean Flow. Among the most important extracted 
findings in this study are the followings: 

(1) At the similar number of truncated terms, the
HPM gives more accurate solution compared

to the DTM.  
(2) We obtained that as the wave number

increases, the number of truncated terms
needed to approach into the numerical data
are less for HPM compared to the DTM.

(3) We find the 35.927cDn   corresponding to
3.952   for the onset of Dean flow
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instability which have acceptable accordance 
with archival data. 

We deduced that HPM is an efficient semi-

analytical approach in comparison with DTM to 
solve the eigenvalue problems governing on 
engineering sciences such as linear hydrodynamic 
stability of Dean flow. 
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APPENDICES 

APPENDIX A: BASIC CONCEPT OF DTM

Consider ( )v x  as a semi-analytical function in a 

domain B , where x xi
 
indicate each point in

B . In this case, the Taylor series expansion of 
( )v x  has following form: 

0

( )

!

( )
( )

i

k k
i

k
k x x

x x d
x B

k dy

v x
v x



 

 
  

  
      

Where
 

0xi  , Maclaurin series of ( )v x is

0 0
!

( )
( )

k k

k
k x

x d
x B

k dx

v x
v x



 

 
  

  
               (A2)  

here, differential transformation for the function 
( )v x  has following form 

0 0
!

( )
( )

k k

k
k x

H d

k dx

v x
V k



 

 
 
  

  (A3)  (12) 

where, H is a constant, and the differential 
spectrum of ( )V k  is located in distance of 

0,x H   . Now, we have the inverse differential 

transform of ( )V k  as follows, 

0

( ),( )
k

k

x
V k

H
v x





 
 
 

  (A4) 

If we consider ( )v x  as a finite series, Eq. (A4) 

may be redefined as follows: 

0

( ).( )
kn

k

x
V k

H
v x



 
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 

  (A5) 

Table A1 shows the basic mathematical operations 
performed by DTM. 

APPENDIX B: BASIC CONCEPT OF HPM

Consider a nonlinear differential equation with its 
boundary conditions as 

( ) ( ) ( ) 0L v N v g r r    (B1) 

: ( , / ) 0BC B v v n r    (B2) 

where, ( )g r  is an analytical function, L and 

N are linear differential operator and non-linear 
differential operator, respectively. Moreover, 
boundary operator is B ,  is a boundary domain 

  and v
n


  

is a differentiation along the

normal drawn outwards from  . By applying 
the Homotopy into Eq. (B1) , we have: 

0

0

( , ) ( ) ( )

( ) ( ( ) ( )) 0

H u p L u L v

pL v p N u g r

 
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(B3) 

(A1)
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where 

( , ) : 0,1 ,u r p R    (B4)   

In Eq. (B3), initial approximation is introduced via 

0v  that is in accordance with boundary condition.  

In addition, embedding parameter is shown 
by 0,1p    . By redefinition of the solution of Eq.

(B3) in form of power series (i.e. p ), we have ,  

2
0 1 2u u pu p u    (B5) 

Now, approximated solution has following from 

0 1 2
1

lim
m

v u u u u


         (B6) 

Table A1 Fundamental mathematical operations in DTM 

Original Function Transformed Function 

( ) ( ) ( )v x f x g x    ( ) ( ) ( )V k F x G x    

( ) ( ) ( )v x f x g x
1

1 1( ) ( ) ( )
k
k
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