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ABSTRACT 

Natural or industrial flows of a fluid often involve droplets or bubbles of another fluid, pinned by physical or 
chemical impurities or by the roughness of the bounding walls. Here we study numerically one drop pinned 
on a circular hydrophilic patch, on an oscillating incline whose angle is proportional to sin(ωt). The resulting 
deformation of the drop is measured by the displacement of its center of mass, which behaves similarly to a 
driven over-damped linear oscillator with amplitude A(ω) and phase lag φ(ω). The phase lag is O(ω) at small 
ω like a linear oscillator, but the amplitude is O(ω−1) in a wide range of large ω instead of O(ω−2) for a linear 
oscillator. A heuristic explanation is given for this behaviour. The simulations were performed with the 
software Comsol in mode Laminar Two-Phase Flow, Level Set, with fluid 1 as engine oil and fluid 2 as 
water. 
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1. INTRODUCTION

Equilibrium of a drop pinned on an incline was 
studied by many authors, see (De Coninck, Dunlop, 
and Huillet 2017) and references therein. Shape and 
motion of drops sliding down an inclined plane 
have also been studied, see (Le Grand, Daerr, and 
Limat 2005) and references therein. Drops on 
vibrating horizontal surfaces have been the subject 
of much interest recently from experimental, 
theoretical or numerical points of view. The 
vibrations or oscillations of the substrate can be 
horizontal (Daniel, Chaudhury, and de Gennes 
2005; Lyubimov, Lyubimova, and Shklyaev 2004; 
Dong, L., Chaudhury, A., and Chaudhury, M. K. 
2006; Celestini and Kofman 2006), or vertical 
(Lyubimov, Lyubimova, and Shklyaev 2006). The 
effect of vibrations on hysteresis, pinning and 
depinning, was studied in particular by (Noblin, X., 
Buguin, A., and Brochard-Wyart, F. 2004; 
Vukasinovic, Smith, and Glezer 2007). The effect 
of vibrations on the Cassie-Wenzel transition was 
studied in particular by (Boreyko and Chen 2009; 
Bormashenko, Pogreb, Whyman, and Erlich 2007). 
A review of drop oscillations is given by (Milne, 
Defez, Cabrerizo-Vlchez, and Amirfazli 2014). 
More recent experimental results and references are 
found in (Rahimzadeh and Eslamian 2017). 

Here we consider the case of an oscillating incline 

where the angle α(t) of the slope follows 
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4
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while the circular basis of the drop remains fixed on 
the incline as a disc of radius r. We keep the frame 
of reference attached to the incline, so that the 
gravity vector oscillates: 
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We assume that the inertial pseudo-forces per unit 
volume, like the centrifugal force, are negligible 
with respect to gravity, which will be the case if 

2 .r g �  

The Bond number is the ratio between gravity and 
capillarity, and we define it precisely as 

2ρgr
Bo




 (3) 

where ∆ρ is the density difference between the two 
fluids and σ is the interface tension. We are 
interested in moderate but significant drop 
deformations, with Bond number of order one, as 
shown on Fig. 1. All the simulations presented here 



L. De Maio and F. Dunlop / JAFM, Vol. 11, No.6, pp. 1471-1476, 2018.  
 

1472 

will be with Bo = 0.22. For bond number of order 
one and pulsation ω not much larger than the 
natural pulsation of the drop, the fluid velocity will 
vary from 0 to about ωr over a distance r. This 
motivates a Reynolds number defined as 

2

ω
ρω

=
η

r
Re                                                           (4) 

 

 
Fig. 1. Water drop at equilibrium pinned on 

incline of angle α = π/4. Bond number Bo=0.22. 
The drop is surrounded by oil. 

 
with ρ = ρwater and η = ηwater. In the same regime the 
quadratic term in the Navier-Stokes equation (5) 
will be of order ρω2r, the same as the centrifugal 
force per unit volume. Therefore it will be 
consistent, and will save some computing time, to 
neglect it (Stokes flow). The equation remains non-
linear due to the interfacial tension force. 

For pulsations ω larger than the natural pulsation of 
the drop, the response of the drop and the actual 
velocity will be much smaller. A Reynolds number 
using the maximum measured velocity will always 
be less than 1 in our simulations. Viscosity plays an 
essential role in the present study, which does not 
allow short-cuts such as interface motion by 
curvature based on the Laplace-Young equation. 

2. DIFFUSE INTERFACE AND LEVEL 
SET METHOD 

The sharp interface between immiscible fluids is 
replaced by a diffuse interface spreading over a few 
mesh elements across the physical interface. A level 
set function φ, φ inspired by van der Waals, goes 
smoothly from zero to one when crossing the 
interface from fluid 1 into fluid 2. The mixture 
obeys the Navier-Stokes equation for an 
incompressible fluid, 

   ρ ρ u u I+η u u

ρg+f

T

st

u
p

t

            


        (5) 

u 0                                                                 (6) 

where I is the identity matrix, and we neglect the 
quadratic term in (5). The density and dynamic 
viscosity are functions defined by 
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The surface tension force per unit volume fst is 

  f I - N N T
st   

     
 

                                  (8) 

where σ is the interfacial tension, Nϕ = ϕ/|ϕ|is a 
normal vector also defined in the bulk, and δ = 
 ϕ|ϕ(1 − ϕ) is a smooth Dirac delta function|6
concentrated near the interface, which is the level 
set {ϕ = 0.5}. Formula (8), being the divergence of 
a flux, can be integrated by parts in the weak form 
of the partial differential equation, and then requires 
just one derivative of ϕ. It was shown by (Lafaurie, 
Nardone, Scardovelli, Zaleski, and Zanetti 1994) to 
be a smooth approximation to the usual Laplace 
force σHNϕδ(interface) where H is the mean 
curvature of the interface and δ(interface) is a true 
Dirac delta function supported by the interface. 

The level set function φ obeys 

 u 1
t

  
             

              (9) 

where ε in the diffusion term controls the interface 
thickness. It will be taken as h/2, half the mesh size. 
The parameter γ is a constant with the dimension of 
a velocity, which we fix as rω/(2π) where r is the 
initial radius of the drop. The level set method for 
two phase flow was developed in particular by 
(Olsson and Kreiss 2005). 

3. SETUP 

The incline is designed with a circular hydrophilic 
patch of radius r = 2.5mm and the remaining 
surface hydrophobic. The corresponding Young 
contact angles are set to 0 degree (perfectly 
hydrophilic) and 180 degrees (perfectly 
hydrophobic) respectively. 

A water drop of volume 2πr3/3 is deposited on the 
hydrophilic patch. The vessel is filled with oil, and 
closed with no air inside. In the absence of gravity, 
the drop is a hemisphere, with contact angle π/2. 
This will also be the initial configuration in our 
simulations. 

The vessel is intended to be large with respect to the 
water drop, so that friction occurs only near the 
drop. The Archimedes force, encapsulated in the 
pressure and gravity terms of the Navier-Stokes 
equation, does not depend upon the volume of the 
vessel. For simulation purposes, we have to use a 
simulation box of modest size. The effect of the box 
will be minimized if it has the symmetry of the 
problem at lowest order, hence a hemisphere with 
same center as the initial drop, and we choose its 
radius as four times the initial drop radius. On it we 
choose “slip” boundary conditions: impenetrable 
and frictionless, again to minimize the effect of 
having a relatively small simulation box. 

The center of the hydrophilic patch is chosen as 
origin of coordinates and the z-axis perpendicular to 
the incline. The incline then starts oscillating 
around the y-axis according to (1). The plane {y = 
0} is a plane of symmetry, allowing to make the 
study in a quarter of a sphere, see Fig. 2. 
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Fig. 2. Setup. 

 
In the stationary regime, the contact angles at the 
front (x = r) and at the back (x = −r) will oscillate 
between a minimum angle θmin and a maximum 
angle θmax. So long as the maximum contact angle 
remains strictly less than 180 degrees, the contact 
line cannot move into the hydrophobic region. So 
long as the minimum contact angle remains strictly 
larger than 0 degree, the contact line cannot move 
into the hydrophilic region. The role of the substrate 
is to ensure pinning. 

For real substrates, the advancing angle θA of the 
hydrophobic material and the receding angle θR of 
the hydrophilic material will replace 180 degrees 
and zero degree respectively. The scope of our 
study is bounded by the conditions 

min max0 .R A                                    (10) 

It implies bounds on Bond number and slope angle 
α, which are satisfied in the present study. It would 
be interesting to go beyond and also study 
depinning. This is left to future work. 
 

Table 1 Physical parameters 
 3kg / m    Pa s    N / m  

Engine oil 888 0.079  
Water 1000 0.001  

Interface   0.031 
 

4. COMSOL 

We used the finite elements software Comsol (see 
https://www.comsol.com/) in mode Laminar Two-
Phase Flow, Level Set, with fluid 1 as engine oil 
and fluid 2 as water, at 20◦C, see Table 1. The 
simulation box is a quarter of a sphere of radius 4r. 
The outer sphere is not a physical boundary, and on 
it we choose slip boundary conditions: 

u n = 0  

   K = K n n, K = u + u nT                 (11) 

where K is the viscous stress vector upon an 
infinitesimal surface of normal n. The symmetry 
plane {y = 0} obeys the same boundary conditions, 
with also 

N 0                                                             (12) 

 

 
Fig. 3. Mesh. 

 
 

 
Fig. 4. Trace of the drop on the symmetry plane 

{y = 0} at five times. Bo=0.22, ω=0.1s−1. 

 
The hydrophilic patch is a wetted wall with contact 
angle θw = 0, meaning a boundary condition 

 n - N cos uW


   


                                   (13) 

where β is a slip length equal to the mesh size h. 
The remaining part of the incline is a wetted wall 
with contact angle θw = π. The mesh is built as 
shown on Fig. 3, with maximal mesh size h = 0.4 
mm and h ∼ 0.1 mm in the region of the interface, 
leading to 24560 degrees of freedom. 

We impose at least one time step in every 1/40 of a 
period so as to be able to distinguish a sinusoidal 
response. With the chosen mesh, it turns out that 
Comsol does not need smaller time steps to satisfy 
its default tolerance. Each run for one value of ω 
took about 20 hours with an Intel i7-3770 
CPU@3.40GHz x8. 

5. RESULTS 

The trace of the drop on the symmetry plane {y=0} 
at different times is shown on Fig. 4. A film is also 
available on arXiv. 

The contact angles θr(t) and θ−r(t) at the front and 
the back are shown on Fig. 5. These contact angles 
are measured as 

 arccos n N                                                (14) 

at (x,y,z) = (r,0,0) and (x,y,z) = (−r,0,0) respectively. 
When the incline is set in motion, at t = 0, the liquid 
drop does not follow instantaneously, whence a 
start below 90 degrees. In the stationary regime a 
noticeable feature is that the contact line spends 
more time near the minimum than near the 
maximum. 

Equation (14) is a measurement of the interface 
normal, pointing from oil into water, at a single 
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point, which is a mesh vertex. Small numerical 
errors are clearly visible in Fig. 5. A systematic 
error is also present: when the contact angle 
approaches θmax, the contact line goes slightly into 
the hydrophobic region. Similarly when the contact 
angle approaches θmin, the contact line goes slightly 
into the hydrophilic region. Measuring the contact 
angles at x = ±r underestimates the amplitude of 
oscillations. 

 

 
Fig. 5. Contact angles θr(t) at the front (red) and 
θ−r(t) at the back (green), measured in degrees as 

(14), for Bo = 0.22, ω = 0.1s−1. 

 

 
Fig. 6. Normalized abscissa of water center of 

mass  ,x t as Eq. (15) (red +), and sinusoidal fit 

of permanent regime, A sin(ωt −φ) as (16) 
(green, continuous), for Bo = 0.22, ω = 5s−1. 

 

Measuring contact angles, experimentally or 
numerically, is subject to debate, especially in 
dynamics. Fitting individual images of a film is 
tedious and systematic deviations may also be 
present if the fit is over a length where gravity 
produces bending. In dynamics the bending effect 
of gravity cannot be computed exactly. We have 
therefore chosen to analyse the data in terms of the 
motion of the centre of mass of the drop, whose 
definition is obvious and whose statistics is optimal. 

The abscissa of the center of mass of water is 
recorded, normalized arbitrarily using the drop basis 
radius r and the volume πr3/3 of a quarter of a 
sphere of radius r: 

 
 
4

, , ,

/ 3

dxdydz x y z t x
x t

r


                               (15) 

The integral is over the simulation box, namely a 
quarter of a sphere of radius 4r. After a transient, 
which lasts longer for larger ω, the system 
approaches a stable permanent regime, as shown on 
Figs. 6, 7. The finite elements method does not 
conserve exactly the total mass of each fluid, and a 
small parasitic drift is often present in simulations, 
but it is not the case here. 

We then use the gnuplot fit, a nonlinear least-
squares Marquardt-Levenberg algorithm, and search 
for an amplitude A and a phase lag φ such that 

   sin 0 asx t A t t                        

(16) 

 

 
Fig. 7. Normalized abscissa of water center of 

mass  ,x t  Eq. (15), for ω = 20s−1. 

 
Table 2 results 

1s    
A rad    

0 1.92 0 

0.05 1.89 0.275 

0.1 1.68 0.503 

0.2 1.25 0.79 

0.5 0.66 1.06 

1 0.387 1.17 

2 0.228 1.24 

5 0.105 1.41 

10 0.0564 1.55 

20 0.0286 1.66 
 

 
Results are like the example shown on Fig. 6, where 
the error measured by the rms of residuals over one 
period falls below 1% after a few periods (after 7 
periods in the example shown). The resulting 
incertainties over A and φ are also below 1%. 

A sinusoidal response with the same ω as the 
incline angle was to be expected for a linear system. 
We used the Stokes equation with a non-linear 
surface tension force, and the transport equation (5) 
is also non-linear. 

Results are listed in Table 2, where the case ω = 0 is 
in fact the limit as ω → 0, namely the stationary 
case α(t) = π/4 ∀t > 0. Plots of A and φ versus ω are 
given in Figs. 8 and 9. They look much like a driven 
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over-damped linear oscillator, with a notable 
exception: the amplitude of the permanent 
oscillations behaves like ω−1 at large ω instead of 
ω−2 for the driven damped linear oscillator. The 
phase lag φ(ω) is proportional to ω at small ω like a 
driven damped linear oscillator. 

 

 
Fig. 8. Amplitude A(ω) from (16) with asymptote 

0.58/ω. 
 

 
Fig. 9. Phase lag φ(ω) from (16) with line at π/2 

and tangent at the origin φ = 5.5ω. 
 

6. HEURISTICS FOR ω → ∞. 

Let us first review the case of a driven solid 
oscillator, subject to a fluid friction force, obeying a 
differential equation of the form 

x+ friction force + restoring force = sin t      (17) 

As ω → ∞ we don’t expect resonance. Therefore 
each term on the left-hand-side will be of order at 
most the order of the right-hand-side, namely O(1). 
We expect a periodic permanent regime of period T 

= 2π/ω. If the amplitude is A then x will be of order 
Aω2, implying A of order at most ω−2. The restoring 
force will be o(1), the velocity of order Aω ∼ ω−1 
and the fluid friction force o(1). Therefore, as ω → 

∞, the system tends to x= sinωt, leading to an 
amplitude ω−2 and phase lag π, in agreement with 
the exact solution of the linear case. 

Another driven system may obey a first order 
differential equation of the form 

restoring force sinx t                                  (18) 

Again we expect a periodic permanent regime of 
period T = 2π/ω, and no resonance, so that each 
term on the left-hand-side will be of order at most 

O(1). If the amplitude is A then x  will be of order 
Aω, implying A of order at most ω−1. The restoring 

force will be o(1). Therefore, as ω → ∞, the system 

tends to x= sinωt, leading to an amplitude ω−1 and 
phase lag π/2, in agreement with the exact solution 
of the linear case. 

We have studied a drop on an oscillating incline in 
a regime where the inertial forces, such as the 
centrifugal force, are negligible with respect to 
gravity and capillarity, both of same order for Bond 

number of order one. We thus have 2 .r g �  The 
acceleration term ∂u/∂t in the Navier-Stokes 
equation is of same order and therefore negligible. 
And the Reynolds number was always less than one 
so that the quadratic term in the Navier-Stokes 
equation could be neglected. Therefore a behaviour 
corresponding to (18) rather than (17) should be 
observed, leading to an amplitude A ∼ ω−1 rather 
than A ∼ ω−2 as ω → ∞. 

In simple words: a liquid drop can deform in many 
different ways and will do so as far as the shear 
stress u remains bounded. If A is the amplitude of 
the motion of the center of mass in the frame of 
reference of the incline, then u is of order Aω/r, 
giving A ∼ ω−1 as ω → ∞. 

When ω → 0, acceleration is negligible in all cases, 
and both solid and liquid oscillators have an 
amplitude O(1) and a phase lag O(ω). 

7. CONCLUSION 

A sessile millimetric droplet on an incline responds 
similarly to a driven damped linear oscillator to a 
sinusoidal oscillation of the angle of the incline. 
However, the amplitude of the drop deformation is 
proportional to ω−1 at large ω, whereas a simple 
pendulum on an oscillating incline responds with an 
amplitude proportional to ω−2 at large ω. 

The diffuse interface modelisation imply diffusion 
times larger than the true physical times, but the 
discrepancy should go to zero with finer and finer 
meshes. Also, because there is more space for water 
(originally in the small sphere) to diffuse into oil 
(originally in the large sphere), than conversely, the 
level set 0.5, considered as the interface, shrinks a 
little during the first seconds. This effect should 
also go to zero with finer and finer meshes. 

Beyond ω ∼ 20s−1, in the oscillating frame of 
reference, one cannot neglect the inertial pseudo-
forces. One can expect that including the centrifugal 
force in the Navier-Stokes equation would increase 
the drop deformation at large ω. 
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