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ABSTRACT 

To date, the Smoothed Particle Hydrodynamics (SPH) method has been successfully applied to reproduce the 
hydrodynamics behind three-dimensional flow-structure interactions. However, as soon as the effect of flow 
resistance becomes significant, the results obtained are not consistent with observations. This is the case for 
open channel flows (OCF), in which the water surface is largely influenced by the boundary friction. The 
roughness generated by the current boundary condition methodologies is solely numerical and cannot be 
associated to physical values of friction. In light of this challenge, the authors present a novel formulation for 
the friction boundary condition. The new implementation includes an additional shear stress at the boundaries 
to reproduce roughness effects, allowing for the adequate three-dimensional simulation of open channel flows 
using the SPH method. Finally, in order to reduce the high computational cost, typical of the Lagrangian 
models, without interfering in the representativeness of the SPH simulations, a criterion to define the adequate 
fluid particle size is proposed. 

Keywords: Smoothed Particle Hydrodynamics (SPH); Open Channel Flow (OCF); Three-dimensional 
Simulations; Bed roughness; Boundary friction methodology; Computational Fluid Dynamics (CFD). 

NOMENCLATURE 

a,b velocity profile coefficients 
af acceleration exerted by the boundary 

particles 
A subscript indicating reference particle 
B subscript indicating neighbor particle 
cs speed of sound at the reference density  
Ce effective distance to contour coefficient 
Cf  friction coefficient 
Crough  roughness coefficient 
Cα  viscous coefficient 
Da dimensionless discretization number 
d0 repulsive force constant 
de effective distance from contour to 

friction force 
dx interparticle distance between fluid 

particles 
dxc  boundary interparticle distance 
f(r) repulsive force of a boundary particle 
g gravitational acceleration 

H water depth 
k von karman’s constant 
ks nikuradse’s roughness coefficient 
n manning’s coefficient 
m particle mass 
p1,p2 exponents of the repulsive force 
pi pressure of particle i 
q discharge rate per unit width 
r distance between fluid and boundary 

particles 
Rh hydraulic radius 
r0 lennard Jones forces radius 
So channel bed slope 
Sw water surface slope 
V mean velocity in channel cross section 
v velocity vector 
v* shear velocity 
vpart fluid particle velocity 
W kernel function 
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α artificial viscosity coefficient 
β monaghan viscous force parameter 
γ polytrophic index for the equation of state 
vt turbulent kinematic viscosity 

ρ0 reference density 
ρi particle density 
τb bottom shear stress 

1. INTRODUCTION 

The Smoothed Particle Hydrodynamics (SPH) 
method is a Lagrangian gridless approach 
introduced by Lucy (1977) and Gingold and 
Monaghan (1977) in the late seventies. Although 
initially developed for compressible fluids, the 
method was adapted and adjusted to address 
hydrodynamic problems (Monaghan (1994)). The 
reformulation of the method provided the 
Computational Fluid Dynamics (CFD) community 
with a new technique to describe the movement of 
the fluids without the Eulerian models restrictions 
(Lui and Liu (2003)). 

So far, many authors such as Gatti et al. (2007) and 
López et al. (2009) have successfully applied this 
methodology to account for hydrodynamic 
phenomena in their simulations, obtaining excellent 
outcomes when reproducing three-dimensional 
flow-structure interactions. However, as soon as the 
water surface starts being influenced by the 
boundary resistance, the results obtained are at odds 
with reality. This is the case when the SPH method 
is applied to simulate large open channel flow areas 
(Nezu and Rodi (1986)). According to López et 
al.(2011), the existing boundary techniques are not 
entirely capable of defining the water surface 
elevation because they do not correctly recreate 
three dimensional boundary roughness effects. 
Therefore, implementing a boundary condition that 
is able to reproduce the effects of flow resistance is 
essential for further development and use of the 
SPH method to simulate three-dimensional OCF 
scenarios. 

This problem was seen by Gómez-Gesteira et al. 
(2010) and López et al. (2011), who increased the 
boundary roughness by placing boundary particles 
outside the theoretical edge. Even though these 
extra boundary particles seemed to hinder the flow 
of fluid particles next to the boundary, they also 
introduced high disturbances into the flow, leading 
to inaccurate results. Chen et al. (2015) and Kazemi 
et al. (2017) also came out with innovative 
procedures, implementing friction in SPH for 
shallow water equations. Despite all the efforts, the 
problem remains poorly defined when, instead of 
adopting a depth-integrated approach, the Navier-
Stokes equations are solved in the x − z plane. 

The appearance of supercomputing techniques 
based on parallel Message Passing Interface (MPI) 
paradigm (Grassa (2007)) or Compute Unified De-
vice Architecture (CUDA) (Hérault et al. (2010), 
Crespo et al. (2011)) has enhanced the applicability 
of the method by increasing the simulation extents 
and reducing the computation time steps. However, 
a large number of particles is still required in order 
to accurately simulate river reaches in three 
dimensions. This is why, in addition to the lack of 
an accurate method that implements friction 
boundary conditions in three-dimensional 

simulations, the high computational cost stands as 
the second major constrain for the use of the SPH 
method to reproduce OCF. In order to reduce the 
computational load, the continuum must be 
discretized with the maximum possible fluid 
particle size without affecting results 
representativity. With the purpose of finding such 
optimum dimensions, a similarity criterion is 
needed. While Froude’s similarity law is used in 
physical model tests for designing OCF 
experiments, in numerical simulations, a proper 
criterion that guarantees hydraulic similarity has not 
been yet formulated. 

This paper introduces a novel proposal called 
Boundary Friction Force Method. The new 
methodology implements an additional shear stress 
at the boundaries to reproduce roughness friction in 
three dimensional OCF simulations. The reader 
should note that the use of this procedure requires a 
proper interpretation of the shear stress formulation 
commonly used for turbulent flows. The concepts, 
shear velocity and average velocity, handled in 
Eulerian models, cannot be transposed to 
Lagrangian models in which particles carry the fluid 
properties. Thus, instead of defining shear stress 
with the depth-averaged velocity V , the velocity of 
the fluid particle that interacts with the boundary is 
introduced, vpart. Furthermore, the dimensionless 
friction coefficient Cf , which depends on the 
Reynolds number and the relative roughness, is 
substituted by a roughness coefficient Crough. The 
suggested coefficient allows fitting the friction 
condition to a desired Manning’s n or Nikuradse’s 
ks roughness value, while preserving the hydraulic 
similarity of the new formulation. 

In this investigation, the proposed methodology has 
been analyzed and calibrated by means of a very 
simple case study composed of a rectangular-
shaped straight channel with uniform steady flow. 
The simulations have been performed using the 
SPHERIMENTAL software developed by López 
and Cuellar (2011). By adopting the Lennard-Jones 
boundary technique and Monaghan’s artificial 
viscosity turbulence method (Monaghan and 
Gingold (1983)), the analysis of the new 
formulation frictional effects and the influence of its 
characteristic parameters has been conducted. This 
work also gives a general formulation of the 
velocity and turbulent viscosity profiles as a 
function of two dimensionless parameters: the 
relative particle size, Da, and the artificial viscosity 
coefficient, α. Finally, a hydraulic similarity 
criterion has been proposed to assure 
representativeness of SPH simulations in open 
channel flow. 

The paper starts with a brief introduction to the 
main principles of the SPH method, including some 
details regarding the Lennard-Jones boundary 
condition as well as the SPHERIMENTAL software 
used in this research. Then, the conceptual 
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framework and the implementation of the Boundary 
Force Method are explained with an inclusive 
overview of the new formulation. This is followed 
by a description of the case study. Finally, the main 
findings concerning the frictional effects of the new 
boundary friction method and the similarity 
criterion are discussed. 

2. SPH NUMERICAL MODELING 
FORMULATION 

2.1   Numerical Method 

The SPH method is a Lagrangian particle approach 
in which the basic idea is to discretize the 
continuum by means of a finite number of particles. 
Due to the constant interaction between these 
particles, field values for physical variables such as 
pressure, density, velocity, vorticity, temperature, 
and position, can be obtained from discrete values 
of neighboring fluid particles using an averaging 
scheme, the socalled kernel function. To put it 
another way, the motion of the fluid can be 
perfectly described by the motion of the particles. 
Figure 1 sketches an example of interpolation 
kernel, being A the target particle and B the 
neighbor particles. 

 

 
Fig. 1. SPH interpolation kernel sketch. 

 
The Lagrangian form of the Navier-Stokes 
equations for a weakly compressible viscous fluid 
are transformed into a system of ordinary 
differential equations that are written as: 

 d
W
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A

B A B AB
B
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t
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where m is the particle mass, ρ the density, v the 
velocity, p the pressure, g the gravitational 
acceleration, and t the time. Finally, ׏WAB 
expresses the gradient of the SPH kernel function 
between A and B. The additional term ΠAB from 
Eq. (2) symbolizes the viscous forces proposed by 
Monaghan and Gingold (1983) to smooth out 
velocity oscillations. 
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where α = 0.01 and β = 0 are values for reproducing 
free-surface flows determined by Monaghan (2005), 
and h is the smoothing length that depends on the 
particle size dx and the kernel function used. In this 
work, interpolation has been done using a Gaussian 
kernel, meaning that the smoothing length is three 
times the particle size. Generally, complex 
turbulence models require excessive computational 
cost. However, López et al.(2010) showed that 
Monaghan’s artificial viscosity, defined by Eqs. (3) 
and (4), correctly reproduces viscous dissipation in 
flows with a Froude number lower than 5 without 
increasing too much the computational load. 

Following the weakly compressible SPH method 
(W-SPH), the pressure field is calculated through an 
equation of state, Eq. (5), to relate pressure and 
density. 

22
0

0
1s i

i
c

p
           

                                         (5) 

where cs is the speed of sound in the medium, ρ0 is 
the reference density, and γ is a polytrophic index 
which guarantees a rigid dependence between 
pressure and density. Monaghan (2005) suggested a 
value of 7 if water is to be simulated. In addition, 
following the indications from Monaghan (1992), cs 
is ten times larger than the maximum flow velocity 
to ensure a fluid compressibility lower than 1%. 
This allows for the use of larger time steps 
satisfying the Courant condition. 

2.2   Boundary Condition 

The CFD literature includes a wide range of studies 
concerning developed methodologies to reproduce 
contour geometry in SPH. In his paper, Violeau and 
Rogers (2016) highlight three principal techniques: 
a) repulsive functions such as the Lennard-Jones 
Forces (Lennard-Jones (1924)), b) fictitious 
particles, also known as ghost particles (Randles 
and Libersky (1996)) and c) the boundary integrals 
method (Kulasegaram et al. (2004)). All these 
commonly used boundary methods are adequate to 
contain the fluid particles inside the contour 
geometry, but the roughness they generate cannot 
be associated to physical values of friction. 

Due to its lower computational cost and its better 
adaptation to complex geometries (López et 
al.(2016)), the Lennard-Jones repulsive forces 
scheme has been selected in this research for the 
implementation of the new Boundary Friction Force 
formulation. Back in 1994, Monaghan (1994) 
proposed the use of this method where the boundary 
is composed of fixed particles that exert a force 
over the approaching fluid particles. When the 
distance between the fluid and the boundary 
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particles r, is lower than a radius of action r0, the 
boundary particle exercises a radial repulsive force 
against the fluid particle. The value of this force per 
unit mass is defined by Eq. (6). 

 
1 2

0 0
0 2

p p
r r r

f r d
r r r

              
                        (6) 

It can be seen that this force becomes zero when r is 
larger than r0. The constant d0 has dimensions of 
velocity squared and allows for the regulation of the 
force module. Rogers and Dalrymple (2005) 
expressed d0 as a proportional value of g·H, where 
H denotes water depth and g the gravitational 
acceleration. According to the investigation made 
by Lenard-Jones, values of p1 = 4 and p2 = 2 are 
adopted (Lennard-Jones (1924)). Finally, the 
authors experience has shown that taking r0 equal to 
the particle size leads to accurate results. 

2.3   Spherimental 

The appearance of graphic cards GPU (Graphics 
Processing Unit) and its massive expansion of the 
computation capacities has revolutionized the 
supercomputing world during the last decade. 
Following this new line of action, the Spanish 
Center for Public Works Studies and 
Experimentation (CEDEX) is developing an SPH 
model called SPHERIMENTAL with FORTRAN 
CUDA computing architecture. This software is 
capable of carrying out computational fluid 
dynamics (CFD) simulations by employing 
graphical processing unit computation as proposed 
by Hérault et al. (2010) and Crespo et al. (2011). 
The result is a considerable reduction of the 
computation complexity, which always has been the 
main drawback of the Lagrangian models. 

Currently used as a complementary tool to physical 
experimentation in hydraulic studies at the 
Hydraulic Laboratory of CEDEX, 
SPHERIMENTAL is a SPH code that solves 2D 
and 3D Navier-Stokes equations for a monophasic 
and weakly compressible flow. This allows Navier-
Stokes equations, Eqs. (1) and (2), to be integrated 
using an explicit time scheme. Integrations are 
computed with a Taylor Vortex Green third order 
Runge-kutta numerical scheme. 

3. BOUNDARY FRICTION FORCE 
METHOD 

The Boundary Friction Force method proposed in 
this paper adds a complementary shear stress at the 
boundaries to reproduce roughness friction. The 
approach implements an acceleration, opposite to 
the velocity vector, to those fluid particles 
interacting with the boundaries. Regardless of the 
boundary condition technique used to materialize 
the boundaries (repulsive functions, ghost particles 
or boundary integrals) the novel approach ensures 
the adequate three-dimensional simulation of open 
channel flows using the SPH method. 

3.1   Shear Stress and Particle Acceleration 

The use of the new procedure requires a proper 

interpretation of the shear stress formulation 
commonly used for turbulent flows. Generally, as 
shown in Eq. (7), the bottom shear stress or bed 
resistance is expressed as a function of the so-called 
shear velocity v∗, or the square of the depth-
averaged velocity V and a dimensionless friction 
coefficient Cf . 

 
2 2
*b fv C V                                                     (7) 

Both concepts, shear velocity v∗, and depth-
averaged velocity V, are easily handled in Eulerian 
models. However, they cannot be transposed to 
Lagrangian models in which particles carry the fluid 
properties. This is why, instead of defining shear 
stress as written in Eq. (7), the velocity of the fluid 
particle that interacts with the boundary is used. 
Such velocity is denoted in this paper as vpart and it 
is responsible of the additional friction acceleration 
adopted for this new boundary method. Equation 
(8) provides a dimensionally correct expression for 
the shear stress: 

2 2
, *f SPH rough partv C v                                     (8) 

Taking into account the force of flowing water 
acting on the bed and Newton’s Second Law, the 
acceleration exerted by the boundary particles over 
the fluid particles yields: 

2rough
f part

x

C
a v

d
                                                  (9) 

where Crough is the proposed roughness coefficient, 
and dx corresponds to the fluid particle size. 

3.2   Free-Surface Uniform Steady Flow 

The free-surface uniform steady flow has been 
subject of numerous investigations. Thus, its 
complete description considering the channel bed as 
the only source of friction is fully available in the 
scientific literature, providing a very appropriate 
framework for the calibration of the method. Since 
SPHERI-MENTAL solves the Navier-Stokes 
equations in the x − z plane, the results obtained in 
the case study test could be extrapolated to three-
dimensional simulations by implementing the same 
boundary friction condition for the walls. 

By definition, in uniform steady flows, the flow 
depth does not vary in time at every cross section, 
being, at the same time, constant along the flow 
direction. Because the acceleration is zero, flow 
depth and velocity remain constant throughout the 
entire channel length. Hence, the free surface slope 
Sw is equal to the bed slope S0, and the dynamic 
equilibrium equation then reduces to an algebraic 
equation of the equilibrium between the downslope 
component of the fluid weight and the boundary 
resistance: 

0
b

w
h

z
S S

gR x

 
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 

                                         (10) 

where Sw is the water surface slope, S0 is the 
channel bottom slope, τb is the bottom shear stress, 
Rh is the hydraulic radius, and x and z are the 
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longitudinal and vertical spatial dimensions 
respectively. The friction slope can also be 
calculated using the widely used Manning’s 
equation, Eq. (11): 

2 2

4/3w
h

n V
S

R
                                                          (11) 

Schilichting (1979), Nezu and Rodi (1986) and 
García (2008) established that if the above-listed 
conditions are met, the velocity profile along the 
flow direction can be fitted to a logarithmic law, 
according to the equation: 

 
*

1
8.5

s

v z z
ln

v k k

 
    

 
                                     (12) 

where v(z) denotes the velocity at z distance from 
the channel bottom, k is a constant equal to 0.4 
named after Von Karman, v∗ is shear velocity and ks 
is the roughness height defined by Nikuradse 
(Nikuradse (1933)). Integration of Eq. (12) over the 
depth yields the following expression for the depth-
averaged velocity V : 

* 11 h

s

Rv
V ln

k k

 
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 
                                              (13) 

In steady, uniform flow, the forcing and the 
resistance are in balance. Using the dynamic 
equilibrium equation and assuming that Rh ≈ H, the 
bed shear stress profile in a fully developed flow 
yields: 

    0z g H z S                                               (14) 

Finally, Nikuradse’s roughness height, ks, can be 
related to the Manning’s coefficient by Eq. (15): 

1/6

1/2

11

hkR

n g
s hk R e

 
 
                                             (15) 

3.3   Roughness Coefficient 

The formulation presented in Eq. (9) shows how the 
applied acceleration relates to the square of the 
particle velocity, the fluid particle size and the 
proposed roughness coefficient. Nonetheless, the 
equation does not give the proper insight into the 
distance at which this acceleration should be 
applied to obtain the same roughness effects as the 
observations or into how the friction condition can 
be fitted to a desired Manning’s or Nikuradse’s 
roughness value. 

In the Eurelian turbulent flow theory, the friction 
coefficient depends on two dimensionless 
parameters, Eq. (16). The relative roughness which 
relates bottom roughness size ks, to water depth H, 
and the Reynolds number, which associates viscous 
forces to inertia forces. 

2 ,s
b

k VH
V

H v

     
 

                                        (16) 

Following a similar approach, and in means of 
assuring the hydraulic similarity of the new 
formulation, the roughness coefficient Crough also 

depends on two dimensionless numbers, the 
dimensionless discretization number Da, which is 
associated with geometrical dimensions similar to 
the relative roughness, and Monaghan’s artificial 
viscosity parameter α. 

 ,rough aC D                                                (17) 

López et al. (2016) pointed out that a proper fluid 
particles discretization is very important in order to 
obtain good results in numerical simulations. Once 
the steady-state regime condition is reached, H 
becomes constant and it is possible to check the 
discretization suitability by a dimensionless 
number, Da: 

x
a

d
D

H
                                                              (18) 

Considering a steady-state regime, the velocity 
profile can be expressed as a function of two 
coefficients a and b: 

 
s

z
v z a ln b

k

 
    

 
                                          (19) 

In general, when modeling a river reach, the flows 
of interest have high Reynolds numbers, so that 
viscous effects can be ignored, leaving the inertial 
effects as principal cause of the momentum transfer. 
As such, the bed shear stress for turbulent flows can 
also be expressed as: 

  t
dv

z v
dz

                                                         (20) 

where νt refers to the kinematic turbulent viscosity. 
Considering Eqs. (19), (14) and (20), and assuming 
a hydraulic radius equal to the water depth, the 
kinematic turbulent viscosity presents a parabolic 
profile defined in the following equation, Eq. (21): 

   0
t

gS
v z H z z

a
                                         (21) 

In steady-state flow with known discharge rate, q, 
and depth, H, the depth-averaged velocity can also 
be calculated. Thus, the b coefficient from Eq. (19) 
yields: 

1h

s

R
b V a ln

k

 
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Once the velocity profile has been obtained, the 
effective distance from boundary to resultant 
friction shear stress de, can be determined: 
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d
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k
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 
    
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   (23) 

Figure 2 illustrates the mentioned effective distance 
de. Since the interest lies upon developing a 
formulation based on the discretization number and 
thus, the fluid particle size, a the dependence 
between de and the particle discretization size dx, 
Eq. (24) has been proposed. The equation allows to 
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obtain the value of the effective distance, de, as a 
function of dx by means of a coefficient Ce. 

e e xd C d                                                           (24) 

 

 
Fig. 2. Friction stress application distance. 

 
Once the velocity and the turbulence profiles are 
known, it is possible to obtain the formulation that 
gives the roughness coefficient. This coefficient is 
assigned to contour particles to reproduce flow 
resistance associated with a given Nikuradse’s ks or 
Manning’s n coefficients. From the shear stress 
equilibrium proposed in Eq. (23) and taking into 
account Eq. (11), a value for the new friction 
coefficient is obtained, Eq. (25). 
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  (25) 

4. OPEN CHANNEL FLOW CASE 
STUDY 

The proposed methodology has been analyzed and 
calibrated by means of a very simple case study 
composed of a rectangular-shaped straight channel 
with uniform steady flow and considering the 
channel bed as only source of friction. In order to 
properly characterize that bottom friction, 
experiments have been designed in supercritical 
regime. As such, it is assured that downstream 
boundary conditions do not affect the water surface 
levels up-stream. The supercritical regime 
conditions have been achieved for all tested flow 
rates by adopting a 1% channel bed slope. 

To produce useful outcomes for the comparison and 
calibration of the methodology with the theoretical 
values, an uniform steady flow must be guaranteed 
for all the simulations. With this regard, the 
simulations were kept running until the out-flow 
rates equalized the inflows to ensure a constant flow 
rate in the entire channel length. Furthermore, the 
cross section was maintained constant along the 
entire tested channel. Lastly, to comply with the 
uniform condition, the tested channel longitudes 
were accommodated for each test with the purpose 

of reaching the equilibrium between water weight, 
viscous forces and bottom friction. Depending on 
the flow rate q, the upstream water depth H and the 
bottom friction n (or ks), lengths varied from 400m 
up to 1500m. 

Finally, the fluid particle size, dx, and the distance 
between boundary particles, dxc, have been set to 
0.1m and 0.04m respectively for all the simulations. 
The motivation behind choosing dxc to be slightly 
smaller than half of dx lies in the fact that a uniform 
boundary force field and the prevention of fluid 
particles leakage must be guaranteed for the correct 
performance of the SPH model. 

5. RESULTS AND DISCUSSIONS 

In this section, the results obtained in the calibration 
tests using the described case study are presented. 
First, the flow resistance generated purely by the 
Lennard-Jones forces has been studied. Then, the 
influence the dimensionless discretization number 
Da and the viscous parameter α have over the 
suggested roughness coefficient are analyzed. 
Lastly, and in accordance with the results obtained 
from those dependence studies, a similarity criterion 
based on Von Karman’s constant is proposed. 

5.1   Flow Resistance Due To Lennard-
Jones Forces 

The first tests have been carried out solely 
considering the Lennard-Jones forces, to quantify 
the resistance to the flow exerted by the commonly 
used boundary technique. The parameters from Eq. 
(6) have been taken as d0 = 10, p1 = 4, and p2 = 2, 
with r0 equal to fluid particles size, dx. 

Figure 3 shows the velocity and water depth 
profiles obtained when a unitary flow rate q = 
10m3/s/m is simulated in the described channel. 
Despite the large channel length adopted, the flow 
presents a constant acceleration, reaching high 
velocities without achieving a steady-state regime. 
This implies that the boundary roughness is 
basically zero, which is not realistic for bottom 
friction in open channel flow. Consequently, it has 
been concluded that the boundary roughness 
reproduced by the Lennard-Jones repulsive forces is 
too weak to cause the adequate resistance to flow. 

5.2 Roughness Coefficient Dependence 
Studies 

As stated in Eq. (18), Crough depends on two 
dimensionless numbers, the discretization number 
Da, and the artificial viscous parameter α. The 
developed tests have shown a clear impact of both 
parameters on the simulations results. This is the 
reason why their effect has been investigated. 

In order to study the influence of fluid discretization 
Da, forty five simulations have been conducted. 
Keeping Monaghan’s artificial viscosity coefficient  
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Fig. 3. Depth and velocity profile. q = 10m3/sm. 

 

 
 

 
 

 
Fig. 4. Example test graphical results with flow rate q = 20m3/s/m: channel length L = 950m: uniform 

steady depth H = 2.35m: Manning’s roughness n = 0.0212. 
 

 

constant and equal to α = 0.01 in all tests, different 
roughness values, varying from 0.0005 to 0.01, 
have been applied. Each experiment required 
several repetitions in which the initial depth, the 
channel length and simulation time were modified 
until the steady-state flow regime was achieved. 
Out-comes from all the performed tests are 
summarized in Table 1. 

Cross sections along the channel distributed each 
half a meter measured the mean velocity, flow rate, 
momentum, average density and velocity profiles of 
every test. Figure 4 displays the graphical results 
obtained from an example test with an unitary flow 
rate equal to q = 20m3/s/m and Crough = 0.008. The 
velocity profile along the channel axis shows that at 
least a 600m channel was necessary to reach the  
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  Table 1 Summary of the tests performed with the artificial viscosity parameter α = 0.01 

Crough q (m2/s) H (m) Da v* (m/s) n (m1/6) ks (mm) a b Ce 

0,0005 5 0,570 0,175 0,236 0,00779 0,00006 0,12 7,80 1,75 
0,0005 10 0,860 0,116 0,290 0,00794 0,00007 0,31 8,70 2,17 
0,0005 20 1,296 0,077 0,356 0,00778 0,00006 0,65 9,30 2,02 
0,0005 40 1,943 0,051 0,436 0,00802 0,00007 0,85 9,00 4,83 
0,0005 60 2,446 0,041 0,490 0,00791 0,00007 1,44 9,20 2,30 
0,0005 80 2,958 0,034 0,538 0,00789 0,00006 1,81 9,30 1,60 
0,001 2 0,401 0,250 0,198 0,01107 0,00049 0,11 4,30 1,61 
0,001 5 0,697 0,143 0,261 0,01103 0,00048 0,23 5,65 1,92 
0,001 10 1,030 0,097 0,318 0,01103 0,00048 0,40 6,60 2,05 
0,001 20 1,577 0,063 0,393 0,0109 0,00045 0,83 6,40 2,16 
0,001 40 2,324 0,043 0,477 0,0107 0,00040 1,29 6,50 1,89 
0,001 60 2,859 0,035 0,529 0,01031 0,00032 1,95 3,80 1,83 
0,001 80 3,327 0,030 0,571 0,01009 0,00028 1,85 6,25 1,35 
0,001 120 4,133 0,024 0,636 0,0098 0,00024 3,07 -0,80 1,89 
0,002 2 0,490 0,204 0,219 0,01547 0,00364 0,13 3,50 1,69 
0,002 5 0,836 0,120 0,286 0,0151 0,00315 0,32 4,43 1,77 
0,002 10 1,282 0,078 0,355 0,01513 0,00319 0,47 5,45 1,63 
0,002 20 1,909 0,052 0,432 0,0148 0,00279 0,92 5,30 1,75 
0,002 40 2,770 0,036 0,521 0,01382 0,00185 1,49 4,78 1,87 
0,002 60 3,314 0,030 0,570 0,01286 0,00120 2,49 0,10 1,53 
0,002 80 3,747 0,027 0,606 0,01261 0,00107 2,63 0,52 1,81 
0,002 120 4,431 0,023 0,659 0,01187 0,00074 3,06 -1,08 1,65 
0,003 1 0,363 0,276 0,188 0,0185 0,01066 0,09 2,53 1,30 
0,003 2 0,548 0,182 0,232 0,01865 0,01119 0,17 3,10 1,63 
0,003 5 0,935 0,107 0,303 0,01811 0,00938 0,40 3,82 1,76 
0,003 10 1,392 0,072 0,369 0,01738 0,00733 0,74 3,97 1,74 
0,004 1 0,392 0,255 0,196 0,0213 0,02482 0,08 2,35 0,28 
0,004 2 0,593 0,169 0,241 0,0213 0,02482 0,17 2,95 1,58 
0,004 5 0,999 0,100 0,313 0,0203 0,01860 0,47 3,60 1,49 
0,004 10 1,468 0,068 0,379 0,0192 0,01332 0,84 3,60 1,56 
0,004 20 2,172 0,046 0,461 0,01845 0,01048 1,24 3,70 1,45 
0,004 40 3,137 0,032 0,554 0,0169 0,00619 2,04 2,30 1,37 
0,004 120 6,131 0,016 0,775 0,01662 0,00560 3,95 -3,30 2, 2,69 
0,006 1 0,447 0,224 0,209 0,0261 0,08403 0,10 2,15 1,48 
0,006 5 1,103 0,091 0,329 0,02381 0,04843 0,50 3,45 1,38 
0,006 10 1,578 0,063 0,393 0,02176 0,02822 1,00 3,25 1,40 
0,006 20 2,330 0,043 0,478 0,0204 0,01916 1,74 2,00 1,83 
0,006 40 3,319 0,030 0,570 0,0186 0,01101 2,25 1,50 1,40 
0,006 120 6,348 0,016 0,789 0,0175 0,00764 3,97 -3,90 2,30 
0,008 5 1,167 0,086 0,338 0,0261 0,08403 0,56 3,30 1,27 
0,008 10 1,698 0,059 0,408 0,024 0,05080 1,20 2,90 1,65 
0,008 20 2,354 0,042 0,480 0,0212 0,02413 1,68 2,40 1,29 
0,01 5 1,219 0,082 0,346 0,028 0,12810 0,60 3,28 1,18 
0,01 10 1,771 0,056 0,417 0,0257 0,07659 1,32 2,85 1,77 
0,01 20 2,425 0,041 0,487 0,0221 0,03097 1,86 1,90 1,39 

 

 

uniform steady flow. The flow rate graph certifies 
that the steady state flow has been achieved at the 
downstream channel sections with a stabilized 
uniform depth of H = 2.35m. Finally, the 
momentum along the channel axis and the section 
average density remain constant for the achieved 
steady regime. 

The influence of the discretization degree can be 
appreciated in Fig. 5, where the values from Table 1 
relating Manning’s and Nikuradse’s coefficients 
with the dimensionless discretization number Da 
have been drawn. To facilitate the interpretation of 

the graph, tests with same Crough have been grouped 
by colors. In addition, curves for each Crough value 
have been plotted, choosing Ce as the mean value of 
all simulations (Ce = 1.74). Good fit can be 
observed. 

A more detailed analysis of the results from Table 1 
shows a direct relation between the velocity profile 
obtained from SPH simulation, expressed in terms 
of the ratio a/v∗ and the discretization number Da 
(see Fig. 6). By fitting the experimental values to a 
potential function, the following mathematical 
relationship has been obtained: 
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Fig. 5. Crough curves relating Manning’s n coefficient and Da discretization dimensionless number. 

 
 

 
Fig. 6. Relationship between a and shear stress velocity v∗.	
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Taking into account this dependence, and 
comparing the coefficient a from Eq.(19) with the 
theoretical parameters from the free-surface 
uniform steady flow velocity profile, a relation 
between Von Karman’s constant and the 
discretization has been discovered: 

1 1

8 ak D



                (27) 

Since Von Karman’s constant is equal to k = 0.4, a 
discretization number Da = 0.05 makes true the 
previous equation. It is concluded that when an 

artificial viscous parameter α = 0.01 is used for 
simulating open channel flow with SPH, fluid 
particles sizes equal to dx = H · 0.05 guarantees the 
results representativeness. 

However, as soon as the artificial viscosity value 
changes, Eq. (27) is no longer valid. For that reason, 
the dependence between Crough and the viscosity has 
also been investigated. To do so, a new set of 
simulations with different α coefficients has been 
carried out. Results are summarized in Table 2 and 
plotted in Fig. 7a. By grouping the performed tests 
with the same α coefficient, it is possible to perform 
an analysis similar to the one already done for the 
first series of tests. For each test group the same 
adjustment depending on a Cα value, Eq. (28), has  
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Fig. 7. Test with different viscosity coefficients α. a) Relationship between a/v∗ and Da to each α values. 
b) Relationship between α and Cα. 

 
Table 2 Summary of the tests done to analyze the influence of the artificial viscosity parameter α 

α Crough q (m2/s) H (m) v* a Da a/v* 

0 0,002 20 1,460 0,378 1,800 0,068 4,759 
0 0,004 5 0,715 0,265 0,734 0,140 2,774 
0 0,004 2 0,487 0,219 0,378 0,205 1,730 

0,0001 0,002 20 1,445 0,376 1,787 0,069 4,749 
0,0001 0,004 5 0,726 0,267 0,734 0,138 2,752 
0,0001 0,004 2 0,492 0,220 0,370 0,203 1,686 
0,0001 0,001 40 2,095 0,453 3,329 0,048 7,348 
0,001 0,002 20 1,571 0,392 1,994 0,064 5,082 
0,001 0,004 5 0,835 0,286 0,809 0,120 2,826 
0,001 0,004 2 0,510 0,223 0,365 0,196 1,631 
0,001 0,001 40 2,183 0,463 2,821 0,046 6,098 
0,003 0,002 20 1,718 0,410 1,644 0,058 4,007 
0,003 0,004 5 0,910 0,299 0,659 0,110 2,205 
0,003 0,004 2 0,560 0,234 0,277 0,179 1,181 
0,003 0,001 40 2,282 0,473 2,442 0,044 5,163 
0,005 0,002 20 1,763 0,416 1,345 0,057 3,235 
0,005 0,004 5 0,946 0,304 0,519 0,106 1,705 
0,005 0,004 2 0,579 0,238 0,239 0,173 1,005 
0,005 0,001 40 2,293 0,474 2,046 0,044 4,316 
0,02 0,002 20 1,912 0,433 0,556 0,052 1,285 
0,02 0,004 5 1,035 0,318 0,261 0,097 0,818 
0,02 0,004 2 0,600 0,243 0,107 0,167 0,439 
0,02 0,001 40 2,397 0,485 0,822 0,042 1,696 
0,03 0,002 20 1,981 0,441 0,404 0,050 0,916 
0,03 0,004 5 1,045 0,320 0,166 0,096 0,517 
0,03 0,004 2 0,596 0,242 0,069 0,168 0,286 
0,03 0,001 40 2,506 0,496 0,564 0,040 1,138 

 

 
been found. Hence, it can be seen that Eq. (28) is a 
generalization of Eq. (26) for different viscosity 
values. 

*

a

v
a

C D
                                                           (28) 

Figure 7b shows the dependency between a and α 
through the coefficient Cα. The obtained lineal 
adjustment for such parameter is presented in Eq. 
(29). 

550 2.5C                                                     (29) 
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Fig. 8. a) CαDa = 1.17. Crough = 0.001; q = 5m3/s; H = 0.70m; n = 0.01103m1/6; b) CαDa = 0.35. 

Crough=0.001; q = 40m3/s; H = 2.32m; n = 0.0107m1/6; c) CαDa = 0.18. Crough = 0.001; q = 120m3/s; 
H=4.13m; n= 0.0098m1/6. 

 

5.3   Similarity Criterion 

According to the simulations results shown in Table 
1 and Table 2, and the expressions obtained from 
the dependence analysis, a new similarity criterion 
has been developed. Following the relation 
suggested in Eq. (28), it yields that the Von 
Karman’s constant must be equal to the product 
between Cα and Da as shown in Eq. (30): 

1aC D

k
                                                             (30) 

Figure 8 shows the importance of selecting an 
adequate particle size or artificial viscosity 
parameter. When the proposed similarity criterion is 
met, the accordance between the velocity profile 
obtained with the SPH numerical simulation and the 
logarithmic velocity profile that results from the 
theory of turbulent boundary layer flow (Eq. (12)) is 
guaranteed. 

On the one hand, if Cα · Da > k, SPH model 
simulations become excessively turbulent. It can be 
seen in Fig. 8a how the velocity profile 
homogenizes faster than the theoretical profile for 
high values of Da numbers (or low discretization of 
the continuum). On the other hand, when Cα · Da ≈ 
k, both the results from the SPH model velocity 
profile and the kinematic turbulent viscosity law 
agreed with the theoretical ones (Fig. 8b). By 
selecting a lower coefficient of viscosity α, a large 
Da number is required to maintain this 
proportionality. Thus, the relative size of SPH 
particles increases. This means that by using low α 
values, an open channel flow case is correctly 
reproduced with a lower computational cost. 
However, it should also be noted that the the 
stability introduced by the viscous term is lost when 
low coefficients are used. Finally, if Cα · Da < k, 
SPH simulations not only provide lower viscosity 

than the theoretical parabolic model but also 
velocity profiles that are smoother than the profiles 
suggested by the theoretical knowledge (Fig. 8c). 

The relationship pointed out in Eq. (30) allows the 
presetting the SPH model. If the flow rate and the 
approximate water depth are known, it is possible to 
determine the fluid particle size and the viscosity 
coefficient to be used in SPH simulation. This is 
extremely important for optimizing these 
simulations. In order to clarify the resolution 
process according to the recommended similarity 
criterion, the flow chart displayed in Fig. 9 is 
presented. 

6. CONCLUSIONS 

Up to this day, the lack of a boundary methodology 
capable of correctly recreating boundary roughness 
effects has hindered the use of the SPH method to 
simulate three-dimensional open channel flow 
scenarios, in which the water surface is largely 
influenced by the boundary friction. As part of this 
investigation, it was demonstrated how the 
boundary roughness reproduced by one of the most 
widely used boundary techniques, the Lennard-
Jones repulsive forces, is too weak to offer an 
adequate resistance to flow. 

In this paper, the authors have presented an original 
formulation to reproduce flow resistance in open 
channel flow using SPH. The Boundary Friction 
Force method implements contour shear stress by 
adding an extra acceleration to the fluid particles 
interacting with the boundaries. Furthermore, the 
suggested roughness coefficient Crough allows to fit 
the friction condition to a desired Manning’s n or 
Nikuradse’s ks roughness value, increasing the 
applicability of the approach. 
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Fig. 9. Crough calculation flow chart in accordance with the similarity criterion. 

 

 

The proposed method has been tested and calibrated 
by means of a very simple case study composed of 
a rectangular-shaped straight channel with uniform 
steady flow. Although the formulation can be 
adapted to any of the current boundary 
methodologies used to materialize the boundaries, 
only the Lennard-Jones repulsive forces scheme has 
been selected in this research due to its lower 
computational cost and its better adaptation to 
complex geometries. Future investigations could be 
dealing with the implementation of the method to 
those remaining boundary techniques. 

Finally, the presented work offers a general 
formulation for the velocity and turbulent viscosity 
profiles that will be obtained in a three-dimensional 
SPH simulations as a function of two dimensionless 
parameters: the relative particle size, Da, and the 
artificial viscosity coefficient, α. The influence 
those parameters have on the results of the 
simulations has been analyzed, leading to the 
formulation  

of a novel hydraulic similarity criterion which 
guarantees representativeness of SPH simulations in 

open channel flow. 

To sum up, this research gives solution to two of the 
main drawbacks of using the SPH method to 
reproduce three-dimensional OCF scenarios. First, 
introduces a new boundary friction condition that 
enables the adequate simulation of roughness 
effects, and second, proposes a similarity criterion 
which helps reducing the computational load and 
guarantees the simulation representativeness. 
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