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ABSTRACT 

In this work, we investigate the the problem of an unsteady tank drainage while considering an isothermal and 
incompressible Ellis fluid. Exact solution is gotten for a resulting non-linear PDE (partial differential equation)-
subject to proper boundary conditions-. The special cases such as Newtonian, Power law, and as well as 
Bingham solution are retrieved from this suggested model of Ellis fluid. Expressions for velocity profile, shear 
stress on the pipe, volume flux, average velocity, and the relationship between the time vary with the depth of 
a tank and the time required for complete drainage are obtained. Impacts of different developing parameters on 
velocity profile vz and depth H(t) are illustrated graphically. The analogy of the Ellis, power law, Newtonian, 
and Bingham Plastic fluids for the relation of depth with respect to time, unfold that the tank can be empty 
faster for Ellis fluid as compared to its special cases. 

Keywords: Tank drainage, Ellis fluid; Exact solution. 

NOMENCLATURE 

A1 first Rivlin–Ericksen tensr 
d diameter of the pipe 
ࡰ

࢚ࡰ
 material derivative 

f body force 
g gravitational acceleration 
H(t) depth of fluid in the tank at any time 
H0 initial depth of the fluid 
L length of the pipe 
n power law index  
p dynamic pressure 
p1 pressure inlet 
p2 pressure outlet 
Q flow rate 
R radius of the pipe 
RT radius of the tank 

r1 yield radius in circular pipe flow 
r Radial coordinate 
S extra stress tensor  
S0 yield stress 
૚ࡿ
૛
 material constant 

t time 
V velocity vector 

V  average velocity 
z axial coordinate 

Greek letters 
 material constant ࢻ
 scalar quantity 
0 material constant 
࣋ constant density 

1. INTRODUCTION

In recent years, non-Newtonian fluids have remained 
the focus of modern research due to their numerous 
biological, industrial and technological applications 
such as tooth paste, drilling mud, greases, paints, 
blood, polymer melts, clay coatings etc. Non-
Newtonian fluid is an expansive class of fluids; so, 
unlike Navier-Stokes equation for Newtonian fluids, 
there is not a single model that can delineate all the 
properties of non-Newtonian fluids (Chhabra & 
Richardson, 1999). Hence, several constitutive 

equations (e.g., Power law fluid model, second order 
fluid model, third order fluid model, Sisco fluid 
model, eyring fluid model, and Phan-Thien-Tanner 
fluid model) have been proposed to predict the 
physical structure and behavior of various types of 
non-Newtonian fluids (Memon et al., 2014; Dunn & 
Rajagopal, 1995). 

For such models, the exact solutions are rare to be 
obtained for the equations of motion specially for 
non-Newtonian fluids, because of the nonlinear 
nature of those equations (Farooq, Rahim, Islam, & 
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Siddiqui, 2013; Farooq, Rahim, Islam, & Arif, 
2014); a few number of exact solutions are found in 
the existing review of literature. Specially when the 
cylindrical coordinates are used these types of 
solutions come even to be rare, for the reason that of 
the nonlinearity in the  higher order  viscosity part 
and in inertial part (Farooq et al., 2014). Numerical 
results of the differential equations, no problem how 
correct they are, still have not been the exact 
solutions for the reason that of the parameters 
involved in equation, which should have to be given 
values for each result. 

There are certain factors and reasons for which the 
exact solutions are considered to be important 
(Wang, 1991; Wang, 1989; Benharbit & Siddiqui, 
1992; Siddiqui & Kaloni, 1986; Rajagopal & Gupta, 
1981; Wang, 1966), such as; 

(i). these (exact solutions) signify basic fluid-
dynamic flows. Consequently, there is possibility, 
for the fundamental episodes defined by the Navier-
Stokes equations, to be examined more thoroughly 
due to the uniform rationality of exact solutions. 

 (ii). these solutions (Exact) help in scrutinizing 
phase for empirical, numerical, experimental, and 
asymptotic methods. Even though, the integration of 
the equations of motion is completely made feasible 
through computer techniques, whereas the accuracy 
of the outcomes is possible to be established by 
comparing them with an exact solution. 

A detailed and exceptional review of exact solutions 
of the Navier-Stokes equation is provided by Wang 
(Wang, 1991). 

Study of tank drainage flow has received significant 
attention due to the focus upon the practical 
applications of these flows in the contemporary 
sciences. Since the formulation of these types of 
flows, there have been many research attempts for 
their analysis. The Newtonian fluid has been used for 
tank drainage flow by (Papanastasiou, 1994) and 
power law fluid by (Bird, Stewart and Lightfoot, 
1960) to investigate and solve the problem exactly.  

The theory describing the efflux time of a tank has 
been derived by Crosby (Crosby, 1961)and by Bird, 
Stewart, and Lightfoot (Bird, Stewart and Lightfoot, 
1960), and further extended to systems with the 
installed fittings by Hanesian (Hanesian, 1984). It is 
a founding fact that, when the tank is drained by a 
hole, Torricelli’s equation is used to describe the 
discharge velocity and flow rate which is given in 
(De Nevers, 2005; Bird, Stewart and Lightfoot, 
1960).These problems are revisited in (Joye & 
Barrett, 2003). Under conditions of turbulent flow in 
the exit pipe, relationship between the efflux time 
and height of the liquid to the bottom of the exit pipe 
is calculated by (Wilkes, 2006), further the 
Mechanics of the slow draining for a large tank under 
gravity is briefly explained in (Van Dongen & 
Roche, 1999). Unsteady draining flows from a 
rectangular tank (two dimensional and two layered) 
is given by (Forbes & Hocking, 2007), and for 
circular tanks a three dimensional draining flow for 
two-fluid system is studied by (Forbes  & Hocking, 
2010). Efflux Time and comparison of a cylindrical 

tank with differential form is given in (Subbarao, 
2011; Devi, Singh, Reddy, Dharwal & Subbarao, 
2011; Reddy & Subbarao, 2011; Devi, Padma & 
Subbarao, 2011). Slow draining of large spherical 
tank under the action of gravity is studied by 
(Subbarao, Rao, Raju & Prasad, 2012), in which 
mathematical and experimental values have been 
compared, and found to be in good agreement with 
the model. Usage of polymer solutions for drag 
reduction in gravity driven flow systems is given in 
(Subbarao, Madhavi, Naidu & King , 2013; 
Subbarao, Yadav & King, 2013), and exact solution 
of tank drainage for Newtonian fluid with slip 
condition have been solved by Memon, Siddiqui,  & 
Shah, 2017. 

In this manuscript, we studied tank drainage problem 
of Ellis fluid (Bird, Stewart and Lightfoot, 2002; 
Afanasiev, Münch, & Wagner,  2007; Ali, Abbasi, & 
Ahmad, 2015), resulting non-linear partial 
differential equations-subject to boundary 
conditions-are acquired analytically with exact 
solutions and also we have retrieved the special 
cases, such as Newtonian, Power law and Bingham 
plastic fluid.  For the very high yield stress 

൬ܵభ
మ
	→ 	∞൰ solution of the problem retrieve for 

Newtonian case (Papanastasiou, 1994), on 

replacement൬ܵభ
మ
ൌ ଴, ߙ ൌ 	

ଵ

௡
൰, we get the solutions 

for Power law case (Bird, Stewart and Lightfoot, 
2002) and when we substitute (0 = ߙ) we get the 
solution for Bingham plastic fluid. Subsequently, 
expressions for velocity profile, shear stress on pipe, 
flow rate, average velocity, depth of fluid in the tank, 
and the time required for complete drainage are 
obtained. As per the best of our insight, the solution 
of the problem has not been accounted for in the 
existing literature. 

In section 2 of this paper, the governing equations of 
Ellis fluid model are specified. Section 3 provides 
formulation and solutions of the tank drainage 
problem, such as velocity profile, shear stress on the 
pipe, flow rate, average velocity, shear stress on the 
pipe, relationship between the variation in time and 
in the depth of fluid of the tank, and also between the 
time required for complete drainage. Section 4 deals 
with its special cases of Ellis fluid model . The results 
and discussion are included in section 5, while 
section 6 concludes the study. 

2. BASIC EQUATIONS 

Essential governing equations for incompressible 
Ellis fluid flow, disregarding thermal effects are: 

0,=V   
(1)

 

,= Sf
V

  p
Dt

D

 
(2)

 

The symbol V represents velocity vector, ߩ denotes 
the constant density, p be the dynamic pressure, f is 
the body force and S the extra stress tensor. The 

operator 
ࡰ

࢚ࡰ
 denotes the material derivative. The extra 

stress tensor describing an Ellis (Bird, Stewart and 
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Lightfoot, 2002; Afanasiev, Münch, & Wagner, 
2007; Ali, Abbasi, & Ahmad, 2015) is made by: 

,= 1AS   (3) 

Where the parameter   is defined as: 

 
,

:
2

1

1
11

1

2

10 





















 S

SS

                

(4)

 

1A = V ( V)T                                                 (5) 

Here 1A is first Rivilin- Ericksen tensor,  is a scalar 

quantity and Eq. (4) contains three constants ଴, ,ߙ ܵభ
మ

 which may be determined experimentally for each 
fluid and also the symbol represent in Eq. (4) is  

 2S :S trace S .                  (6) 

Special cases are essential for Ellis fluid model, at 

low shear stress ൬ܵభ
మ
	→ 	∞൰, this model controls to a 

Newtonian fluid model, and appropriately at high 
shear rates the proposed model converts into the 
Power law fluid model. 

3.  TANK DRAINAGE 

Let suppose a cylindrical tank is of the radius RT 
containing an isothermal, incompressible Ellis fluid 
and the pipe of the diameter d  is attached at the 
center of the bottom of the tank . The initial depth of 
the fluid is taken to be H0. The fluid in the tank is 
drained down through by a a pipe having length L 
and radius R. Additionally more, the depth of fluid in 
the tank at any time t is assumed to be H(t) in the 
tank, flow of the fluid in the pipe is due to hydrostatic 
pressure of the fluid in the tank and gravity. 

our plane is to determine velocity profile, shear stress 
on the pipe, flow rate, average velocity, relationship 
between the variation in time and in the depth of fluid 
of the tank, and also with the time required for 
complete drainage. Here we have use cylindrical 
coordinates (r, ߠ z) with r-axis (normal to the pipe), 
and z-axis along the center of the pipe in vertical 
direction. As the flow is individual in the z-direction, 
and the ߠ and r components of velocity vector V are 
equal to zero, 

  ),(,),(0,0,=],,[=, trStrvvvv zzr SV         (7) 

 
Fig. 1. Tank drainage flow down by mean of 

circular pipe (Papanastasiou, 1994). 

By means of Eq. (7), the equation of continuity (1) is 
indistinguishably fulfilled; and we have neglect the 
convected part of the acceleration, the momentum 
Eq. (2) diminishes towards 

 
,

1
=

:
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momentumofcomponentz
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


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The flow in the pipe of radius R is due to both 
hydrostatic pressure and gravity. At the entrance and 
exit in the pipe, the pressures can be described as: 

),(==0,= 1 tgHppzat                           (11) 

0,==,= 2ppLzat                               (12) 

so that, 

L

tgH

z

p )(
=





                                                   (13) 

The velocity in the pipe flow almost constant with 
time t, due to slow draining, so that we may neglect 

the time derivative 
t

vz


 . The equation for 

momentum for this combined flow is: 

.
)(

=
)(1

g
L

tgH

r

rS

r
rz 




                                  (14) 

The associated boundary condition’s at drainage pipe 

0,=0,= rzSrat     (centerline)                 (15) 

0=,= zvRrat          (no-slip)                   (16) 

According to the (centerline) boundary condition 
(15) “shear stresses” are zero in the middle of the 
pipe as a result of the maximisation of the velocity of 
the fluid. On the other hand, as per ‘No-Slip’ the 
boundary condition (16) the velocity of the fluid 
particles is zero at the walls of the pipe. 

By intigrating Eq. (14) with respect to r, keeping t as 
a constant, we obtaint 

  1( ) ( ).
2rz

gr
S H t L f t

L


                             (17) 

Here 1( )f t is arbitarary function of t,by using  

(centerline) boundary condition (15) , we get 

 ( ) .
2rz

gr
S H t L

L


                                        (18) 

Now by using Eq. (18) in the constitutive equations, 
the arrangement of Eqs. (3) and (4) is,   

rz
rzz S

S

S

r

v























 1

2

10

1
1




 (19) 

We consider |ܵ௥௭| as positive because of drainage 
flow problem, therefore for relaxing to the absolute 
condition and by using Eq. (18) in Eq. (19), we get 
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on integrating (20) with respect to r, we have: 
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Where 2 ( )f t is an arbitarary function of t, after 

using no slip consition, we get 
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Hence Eq. (21) reduces to  
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3.1 Flow Rate, Average Velocity, Shear 
Stress on the Pipe and the Relation of Time 
with Depth of the Fluid for Complete 
Drainage 

The “flow rate Q” per unit width is specified through 
the formula 

. ),(2),(=
0

2

0 0

drtrrvdrdtrvrQ z

R

z

R


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(24)

 
Using velocity profile (23) in Eq. (24), the flow rate 
can be calculated 
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We determine the average velocity, V by using the 
following formula (26) 

.=
2R

Q
V


                                                           (26) 

So by the use of Eq. (25) in Eq. (26), average velocity 
of the fluid can be 
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Shear stress on the pipe is given by 

 .)(
2

| = LtH
L

gR
S Rrrz 







                             (28) 

Mass balance over the entire tank is 

  ).(=)(2 tQtHR
dt

d
T   (29) 

Substituting flow rate from Eq. (25) into Eq. (29), 
and rewite the differential equation as following 
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(30) 

Intigrate to Eq. (30) on both sides, we get
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By means of initial condition H(t) = H0  at t = 0 for 
tank drainage, we acquire that  
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The fluid elevation in the tank then descends slowly 
agreeing to 
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and the time required for complete drainage for Ellis 
fluid is obtained by taking H(t) = 0, in 
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4. SPECIAL CASES: NEWTONIAN, 
POWER LAW, BINGHAM PLASTIC 

FLUIDS  

4.1 Newtonian Fluid 

When yield stress is very high, mathematically 

for	൬ܵభ
మ
	→ 	∞൰, Ellis solutions reduces to the 
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Newtonian fluid (Papanastasiou, 1994), that is 
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, which provides a reasonable estimate for the Tank 
drainage for Newtonian fluid. 

4.2 Power-law Fluid 

For substitution ൬ܵభ
మ
ൌ ଴, ߙ ൌ 	

ଵ

௡
൰ Ellis solution 

gives the result for Power law fluid (Bird, Stewart 
and Lightfoot, 2002), 
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By using Eq. (41) in (29), we will get 
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, and time required for complete drainage from a tank 
for Power law fluid is by taking H(t) = 0 in  
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4.3 Bingham Plastic Fluid  

This fluid is defined by the model: 
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Thus, for stresses larger than S0 Eq. (19) is simplified 

to (45) by setting ൬ܵభ
మ
ൌ ܵ଴, ߙ ൌ 	0൰ while for 

0SSrz  (46) is obtained from (3) for the reason 

highly viscous and also yield stress is very high. 
From Eq. (18), which upon substitution of S0 for Srz 

yields the distance between the radius of the pipe r1 
beyond which Eq. (46) holds: 
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The volume flow rate is given by 
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Through using equation number (47) and (48), in 
equation number (49), we will get total flow rate 

 
2

1

0
= ( ) .

2 4

g r
Q H t L

L

 




 
2 2

1 13(2 ) 4(2 3 )R r r R      (51) 

By using Eq. (50) in Eq. (26), the average film 
velocity will be, 
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Making the use of Eq. (50) in (29) we will get 
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, and the time required for complete drainage from a 
tank for Bingham plastic fluid is by taking H(t) = 0 in 
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Fig. 2. Effect of ࢻ on velocity profile for Ellis 
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Fig. 3. Effect of ૙on velocity profile for Ellis 
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Fig. 4. Difference of H(t) on the velocity profile 
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Fig. 6. Effect of ࢻ on depth for Ellis fluid, 
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Fig. 7. Effect of RT on depth for Ellis fluid, 
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5. RESULTS AND DISCUSSION 

In this work, we examined unsteady tank drainage 
problem by means of  an isothermal, incompressible 
Ellis fluid, through which exact results for the non-
linear differential equation were obtained. The 
variation of velocity profile vz and depth H(t) has 
been investigated on different parameters. The 
effects of the Ellis index ߙ, length of pipe L, 
viscosity	଴, depth of the tank H(t) on velocity 
profile are detected through Figs. 2-5, and effect of 
the  ,radius of the tank RT, and the depth H(t) is 
shown in the Figs. 6 and 7. In the Fig. 2, it is observed 
that the magnitude of velocity increases with the 
increase in Ellis index	ߙ. This explains that the 
magnitude of velocity decrease with the decrease of 
fluid viscosity. The effect of ଴ and H(t)on velocity 
profile vz is shown in the Figs. 3-5. In these figures, 
it can be noticed that as ଴ and H(t) increase, the 
magnitude of the velocity distribution also increases; 
and vice versa. The velocity distribution, viscosity, 
radius of the pipe, and the depth of the tank are found 
to be interlinked with each other. The length of the 
pipe is also found to be inversely proportional to the 
velocity profile, which can be seen in Fig. 5. The 
effects of Ellis index  and radius of the tank RT on 
height of the fluid in tank H(t), are shown in the Figs. 
6 and 7. An increase in ߙ	causesdecrease in the depth 
of fluid	ܪሺݐሻ; and the depth increases when radius of 
tank is increased. A comparison of depth of Ellis 
fluid with its special cases is presented in Table 1-
with fixed parameters-, which are mentioned in 
caption of the table. The results presented in Table 1 
are computed numerically. Tabulated data showing 
depth at various times indicates that the depth of Ellis 
fluid is lower than the depth of its special cases. This 
also explains the reason that velocity profile of Ellis 
fluid is higher than its special cases. 

6. CONCLUSION  

Considering equation for unsteady tank drainage 
flow for incompressible and isothermal Ellis fluid, 
we have obtained exact solutions for the proposed 
model. Also we have exactly retrieved the special 
cases for Ellis model, such as Newtonian, Power law, 
and Bingham plastic. A relationship between (33), 
(34), and the variation in time and the depth is 
derived. It is, noted that as the fluid becomes thicker, 
the velocity of the fluid increases; and it is also 
important to note that Ellis fluid drains quickly as 
compared to its special cases. 
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