3D Analyze of the Cavitation Mechanism in Turbulent Flow using Partially-Average Navier Stokes Model around the Clark-y Hydrofoil

Authors

Laboratory of Hydraulic and Environmental Modeling, National Engineering School of Tunis, University of Tunis EL MANAR, 1002 Tunis, Tunisia

Abstract

In order to accurately and reliably analyze in details the cavitation mechanism and their impact on flow structures, a three-dimensional unsteady .cavitating .turbulent .flow .around .the .three-dimension .Clark-y .hydrofoil .is .investigated .be .using .a Partially-Average Navier Stokes (PANS) model based on Shear Stress Transport (SST). To track the interface of the liquid and the vapor, a Volume of Fluid (VOF) model is employed based on homogeneous mixture approach. To capture the interaction between the cavitation and the flow structure, a bridging method (PANS) between RANS and DNS have been chosen. This technique is able to resolve the unsteady turbulent structures by employing a more consistent methodology. The present numerical .results .are .validated .with .experimental .data. .The .interaction .between .the .cavitation .and .the .fluid .vortex .is .analyzed .and discussed. The numerical results show the capability of the presented model to predict the re-entrant jet and cavitation cloud shedding accurately.

Keywords