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ABSTRACT 

The coefficient adaptation problem is often encountered in CFD simulations. The accuracy of simulation 
results depends much on the empirical coefficients of mathematical models. Cavitation simulation is a typical 
application of CFD. Researchers have proposed methods to optimize the empirical coefficients of the 
cavitation model. However, these methods can only acquire constant values which aren’t adaptive to all the 
operating conditions. This paper focused on the condensation and the evaporation coefficients of the Zwart 
model and considered quasi-steady cavitating flows around a 2-D NACA66(MOD) hydrofoil. For the first 
time, we gave a formal description of the coefficient adaptation problem, and put forward a method to model 
the relationship between the best coefficient values and the operating conditions. We designed and 
implemented the coefficient adaptation platform combining OpenFOAM, and validated the best coefficient 
values predicted by our method. The overall results show the predicted coefficient values result in an increase 
of accuracy by 12% in average, compared with the default values and the tuned values by Morgut, thus 
indicating our method can effectively solve the coefficient adaptation problem for the Zwart model. We 
believe the proposed method can be extended to other mathematical models in practical uses. 
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1. INTRODUCTION

Cavitation is the phenomenon that occurs inside a 
liquid medium or on the surface of liquid and solid 
medium with the process of formation, development 
and collapse of cavities(or bubbles). It is commonly 
observed inside or on the surface of fluid machinery 
such as water airfoils, hydraulic turbines, pumps 
and marine propellers. Due to the geometry of the 
system, cavitation appears in low pressure regions 
of the flowing liquids where local pressure drops 
below a certain threshold value. In these examples, 
the occurrence of cavitation is undesirable because 
it usually leads to negative effects such as vibration, 
noise and material erosion (Brennen 1995; Franc 
and Michel 2005). It is critical to study the 
mechanism of cavitation in order to reduce the 
losses in industrial applications. 

With the fast development of computer techniques 
in the last few decades, CFD (Computational Fluid 
Dynamics) methods have been playing an 
increasingly important role in investigating 

cavitation because of less consumption of both time 
and resources compared to physical experiments. 
To describe the process of cavitation, researchers 
have developed numerous cavitation models, which 
can be divided into two categories, namely interface 
tracking models (Hirschi, Dupont, Avellan, Favre, 
Guelich, Handloser, and Parkinson 1998; Senocak 
and Wei 2004) and homogeneous equilibrium 
models (Merkle, Feng, and Buelow 1998; Kunz, 
Boger, Stinebring, Chyczewski, Lindau, Gibeling, 
Venkateswaran, and Govindan 2000; Schnerr 2001; 
Singhal, Athavale, Li, and Jiang 2002; Philip J. 
Zwart 2004). The former models are limited to two-
dimensional planar or axisymmetric flows and 
difficult with three-dimensional simulation. The 
latter assume cavitating flows to be homogeneous 
and isothermal and solve the variation of the 
mixture density in the multiphase flow using a 
barotropic equation of state or a transport equation. 
However, baratropic equation of state cannot 
capture the dynamics of unsteady cavitating flows 
(Senocak and Shyy 2002); on the contrary, applying 
transport equations can simulate both steady and 
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unsteady cavitating flows. In the approach of 
transport equation models, an additional transport 
equation for either the mass or volume fraction of 
vapor with source terms to regulate the mass 
transfer between the two phases is solved. In the 
past decades, numerous transport equation models 
were proposed such as the Merkle model (Merkle, 
Feng, and Buelow 1998), the Kunz model (Kunz, 
Boger, Stinebring, Chyczewski, Lindau, Gibeling, 
Venkateswaran, and Govindan 2000), the Schnerr-
Sauer model (Schnerr 2001), the Singhal model 
(Singhal, Athavale, Li, and Jiang 2002), the Zwart 
model (Philip J. Zwart 2004) and etc. They take into 
account different aspects of cavitating flows and 
imply different equations with evaporation and 
condensation rates to describe phase change. Most 
of these models include tunable parameters such as 
the condensation coefficient and the evaporation 
coefficient. Among them, the Zwart model has been 
integrated into commercial softwares such as 
ANSYS-CFX and fluent and widely used in 
simulating cavitating flows because of its 
effectiveness and stability (Philip J. Zwart 2004; 
Hagar Alm, Zhang, and Medhat 2012; Hou-lin, 
WANG, Deng-hao, Wei-min, and Ming-gao 2012). 

The empirical coefficients of the cavitation models 
will affect the accuracy of simulation. Although 
default values of the coefficients are usually 
provided, they cannot always result in desirable 
simulation results. Thus, optimization of the 
empirical coefficients has to be performed. In recent 
years, researchers have investigated how to acquire 
better coefficient values. Hou-lin Liu et al. tested 
the value of each one of the four empirical 
coefficients of Zwart model by different orders of 
magnitude while setting the other three coefficients 
by default (Liu, Wang, Wang, Zhang, and Huang 
2014). The results indicate the influence of each 
coefficient and the best order of magnitude for 
precise prediction. Morgut et al. tuned the empirical 
coefficients of the Zwart model, the Singhal model 
and the Kunz model respectively based on the 
simulation of the cavitating flow around the 
NACA66 (MOD) hydrofoil, using an optimization 
strategy driven by the modeFRONTIER 
optimization system, where three different 
cavitating flow regimes(different cavitation 
numbers) at the angle of attack of 4◦ were 
considered (Morgut, Nobile, Bilu, and Scaron 
2011). The tuned coefficients agreed relatively well 
with the corresponding experiments of the three 
regimes and were then applied in the prediction of 
other flow regimes related to the NACA66 (MOD) 
hydrofoil. Surrogate-based optimization was also 
applied by some researchers to calibrate the 
coefficients in the simulation of some cavitating 
flows (Tushar, Siddharth, Haftka, Wei, and Zhao 
2010; Zhao, Huang, Chen, Wang, Gao, and Zhao 
2017). In literature efforts were made for the 
purpose of obtaining fixed values of the empirical 
coefficients that may generally go well with 
simulations under different operating conditions and 
even in new flow systems. It should be noted that 
fixed values cannot always perform well when 
operating conditions change. Meanwhile, in 
practical engineering, using traditional optimization 

method to find the best coefficient values will 
consume lots of time and resources. The above 
issues generate demand for efficient and intelligent 
coefficient recommendation methods that help with 
the prediction of the best coefficient values adapted 
to certain operating conditions. It is of great 
significance to discover the relationship between 
the best coefficient values and the operating 
conditions using intelligent methods when more and 
more experimental measurements under different 
operating conditions have been acquired. 

Besides the cavitation model, the turbulence model 
also plays an important role in cavitation 
simulations. In literature, two common categories of 
the turbulence model have been proposed, namely 
Boussinesq-based eddy viscosity models and 
Reynolds stress models. The former category 
includes the zero-equation model, the Spalart-
Allmaras model and the two-equation models. The 
other category introduces a control equation of 
second order pulsation to form the second order 
moment closed model(Wilcox 1993). In actual 
engineering, the Spalart-Allmaras model and the 
two-equation turbulence models are widely used. 
These models can save computation time as well as 
produce simulation results which meet with 
engineering requirements. Among these models, the 
standard k − ε model (Launder and Spalding 1974) 
is one of the earliest two-equation turbulence 
models. It has been proved to have good 
performance in simulating the steady-state 
cavitating flows around the two-dimensional 
NACA66(MOD) hydrofoil(Singhal, Athavale, Li, 
and Jiang 2002; Morgut, Nobile, Bilu, and Scaron 
2011). 

Aiming at the issue mentioned above, we focused 
on the Zwart model and carried out research into the 
prediction of the best values of empirical 
coefficients, considering quasi-steady cavitating 
flows around a two-dimensional NACA66 (MOD) 
hydrofoil. For the first time, we give a formal 
description of the coefficient adaptation problem 
and solution. We put forward the coefficient 
adaptation model and corresponding method 
including two key modules: the optimization 
module and the prediction module, which can 
model relationship between the best coefficient 
values and the operating condition-s. We designed 
and implemented the coefficient adaptation 
platform for the Zwart model through the method 
mentioned above, combining the open source 
software OpenFOAM. Then we performed 
optimization of the condensation coefficient Fc and 
the evaporation coefficient Fe of the Zwart model 
and validated the predicted optimal coefficient 
values on the platform. The overall results indicate 
that our method can effectively solve the coefficient 
adaptation problem of the Zwart model and guide 
the configuration of the empirical coefficients under 
specific operating conditions. 

It should be noted that our coefficient adaptation 
method is not limited to the Zwart model, but can 
be extended to other cavitation models or even 
other CFD models with empirical coefficients. 
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In the following, the formal description of 
coefficient adaptation problem is presented first, 
followed by the CFD models used in our 
simulations. Then the coefficient adaptation model 
for the Zwart model and the corresponding method 
are described. The experiments and numerical 
results are reported followed by our concluding 
remarks. 

2. FORMAL DESCRIPTION OF 
COEFFICIENT ADAPTATION 
PROBLEM 

The coefficient adaptation problem is that for the 
simulation of a specific flow case, how to decide 
the best values of empirical coefficients making the 
simulation results in best agreement with the 
experimental data for different operating conditions. 
Before giving our coefficient adaptation method, we 
present the formal description of the coefficient 
adaptation problem. For a specific flow case Case, 
let D denote the calculating domain, M the 
mathematical models used to describe the flow, N 
the numerical methods involved in the simulation, I 
the initial conditions of the simulation, then the 
simulation results can be defined as: 

 , , ,CaseSim D M N I                                             (1) 

The initial conditions include the operating 
conditions and other initial settings. In later context, 
we replace I with O expressing the attention we pay 
to the operating conditions and neglect of other 
initial settings of the initial conditions. M consists 
of several mathematical equations, each of them 
containing none or several empirical coefficients. 
Let the empirical coefficients be the independent 
variables, then the equations may take the form as: 
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Here, 1, ,
ii ipc c  are the empirical coefficients in 

the ith equation, and pi ≥ 0 (i = 1,··· ,m). Specially, 
pi = 0 means there is no coefficient in the ith 

equation. Let  111 1 1, , , , , ,
mp m mpc c c c   C  

represent the vector consisting of all the empirical 
coefficients, and M(C) denote the mathematical 
models M with the coefficients C. Because the 
coefficient adaptation problem focuses only on the 
relationship between the coefficients C and the 
operating conditions O, we simplify Eq. (1) as: 

  ,Sim M C O                                                     (3) 

Let ExpO denote the experimental data related to O, 
then we define the distance between the simulation 
results and experimental data specifically for C and 
O as fO(C)(which will be called the objective 
function from now on): 

    ,f Sim O OC M C O Exp                       (4) 

Here, we redefine the combined meaning of the 
absolute value sign and the minus sign, representing 
a feasible way of calculating how far the simulation 
results deviate from the experimental data. Let 

BestO
C  denote the best values of coefficients under 

the operating conditions O, then the formal 
description of coefficient adaptation problem can be 
given as: 

 Best argmin f   O OC C                                    (5) 

We assume that the best values of the coefficients 
will change with the operating conditions, which 
can be described by a mathematical equation. Let 
CBest = (c1,··· ,cr) ∈  denote the r-dimensional 
vector of all the coefficients, O = (o1,··· ,os) ∈  the 
s-dimensional vector consisting of s operating 
condition components, , then the 
equation can be written as: 

 Best gC O                                                        (6) 

Here, g(O) is vector-valued with r components, and 
g represents a certain mapping rule from the domain 
ॹ to the domain ԧ . 

If such equation(s) shown in Eq. (6) is acquired, 
tedious work of simulation and calibration with 
experimental data before determining the best 
values of coefficients can be simplified. To the best 
of our knowledge, there exists no theory that 
demonstrate the relationship between the best 
values of coefficients and the operating conditions. 
Our idea is to analyze the potential relationship and 
figure out the function g via an efficient and 
intelligent method based on a set of discrete points 

 , , , 1, ,
i i

i Best i Best i t    
 

O C
O O

O C  

generated by Eq. (5). In this way, Eq. (6) acquired 
will have high congruency with Eq. (5), and for this 
reason, it can be the final instruction of configuring 
the empirical coefficients according to the operating 
conditions. 

3. COEFFICIENT ADAPTATION 
MODEL FOR THE ZWART 
MODEL 

In the present study, we considered the coefficient 
adaptation problem of the Zwart model based on the 
simulation of the quasi-steady cavitating flows 
around a two-dimensional NACA66 (MOD) 
hydrofoil. The mathematical models M involved 
were the continuity, the momentum equation for the 
liquid-vapour mixture, the volume fraction equation 
for the liquid phase, the cavitation model, and the 
turbulence model. For simplicity, we focused only 
on the empirical coefficients of the cavitation model 
and neglected those of other equations. In 3.1, 3.2 
and 3.3, the mathematical models related are 
introduced first, and in 3.4 the definition of the 
coefficient adaptation model for the Zwart model is 
given. 
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3.1   Governing Equations 

In this study, the multiphase flow was solved via 
the homogeneous equilibrium approach: 
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The above equations are, in order, the continuity, 
the momentum equation for the liquid-vapour 
mixture, and the volume fraction equation for the 
liquid phase. Phases are considered incompressible 
and all phases share the same velocity field. ui and 
uj(m/s) represent the components of time-averaged 
mixture velocity, P(Pa) the time-averaged pressure, 
ρm the density of the liquid-vapour mixture, ρl the 
liquid density, ρv the vapour density, αl the liquid 
volume fraction, αv the vapour volume fraction and 
αl + αv = 1, µm the dynamic viscosity of the liquid-
vapour mixture, µl the liquid dynamic viscosity, µv 
the vapour dynamic viscosity, µt the turbulence 

viscosity, m  the condensation rate, and m  the 
evaporation rate. The density and the dynamic 
viscosity of the liquid-vapour mixture are defined 
as: 

m l l v v

m l l v v
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                                            (10) 

In order to close the set of Eqs. (7),(8),(9), the 
turbulence viscosity µt and the interphase mass 
transfer rate need to be modeled. 

3.2   Turbulence Model 

Cavitation flows are high Reynolds and high 
turbulent flows. In this study, the standard k − ε 
turbulence model was adopted. In the literature, the 
standard k − ε turbulence model performs well with 
simulating steady-state cavitating flows around the 
two-dimensional NACA66(MOD) hydrofoil. The 
transport equations of the turbulence kinetic energy 
k and the dissipation rate ε are as follows: 
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where µt represents the turbulent viscosity, pk is the 
turbulent generation coefficient, C1ε, C2ε, σk and σk 
are constants. µt is calculated as below: 

2

t m
k

C  


                                                     (13) 

where Cµ is a constant. The values of the constants 
are as follows: 

 

Table 1 Constants of the standard k − ε model 

1C   C  C  k    

1.44 1.92 0.09 1.0 1.3 
 
 
To adapt to the Zwart model better, we modified µt 
according to (Philip J. Zwart 2004): 
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3.3   Cavitation Model 

The cavitation model used in this study was the 
Zwart model, which was derived from a simplified 
Rayleigh − Plesset equation (Brennen 2005): 
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where Pv is the saturated vapour pressure, αnuc is 
the nucleation site volume fraction, RB is the radius 
of a nucleation site, Fc and Fe are two empirical 
coefficients for the condensation rate and the 
evaporation rate, respectively. In (Philip J. Zwart 
2004), the default values of the above coefficients 
are given as: αnuc = 5×10−4, RB = 1×10−6m, Fc = 
0.01, Fe = 50. In literature, Fc and Fe are the 
calibration coefficients while the other two 
coefficients αnuc and RB are set by default (Morgut, 
Nobile, Bilu, and Scaron 2011). In our study, we 
only considered Fc and Fe, which directly control 
the cavitation process. Thus, C is expressed as C = 
(Fc,Fe). All the other coefficients are set with 
default values. 

3.4 Definition of Coefficient Adaptation 
Model for the Zwart Model 

The coefficient adaptation model for the Zwart 
model contains two key modules: the optimization 
module and the prediction module. The 
optimization module calibrates the empirical 
coefficients under limited number of operating 
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conditions and transfers the best values of the 
coefficients accompanied with the corresponding 
operating conditions to the prediction module, 
which will then model the relationship between the 
best values of the coefficients and the operating 
conditions. In the present study, we considered O as 
a vector consisting of three components: the angle 
of attack α of the NACA66(MOD) hydrofoil, the 
inlet velocity U∞ and pressure P∞, namely O = 
(α,U∞,P∞). The objective function fO(C) was defined 
as the sum of the differences between the numerical 
values and the experimental values of the pressure 
coefficient, measured at 12 locations along the 
suction side of the NACA66(MOD) hydrofoil, for 
each couple of C and O. 

 
12

1
PiSim PiExp

i

f C C


  O OO C                         (18) 

In the above equation, PiSimC
O

and PiExpC
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numerical value and the experimental value of the 
pressure coefficient at the ith location along the 
suction side of the hydrofoil under the operating 
condition O, respectively. PiSimC

O
is calculated as: 
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where Pi is the numerical value of the local pressure 
at the ith location along the suction side of the 
hydrofoil, Pref is the reference pressure, Pref = P∞. 

Assume that there is a set of limited number of 
operating conditions with corresponding 
experimental data ॹா௫௣ ൌ ሼࡻଵ,⋯ ሽ࢚ࡻ, ⊂ ॹ. In the 
optimization module, all the elements in ॹா௫௣ are 
processed by Eqs. (18) and (5) in order to get the set 

of optimization results ॱ ൌ ቄሺࡻ௜, ௜ࡻ|஻௘௦௧ೀ೔ሻ࡯ ∈

ॹ, ஻௘௦௧ೀ೔࡯ ∈ ԧ, ݅ ൌ 1,⋯ ,  ቅ. We used Opt() as theݐ

function to represent the optimization process: 

ॱ ൌ ,ሺॹா௫௣ݐ݌ܱ  ሻ                                              (20)࡯

Later, the prediction module will perform on ॱ to 
model the potential relationship between the best 
values of the coefficients C = (Fc,Fe) and the 
operating conditions O = (α,U∞,P∞). Here, we 
neglected the interaction between Fc and Fe, and 
separately considered their relationship with α, U∞ 
and P∞. Let 

cFM  and 
eFM  be the relationship 

models related to the two coefficients Fc and Fe 
respectively. We used Train() as the function to 
represent the modeling process: 

   ,
c eF FM M Train E                                      (21) 

Let FcBest and FeBest denote the best values of Fc and 
Fe, which can be predicted by 

cFM  and 
eFM  

respectively: 
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Equations (20) and (21) comprise the mathematical 
form of the coefficient adaptation model for the 
Zwart model. It should be noted that 

cFM  and 

eFM  can be trained and generated by different 

modeling methods, which can be treated as 
independent modules. In our study, we adopted one 
of the neural networks, the Radial Basis Function 
Neural Network(RBFNN) as the intelligent method 
to predict optimal coefficients. RBFNN has its 
outstanding advantages: It can approach any 
complicated nonlinear function relations and deal 
with the unanalyzable regularity in the system; It 
has good generalization ability and fast learning 
convergence speed. Thus, RBFNN has been 
successfully applied in time series analysis, pattern 
recognition, image processing, system modeling 
and other fields (Bellovin 2003; Lee and Ko 2009; 
Han, Chen, and Qiao 2011; Meng, Wu, Lu, and Toh 
2002; Lu and Zhou 2009). 

4. DESIGN AND IMPLEMENTATION 
OF COEFFICIENT ADAPTATION 
METHOD 

As previously described, the coefficient adaptation 
model for the Zwart model contains the 
optimization module and the prediction module. 
The general framework is shown in Fig. 1. Firstly, 
the operating conditions and the corresponding 
experimental data are input to the whole system, 
and then the optimization module will generate an 
optimization case for each operating condition 
respectively. After that, the optimization module 
will create copies of the optimizer, which conducts 
the calibration of Fc and Fe for each optimization 
case. All the optimizers work in parallel and after 
all the optimization work is done, the optimization 
results will be collected and sent to the prediction 
module, which will build the relationship model to 
predict the optimal coefficients according to 
operating conditions. 

The aim of coefficient optimization is to obtain the 

set of optimization results ॱ ൌ ቄሺࡻ௜, ௜ࡻ|஻௘௦௧ೀ೔ሻ࡯ ∈

ॹ, ஻௘௦௧ೀ೔࡯ ∈ ԧ, ݅ ൌ 1,⋯ ,  ቅfor modeling use. Theݐ

optimizer in the optimization module applies the 
surrogate-based sequential approximate 
optimization (SAO) method to acquire the best 
values of the empirical coefficients. The SAO 
method introduces the approximate model 
technique to the process of optimization and adopts 
an effective approach of renewing the sampling 
points, which can remarkably reduce time cost and 
resources. For this reason, it has been widely used 
in complex engineering optimization. (Queipo, 
Haftka, Wei, Goel, Vaidyanathan, and Tucker 2005; 
Kleijnen 1986; Forrester and Keane 2009) We 
implemented the SAO method specifically for our 
research goal. The SAO method mainly consists of 
three parts: preconditioning, approximate modeling 
and renewing of sampling points. The process of the 
SAO method is shown in Fig. 2. 

Preconditioning deals with the scale unification 
between the two design variables Fc and Fe, the 
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selection of the initial sampling points, namely the 
initial values of the design variables, and simulation 
at the sampling points, the aim of which is to 
calculate the values of the objective function based 
on numerical results and to prepare for the 
approximate modeling. We applied the Optimal 
Latin Hypercube Design (OLHD) method to 
conduct the optimal selection of the initial sampling 
points within the design space (Park 1994). The 
design space is expanded referring to (Morgut, 
Nobile, Bilu, and Scaron 2011): 

0.0001,0.1

5,1000

c

e

F

F

    


   
                                              (23) 

 

 
Fig. 1. General framework of the coefficient 

adaptation method. 
 

 

 
Fig. 2. Process of the SAO method. 

Approximate modeling builds a surrogate model 
using fitting and interpolation based on radical basis 
function network (Thomspson and Alexandra 1996) 
to predict the optimal values of Fc and Fe which 
combine to minimize the objective function. In 
order to validate the surrogate model, simulation 
will be performed with the predicted values of the 
coefficients to acquire the numerical results that can 
be used to calculate the objective function. If 
deviation between the calculated values and the 
predicted values of the objective function is 
undesirable, then the surrogate model will be 
reconstructed. Above steps will be repeated until 
the desirable surrogate model and the corresponding 
optimal values of the coefficients are found. 
Renewing of sampling points helps with the 
reconstruction of the surrogate model by adding a 
sampling point for building the surrogate model, 
using a Pareto front sampling method (Hughes 
2003) to determine the new sampling point. The 
termination criteria is used to terminate the 
algorithm iteration process. A high-efficiency 
convergence criteria can drastically reduce 
unnecessary computational consumption. In our 
study, the two-step termination criteria was applied 
(Wang, Hu, Ma, Wu, and Zhang 2014): 

1. If the new sampling point no longer contributes 
to the surrogate model updating. 

2. If the new sampling point no longer contributes 
to the performance of the surrogate model at the 
optimal point. 

The implementation of SAO approach was 
validated by solving Eq. (24) mentioned in (Wang, 
Hu, Ma, Wu, and Zhang 2014) before allocated into 
the optimizer. The evaluation results were similar to 
those given by (Wang, Hu, Ma, Wu, and Zhang 
2014), which proved the effectiveness and 
efficiency of the implementation. 

   
 

2 4 2
1 1 1 1 2

2 2
2 2 1 2

1 2

4 2.1 / 3

4 4

2 , 2

min f x x x x x x

x x x x

x x

   

   

  

         (24) 

The optimizer will output the operating condition 
and the corresponding best values of the empirical 
coefficients after the iteration process terminates. 
Finally the prediction module will invoke the 
RBFNN module to build the relationship model 
after receiving the set of optimization results. 

5. VALIDATION AND EVALUATION 

5.1   Platform 

Our tests were carried out on a HPC cluster situated 
in the State Key Laboratory of High Performance 
Computing, China. This hardware platform consists 
of hundreds of computing nodes connected via 
InfiniBand network with a total bandwidth of 40 
Gb/s, and each computing node contains two 
hexcore 2.1 GHz Intel Xeon E5-2620 CPUs and 16 
GB memory. The operating system of the cluster is 
Red Hat Enterprise Linux Server 6.5, on which 
OpenFOAM versioin 2.3.1 is installed. OpenFOAM 
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is an open source software for CFD which allows 
user-defined solvers and has good parallel 
computing capability. The solver used in our study 
was the interPhaseChangeFoam, which can solve 
multiphase flows. Because the 
interPhaseChangeFoam hasn’t included the Zwart 
model, we programmed the Zwart model first and 
then implemented the coefficient adaptation 
platform for the Zwart model combined with 
OpenFOAM. In the prediction module, we invoked 
the RBFNN tools from MATLAB software to 
model the relationship between the optimal 
coefficients and the operating conditions. 

5.2   Mesh and Case Setup 

In the present study we considered the 
NACA66(MOD) hydrofoil with a camber ratio of f 
/c = 0.020, a NACA meanline of a = 0.8 and a 
thickness ratio of t/c = 0.9, where f is the maximum 
thickness, t the maximum camber and c the chord 
length of the hydrofoil section. The experimental 
data was from the measurements carried out by 
Shen and Dimotakis et al. in the High-Speed Water 
Tunnel of the California Institute of Technology 
(Dimotakis, Gaebler, Hamaguchi, Lang, and Shen 
1987). In their experiments, the chord length of the 
hydrofoil model was c = 0.150m. During the 
experiments, leading edge sheet cavitation and 
midchord cavitation were investigated with the 
hydrofoil model placed at several angles of attack. 
In our study, we chose all the cases (28 in total) 
with definite experimental results under different 
combinations of the angle of attack α, the inflow 
velocity U∞ and the inflow pressure P∞. 

Rectangular domains were used in order to simulate 
the flows around the hydrofoil at different angles of 
attack. All the meshes were hexa-structured and 
generated using the ANSYS ICEM CFD 17.0 tool. 
It should be emphasized that although OpenFOAM 
can simulate two-dimensional flows, it can only 
support three-dimensional meshes. The original 
two-dimensional meshes from ICEM were 
converted to three-dimensional ones with small 
thickness by OpenFOAM’s built-in tools. The 
boundary type of the additional two faces(Front and 
Back) of the three-dimensional meshes was set to 
“empty” in OpenFOAM, in order to achieve two-
dimensional simulations. The computational 
domain and the imposed boundary conditions are 
shown in Fig. 3. The meshes were set as follows: 

1. The Inlet and Outlet boundaries were placed 
respectively 3 chord lengths ahead of the 
leading edge, and 5 chord lengths behind the 
trailing edge. The Top and Bottom boundaries 
were placed 2.5 chord lengths from the 
hydrofoil. 

2. Average values of y+ on the hydrofoil surfaces 
were 30. y+ was defined as y+ = (µτy)/ν where µτ 
was the friction velocity, y the normal distance 
from the wall, ν the kinematic viscosity. 

3. On solid surfaces (Top, Bottom, Hydrofoil) the 
no-slip condition was applied. 

4. The type of Front and Back boundaries was set to 

“empty” in OpenFOAM. 

 

 
Fig. 3. Computational domain of the 

NACA66(MOD) hydrofoil and the imposed 
boundary conditions. 

 
Before operating on the coefficient adaptation 
platform, the study of the influence of the mesh 
resolution was carried out in fully wetted(non-
cavitating) conditions. This investigation was 
performed on the hydrofoils at all the angles of 
attack concerned in our study, by monitoring the 
influence of the progressively finer meshes on the 
lift coefficient CL and the drag coefficient CD. 
During the mesh refinement, the distances of the 
first nodes from the solid surfaces were kept 
unchanged, in order to perform a consistent mesh 
independence study. 48 processes for parallel 
simulation were allocated, which was also 
configured in the optimization module. CL and CD 
are defined as follows: 

   2 21 / 2 1 / 2
L D

L D
F F

C C
U S U S 

 
 

             (25) 

where S = c × d is the planar surface with d equal to 
the span. The span in our study was set to d = 
0.01m, which was the same as the thickness of the 
meshes. 
 

Table 2 Results of the mesh independence study 
carried out for NACA66(MOD) at α = 4◦ and 

Re= 2 × 106. 
Mesh Nodes CL CD 

Coarse 41788 0.652 0.0017 

Mid 97123 0.654 0.0018 

Fine 186433 0.647 0.0019 

Exp.  0.629 0.0018 

 
Simulations under fully wetted conditions were 
conducted for all the angles of attack. Take the 
hydrofoil at α = 4◦ as an example. The value of 
the free-stream velocity on the Inlet boundary 
was set to U∞ = 12.2m/s(Re = 2 × 106) and the 
value of the static pressure on the Outlet 
boundary was set to 202650Pa. Table 2 shows 
the results of the mesh independence study. From 
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the table, small differences among the three 
meshes can be seen as well as the acceptable 
difference from the experimental measurements. 
In Fig. 4 the pressure distributions along the 
surface of the hydrofoil computed from different 
meshes are very close to each other, and the 
suction side pressure distributions(the upper 
lines) for different meshes all compare favorably 
with the experimental measurements. Under the 
fully wetted condition, neither cavitation nor flow 
separation was found from these single-phase 
simulation results, which is in line with the 
experimental measurements. The same 
conclusion can be made in the mesh 
independence study of other angles of attack. 
Judging from better convergence compared with 
the coarse resolution meshes and less time cost 
compared with the fine resolution meshes, the 
mid resolution meshes were chosen in the 
following study. Figure 5 shows the mid 
resolution mesh around the NACA66(MOD) 
hydrofoil at α = 4◦ and the close view of the 
leading edge region. 

 

 
Fig. 4. Pressure distributions along the suction 
side (the upper lines) and the pressure side (the 

lower lines) of the NACA66(MOD) hydrofoil, for 
different mesh resolution levels at non cavitating 

flow conditions and at α = 4◦, Re = 2 × 106. 

 
In simulating cavitating flows, we had, for each 

case and the corresponding computational 
mesh, the following settings besides those 
mentioned in mesh resolution study: 

1. The value of the free-stream velocity on the 
Inlet boundary and the value of the static 
pressure on the Outlet boundary were set 
respectively equal to the U∞ and P∞ 
corresponding to each case. Initial water and 
vapour volume fractions were set to 1 and 0, 
respectively. 

2. In all the simulations the water and vapour 
density were kept constant and equal to ρl = 
997kg/m3 and ρv = 0.02308kg/m3. Assuming a 
turbulence intensity of 1%, the turbulent kinetic 
energy k and the turbulent dissipation rate ε 
were set equal to k = 0.0233m2/s2 and ε = 
0.1837m2/s3. The saturated vapour pressure of 
water was Pv = 3169Pa. 

5.3   Implementary Methodology 

The aim of our tests was to validate the coefficient 
adaptation method for the Zwart model. After 
receiving the input of the operating conditions and 
experimental data of the 28 cases, the coefficient 
adaptation platform will generate and configure 
optimization cases on OpenFOAM as mentioned in 
5.2, and activate the optimization module to 
perform parallel optimization work, whose results 
will be sent to the prediction module. In the 
prediction module, the optimization results of 3/4 of 
the cases were chosen randomly (covering all the 
angles of attack) as the training set to build the 
relationship model. The rest 1/4 cases (which will 
be called the test cases from now on) were used for 
subsequent validation of the model. For each test 
case, the best values of the coefficients 

 ,
i ipredicted cpredictedFC  iepredictedF  with 

  , , 1, ,7
i ii i U P i    O  according to the 

relationship model were predicted. 

We used the following equation to evaluate the 
predicted values of the coefficients: 
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The smaller ErrPredicted is the closer to the best 
simulation results, thus the more consistent with the 
experimental data. Moreover, we tested the default 
values in (Philip J. Zwart 2004) and the tuned 
values in (Morgut, Nobile, Bilu, and Scaron 2011). 

We replaced 
ipredictedC  in Eq. (26) with 

iDefault C (0.01,50) and 
iMorgut C (0.03,300) 

respectively, and compared the results ErrDefault and 
ErrMorgut with ErrPredicted . 

5.4   Results and Discussion 

The optimization results of the 28 cases yielded 
from the optimization module are shown in Table 3. 
CBest = (FcBest , FeBest) denotes the best values of the 
empirical coefficients. The cavitation number σ in 
Table 3 is calculated as: 

21

2

v

l

P P

U
 







                                                       (27) 

The number of iterations and mean CPU time in the 
SAO approach for each case are shown in Fig. 6. It 
is possible to see the efficiency and stable 
performance of the SAO approach from the figure. 
In this study, the number of iterations went from 
128 to 185. It presents similar level of efficiency to 
the literature (Wang, Hu, Ma, Wu, and Zhang 
2014). By allocating 48 processes for simulation 
during each single iteration, the mean CPU time 
was kept in the range of 6000 to 9000 seconds. The 
optimization results were collected after all the 
cases were done, and thus there would be a waste of 
waiting time. As the iterations and mean CPU time 
among the cases were relatively close, the waiting  
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Fig. 5. Mid resolution mesh around NACA66(MOD) at the angle of attack of α=4◦;large view(left), close 

view(right). 
 

Table 3 Optimization results corresponding to all the 28 cases. The cases labeled M are for modeling 
use while those labeled V are for validation 

No. σ α(º) U∞(m/s) P∞(Pa) FcBest FeBest Label 

1 0.45 1 18.18 77290.23 0.0845 812.82 M 

2 0.42 1 18.20 73153.37 0.0556 889.44 V 

3 0.38 1 18.25 66396.51 0.0351 802.73 M 

4 0.35 1 18.30 61501.23 0.0739 778.87 M 

5 0.34 1 18.28 59708.6 0.0688 945.30 M 

6 0.64 2 9.13 29854.3 0.0847 870.77 M 

7 0.55 2 9.12 26062.18 0.0640 735.13 V 

8 0.51 2 9.16 24545.33 0.0357 400.27 M 

9 0.48 2 9.19 23235.33 0.0171 583.71 M 

10 1.24 3 17.93 201258 0.0595 879.68 M 

11 1.12 3 8.94 47780.67 0.0426 833.48 V 

12 1.71 4 12.01 125898.3 0.0908 945.28 M 

13 1.12 4 12.03 83978.14 0.0411 710.92 M 

14 0.99 4 12.01 74601.27 0.0598 868.62 M 

15 0.91 4 12.01 68327.04 0.0817 618.40 V 

16 0.84 4 12.00 63569.66 0.0778 889.44 M 

17 0.77 4 12.05 58536.49 0.0533 745.05 M 

18 1.03 4 8.06 36542.21 0.0516 611.19 M 

19 0.94 4 8.10 33991.15 0.0767 303.46 V 

20 1.01 4 18.14 168507.9 0.0394 493.41 M 

21 0.95 4 17.88 155201 0.0880 408.05 M 

22 0.89 4 17.89 144927.8 0.0319 682.63 M 

23 3.12 6 11.98 226354.9 0.0963 817.99 M 

24 1.82 6 11.95 132448.3 0.0124 895.19 M 

25 1.48 6 12.00 109764.5 0.0652 926.00 V 

26 1.25 6 12.03 93561.85 0.0852 592.29 M 

27 1.13 6 12.04 85012.35 0.0868 655.62 M 

28 0.98 6 12.08 74739.17 0.0228 954.53 V 
 

 

time was accept-able compared to the total CPU 
time cost in the optimization module. An example 
of the iterative convergence is demonstrated in Fig. 
7. It presents the convergence curve of the objective 
function in Case 15. As is shown in the figure, the 
minimum of the objective function, which 
corresponds to the optimal values of the empirical 
coefficients, is found after 144 iterations. Moreover, 

the accuracy of the optimization approach can be 
seen in Figs. 8 and 9, by comparing the best 
simulation results with the experimental data. 

21 sets of optimization results were randomly 
chosen (covering all the angles of attack) as the 
input to the RBFNN(labeled M in Table 3) to build 
the relationship model. The predicted optimal 
coefficients by the relationship model CPredicted =  



W. Jin et al. / JAFM, Vol. 11, No. 6, pp. 1665-1678, 2018.  
 

1674 

 
Fig. 5. Mid resolution mesh around NACA66(MOD) at the angle of attack of α=4◦;large view(left), close 

view(right). 

 

 
Fig. 6. Number of iterations (bottom) and mean CPU time (top) in the SAO approach for each case. 
The dash lines represent the average of the number of iterations and the average of the mean CPU 

time, respectively. 
 

 
(FcPredicted ,FePredicted) of the 7 test cases (labeled V in 
Table 3) are shown in Table 4. For each test case, 
simulations with CBest , CDefault , CMorgut and CPredicted 
respectively were carried out. With the simulation 
results we calculated the corresponding values of 
the objective function fO(C), as shown in Table 5. 
Preliminarily we can see the predicted values are 
better than the default values and the Morgut values 
in overall. 
 
Table 4 Predicted values of Fc and Fe for the test 

cases. The number of the case is in agreement 
with Table 3 

No. σ α(º) FcPredicted FePredicted 

2 0.42 1 0.0717 866.41 

7 0.55 2 0.0433 618.65 

13 1.12 4 0.0763 878.00 

15 0.91 4 0.0702 809.41 

19 0.94 4 0.0459 644.57 

25 1.48 6 0.0699 701.28 

28 0.98 6 0.0647 656.97 

Table 5 Objective function calculated from the 
simulation results of the test cases with 

respectively four pairs of empirical coefficients 
No. Best Default Morgut Predicted 

2 0.764 0.774 0.785 0.787 

7 0.124 0.237 0.238 0.157 

13 0.188 0.237 0.238 0.206 

15 0.285 0.298 0.302 0.293 

19 0.282 0.309 0.301 0298 

25 0.477 0.499 0.493 0.499 

28 1.238 1.292 1.284 1.239 

 
Further observation of the pressure distributions 
along the surface of the hydrofoil is demonstrated in 
Fig. 8, and the cavitation patterns in Fig. 9. From 
the results given in Fig. 8, it seems that the pressure 
distributions along the pressure side (the lower 
lines) computed from different pairs of coefficient 
values are quite close to each other, but the suction 
side pressure distributions are obviously different. It 
can be concluded that the condensation and the 
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evaporation coefficients mainly influence the low-
pressure area where cavitation occurs. In Case 2, 
midchord cavitation is observed over the hydrofoil 
at α = 1◦, and that the lengths of cavity obtained 
with CDefault , CMorgut and CPredicted are close to one 
another and are all much larger than that obtained 
with CBest . It should be noted that even the best 
simulation results differ much from the 
experimental measurements. In Case 7 leading edge 
sheet cavitation at α = 2◦ is shown. Compared with 
CDefault and CMorgut , the cavity length obtained with 
CPredicted is shorter and closer to that obtained with 
CBest , and the suction side pressure coefficients are 
in better agreement with experimental 
measurements. Case 11, 15, and 19 show leading 
edge cavitation at α = 4◦. In Case 11 the effects of 
all the pairs of coefficients are quite similar and 
agree well with the experimental measurements. In 
Case 15 the cavity length obtained with CPredicted is 
smaller and the suction side distributions agree 
better with experimental measurements, compared 
with CDefault or CMorgut . In Case 19, all the pairs of 
empirical coefficients have almost the same effect 
on the cavity pattern and the suction side pressure 
coefficients, with a small difference in the 
prediction of pressure at the end of the cavity. Case 
25 and 28 show leading edge sheet cavitation at α = 
6◦. In Case 25 compared with CDefault and CMorgut , 
the cavity length obtained with CPredicted is closer to 
experimental measurements, but the prediction of 
pressure at the end of the cavity is less accurate. In 
Case 28 the effects of all the pairs of coefficients 
differ much from the experimental measurements, 
but we still can see CPredicted performs better than 
CDefault or CMorgut . In general, we can conclude that 
CPredicted is better than CDefault and CMorgut . 
 

 
Fig. 7. Iterative convergence curve of the 

objective function of Case 15. 

 
Table 6 Evaluation of CDefault , CMorgut and 

CPredicted 
ErrDefault ErrMorgut ErrPredicted 

0.318 0.319 0.194 

 
With Table 5 ErrDefault , ErrMorgut and ErrPredicted 
were calculated, as shown in Table 6. We can see 
ErrDefault and ErrMorgut are quite close to each other, 
indicating that the default values of the empirical 
coefficients result in similar accuracy with the 

Morgut values. Moreover, compared with the 
constant values, that is, the default values and the 
Morgut values, the predicted values of the empirical 
coefficients increase the simulation accuracy by 
about 12% in average. 

The overall results indicate that it is effective to use 
the coefficient adaptation method to solve the 
coefficient adaptation problem for the Zwart model 
and guide the configuration of the empirical 
coefficients under different operating conditions. 

6. CONCLUSION 

The coefficient adaptation problem is often 
encountered in CFD simulations. The accuracy of 
the simulation results depends much on the 
empirical coefficients of mathematical models. In 
literature, constant values of empirical coefficients 
are applied regardless of the operating conditions, 
and thus they cannot meet the needs of all operating 
conditions with good performance. Cavitation 
simulation is a typical application of CFD. Many 
modeling methods have been proposed to simulate 
cavitating flows in many cases. A widely used 
method is to solve RANS (Reynolds Averaged 
Navier Stokes) equations with an additional 
transport equation including the cavitation model 
which describes the variation of the volume fraction 
of the liquid phase. In cavitation simulations, 
researchers have proposed methods of obtaining the 
best values of the empirical coefficients of the 
cavitation model. However, these methods can only 
acquire constant values which aren’t adaptive to all 
the operating conditions. In our present study, we 
focused on the Zwart model and carried out 
research into the prediction of the best values of 
empirical coefficients, considering quasi-steady 
cavitating flows around a two-dimensional 
NACA66(MOD) hydrofoil. The main contributions 
of this paper are summarized as follows: 

1. For the first time, we gave a formal 
description of the coefficient adaptation 
problem and solution, and put forward the 
coefficient adaptation model and 
corresponding method including two key 
modules: the optimization module and the 
prediction module, which could model the 
relationship between the optimal coefficients 
of the CFD model and the operating 
conditions based on existed experimental 
measurements. 

2. We designed and implemented the coefficient 
adaptation platform for the Zwart model 
through the method mentioned above, 
combining the open source software 
OpenFOAM. Then we performed 
optimization of the condensation coefficient 
Fc and the evaporation coefficient Fe of the 
Zwart model and validated the predicted 
optimal coefficients on the platform. 

3. The overall results indicate that our method 
can effectively solve the coefficient 
adaptation problem of the Zwart model. The 
predicted coefficient values result in an  
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Fig. 8. Comparison of pressure distributions along the suction side(the upper lines) and the pressure 

side(the lower lines) of the NACA66(MOD) hydrofoil resulting from different pairs of empirical 
coefficients in the test cases. 

 

 
 

 
 

 
Fig. 9. Cavitation patterns resulting from different pairs of empirical coefficients (in order CDefault , 
CMorgut , CPredicted and CBest ) in the test cases. The color scale shows different values of water volume 

fraction αl.
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increase of accuracy by 12% in average, 
compared with the default values (Philip J. 
Zwart 2004) and the tuned values given in 
(Morgut, Nobile, Bilu, and Scaron 2011). 

We believe that the proposed method could be very 
useful in adaptively configuring the empirical 
coefficients of present, and also future, 
mathematical models in practical uses. 

ACKNOWLEDGMENTS 

The authors declare that there is no conflict of 
interest regarding the publication of this paper. The 
authors would like to thank the Key Research and 
Development Plan of Ministry of Science and 
Technology (Grant no. 2016YFB0201301) and the 
Science Challenge Program of CAEP (no. 
JCKY2016212A502 and TZ2016002) for funding. 

REFERENCES 

Bellovin, S. (2003). Icmp traceback message. 
Internet Draft, draft-ietf-itrace-04.txt. 

Brennen, C. E. (1995). Cavitation and bubble 
dynamics. Oxford University Press. 

Brennen, C. E. (2005). Fundamentals of Multi-
phase Flow. Cambridge University Press. 

Dimotakis, P. E., H. F. Gaebler, H. T. Hamaguchi, 
D. B. Lang, and Y. T. Shen (1987). Two-
dimensional naca 66(mod) hydrofoil high 
speed water tunnel tests. California Institute of 
Technology. 

Forrester, A. I. J. and A. J. Keane (2009). Recent 
advances in surrogate-based optimization. 
Progress in Aerospace Sciences 45(1), 50–79. 

Franc, J. P. and J. M. Michel (2005). Fundamentals 
of cavitation. Fluid Mechanics and Its 
Applications 76(11), 1–46. 

Hagar Alm, E., Y. S. Zhang, and E. Medhat (2012). 
A computational study of cavitation model 
validity using a new quantitative criterion. 
Chinese Physics Letters 29(6), 064703–1920. 

Han, H. G., Q. L. Chen, and J. F. Qiao (2011). An 
efficient self-organizing rbf neural network for 
water quality prediction. Neural Networks 
24(7), 717–725. 

Hirschi, R., P. Dupont, F. Avellan, J. N. Favre, J. F. 
Guelich, W. Handloser, and E. Parkinson 
(1998). Centrifugal pump performance drop 
due to leading edge cavitation: Numerical 
predictions compared with model tests. 
Journal of Fluids Engineering 120(4), 705–
711. 

Hou-lin, Wang, Deng-hao, Wei-min, and Ming-gao 
(2012). Research of inner flow in a double 
blades pump based on openfoam. Journal of 
Hydrodynamics, Ser. B 24(2), 226–234. 

Hughes, E. J. (2003). Multiple single objective 
pareto sampling. In Evolutionary Computation, 

2003. CEC ’03. The 2003 Congress on, pp. 
2678–2684 Vol.4. 

Kleijnen, J. P. C. (1986). Statistical tools for 
simulation practitioners. Marcel Dekker, Inc. 

Kunz, R. F., D. A. Boger, D. R. Stinebring, T. S. 
Chyczewski, J. W. Lindau, H. J. Gibeling, S. 
Venkateswaran, and T. R. Govindan (2000). A 
preconditioned navierstokes method for two-
phase flows with application to cavitation 
prediction. Computers and Fluids 29(8), 849–
875. 

Launder, B. E. and D. B. Spalding (1974). The 
numerical computation of turbulent flows. 
Computer Methods in Applied Mechanics and 
Engineering 3(2), 269–289. 

Lee, C. M. and C. N. Ko (2009). Time series 
prediction using rbf neural networks with a 
nonlinear time-varying evolution pso 
algorithm. Neurocomputing 73(1), 449–460. 

Liu, H. L., J. Wang, Y. Wang, H. Zhang, and H. 
Huang (2014). Influence of the empirical 
coefficients of cavitation model on predicting 
cavitating flow in the centrifugal pump. 
International Journal of Naval Architecture 
and Ocean Engineering 6(1), 119–131. 

Lu, N. and J. Zhou (2009). Particle swarm 
optimization-based rbf neural network load 
forecasting model. IEEE, 1 – 4. 

Meng, J. E., S. Wu, J. Lu, and H. L. Toh (2002). 
Face recognition with radial basis function rbf 
neural network. ieee trans neural netw. IEEE 
Transactions on Neural Networks 13(3), 697–
710. 

Merkle, C. L., J. Feng, and P. E. O. Buelow (1998). 
Computational modeling of the dynamics of 
sheet cavitation. 

Morgut, M., E. Nobile, Bilu, and I. Scaron (2011). 
Comparison of mass transfer models for the 
numerical prediction of sheet cavitation around 
a hydrofoil. International Journal of 
Multiphase Flow 37(6), 620–626. 

Park, J. S. (1994). Optimal latin-hypercube designs 
for computer experiments . Journal of 
Statistical Planning and Inference 39(1), 95–
111. 

Philip J. Zwart, Andrew G. Gerber, T. B. (2004). A 
two-phase flow model for predicting cavitation 
dynamics. In Icmf-2004, International 
Conference on Multiphase Flow. 

Queipo, N. V., R. T. Haftka, S. Wei, T. Goel, R. 
Vaidyanathan, and P. K. Tucker (2005). 
Surrogate-based analysis and optimization. 
Progress in Aerospace Sciences 41(1), 1–28. 

Schnerr, G. H., S. J. (2001). Physical and numerical 
modeling of unsteady cavitation dynamics. In 
Proceedings ICMF 2001- 4th International 
Conference on Multiphase Flow, New Orleans, 
USA, May 27 - June 1. 



W. Jin et al. / JAFM, Vol. 11, No. 6, pp. 1665-1678, 2018.  
 

1678 

Senocak, I. and S. Wei (2004). Interfacial 
dynamics-based modelling of turbulent 
cavitating flows, part-1: Model development 
and steady-state computations. Frontiers in 
Public Health 2(2), 141. 

Senocak, I. and W. Shyy (2002). Evaluation of 
cavitation models for navier-stokes 
computations. American Society of Mechanical 
Engineers Fluids Engineering Division Fed. 

Singhal, A. K., M. M. Athavale, H. Li, and Y. Jiang 
(2002). Mathematical basis and validation of 
the full cavitation model. Journal of Fluids 
Engineering 124(3), 617–624. 

Thomspson and R. C. Alexandra (1996). Radical 
basis function modelling and prediction of time 
series. Acs Nano 6(10), 8857–8867. 

Tushar, G., T. Siddharth, R. T. Haftka, S. Wei, and 
J. Zhao (2010). Surrogate model-based strategy 

for cryogenic cavitation model validation and 
sensitivity evaluation. International Journal 
for Numerical Methods in Fluids 58(9), 969–
1007. 

Wang, D., F. Hu, Z. Ma, Z. Wu, and W. Zhang 
(2014). A cad/cae integrated framework for 
structural design optimization using sequential 
approximation optimization. Advances in 
Engineering Software 76(3), 56–68. 

Wilcox, D. C. (1993). Turbulence modeling for cfd. 
Dcw Industries La Canada California Usa, 
363–367. 

Zhao, X., B. Huang, T. Chen, G. Wang, D. Gao, 
and J. Zhao (2017). Numerical simulations and 
surrogate-based optimization of cavitation 
performance for an aviation fuel pump. 
Journal of Mechanical Science and 
Technology 31(2), 705–716. 

 


