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ABSTRACT 

The joint effect of pulsating throughflow and external electric field on the outset of convective instability in a 
horizontal porous medium layer saturated by a dielectric nanofluid is investigated. Pulsating throughflow 
alters the basic profiles for temperature and the volumetric fraction of nanoparticle from linear to nonlinear 
with layer height, which marks the stability expressively. To treat this problem, the Buongiorno’s two-phase 
mathematical model is used taking the flux of volumetric fraction of nanoparticle is vanish on the horizontal 
boundaries. Using the framework of linear stability theory and frozen profile approach, the stability equations 
are derived and solved analytically applying the Galerkin weighted residuals method with thermal Rayleigh-
Darcy number DR  as the eigenvalue. The effect of increasing the external AC electric Rayleigh-Darcy 

number Re , the modified diffusivity ratio AN and the nanoparticle Rayleigh number NR  is to favorable for 

the convective motion, while the Lewis number eL and porosity parameter  have dual influence on the 

stability scheme in the existence of pulsating throughflow. The frozen profile method shows that the result of 
pulsating throughflow in both directions is stabilizing. An enlarged amplitude of throughflow fluctuations 
offers to increased stability by an amount that vary on frequency. It is also found that the oscillatory mode of 
convection is not favorable for nanofluids if the vertical nanoparticle flux is vanish on the boundaries. 

Keywords: Nanofluids; Pulsating throughflow; Linear stability theory; Electro-convection; Galarkin method. 

1. INTRODUCTION

In the last few years, substantial research has been 
carried out on nanofluids convection in a porous 
medium due to their numerous uses in diverse field 
such as geophysics, bioengineering, thermal 
buildings, food processing, oil reservoir 
representing, petroleum production, material 
processing and cooling in processors and electronic 
packing, to name but a few (Wong and Leon 2010; 
Saidur et al. 2011; Bég et al. 2013; Sheikholeslami 
and Ganji 2014; Leong et al. 2010, Wang 2007; 
Murshed et al. 2008; Sharifpur et al. 2016; Özerinç 
et al. 2010; Yadav 2014; Nield and Bejan 2013). 
The computational and scientific models depicted 
here contain two fundamental methodologies: 
homogeneous flow models and dispersal models. In 
2006, Buongiorno (2006) observed that the 
homogeneous flow models does not fit to the test 
results and determined the lower nanofluid heat 
exchange coefficient, while the scattering impact is 
absolutely ignore due to the nanoparticle measure. 
He determined another model to clarify the irregular 

convective heat exchange in nanofluids with the 
impact of Brownian movement and thermophoresis 
and also he detached the deficiencies of the 
homogeneous and dispersal models. Using this 
model, many researchers calculated the flow and 
stability of nanofluids in a porous medium. Nield 
and Kuznetsov (2009, 2013, 2014) studied the onset 
of nanofluid convection in a horizontal porous layer 
with the Darcy model. Later, Yadav et al. (2016a, 
2017), Chand and Rana (2012), Rana et al. (2014), 
Umavathi et al. (2015) and Shivakumara et al. 
(2015) extended this problem in various situations. 

In the last few years, the electro-thermo-convection 
in dielectric fluids or nanofluids has an increasing 
importance in practice; it may be used in the 
electrical equipments, such as shunt reactors, power 
transformers and potential technology (Asadzadeh 
et al. 2012; Bryan and Seyed-Yagoobi 1997; Lin 
and Jang 2005). Several investigations have been 
made to study the convective instability in a 
dielectric fluid or nanofluid with the direct usage of 
a vertical AC electric field and an upright 
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temperature gradient. Roberts (1969) studied the 
electrohydrodynamic convection problem taking the 
dielectric parameter as a linear function of 
temperature. Stiles (1991) considered the direct 
consequence of an upright temperature gradient and 
a vertical AC electric field on convective instability 
in a flat dielectric fluid. He observed that the 
induced instability is due to mainly the polarization 
body force in the case of a rapidly varying AC 
electric field. Yadav et al. (2016b) and Chand et al. 
(2016) studied the electro-thermo convection 
problem in a porous medium saturated by a 
dielectric nanofluid. The extension with internal 
heating was analyzed by Yadav (2017) by the 
Galerkin weighted residuals method.  

Throughflow effect on the convective instability in 
a dielectric nanofluid layer is an important concept 
because of its uses in engineering, geophysics and 
electrohydrodynamic. In-situ processing of 
electronic components, chemical equipment, energy 
assets, petroleum, geo-thermal energy and 
numerous real-world problems frequently connected 
with throughflow in a porous medium (Vafai 2005; 
Nield and Bejan 2013). The consequence of 
convection problem in such situation may become 
vital when specific production is desired. In 
addition, the throughflow result in such 
circumstances may be of attention due to the 
opportunity of regulating the convective instability 
by regulating the throughflow with respect to 
gravity force. Throughflow changes the basic 
shapes for heat and volumetric fraction of 
nanoparticle from linear to nonlinear with height, 
which lettering the stability of the system 
considerably. Without the effect of electric field, the 
result of throughflow on the outset of nanofluid 
convection in a porous medium was calculated by 
Nield and Kuznetsov (2011) and Yadav et al. 
(2016c). Lately, Nield and Kuznetsov (2016) 
studied the result of pulsating throughflow on the 
onset of convection in a horizontal porous layer for 
regular fluid using the frozen profile approach. Such 
problem is relevant to the small frequency situation 
that is appropriate to electrical and hydrological 
conditions. 

From the literature no examination has been noted 
which study about the result of pulsating 
throughflow on the outset of electro-thermo-
convection in a horizontal porous medium saturated 
by a dielectric nanofluid. Therefore, it would be 
importance here to examine the joint impact of 
pulsating throughflow and electric field on the 
convective instability in a horizontal porous 
medium soaked by a dielectric nanofluid. By linear 
stability theory and frozen profile approach, the 
critical states for the outset of convection are 
derived analytically and discussed graphically. 
Many experimental results show that the linear 
stability analysis is sufficient to obtain the stability 
conditions (Chandrasekhar 1961; Fein 1973; Nield 
and Bejan 2013). For instance, Chossat and Iooss 
(1994) and Lewis and Nagata (2004) observed that 
the linear stability analysis successfully predicts 
experimentally observed critical conditions for the 
onset of convection.  

2. PROBLEM FORMULATION 

Examine an infinitely extended flat porous medium 
soaked by incompressible dielectric nanofluid, 
bounded by perfectly conducting plates at * 0z   

and *z L . The nanofluid layer is heated from 
below and the temperatures at the bottom and top 
plates are supposed to be *

1  and *
2 , respectively. 

It is supposed that the flux of the volumetric 
fraction of nanoparticle *

zJ  is to be vanish on the 

plates. Under the gravitational field g


, the 
nanofluid layer is applied to an external vertical AC 
electric field, such that the bottom plane is 
grounded and the top plane is reserved at an 
intermittent potential whose root mean square is  

1
*  (Fig. 1).  

 
Fig. 1. Physical configuration of the problem. 

It is accepted that the size (<50nm) and the 
volumetric fraction of nanoparticles (<1%) are very 
small and nanoparticles are dispersed in the 
nanofluid utilizing either surfactant or surface 
charge innovation. This preserves the particles from 
accumulating on the porous lattice. The viscosity, 
thermal conductivity and specific heat of nanofluid 
are taken as uniform with respect to the reference 
temperature

 
*
c  of the cold wall apart from the 

dielectric parameter and the density in the Maxwell 
and the momentum equations, respectively. This 
approximation is valid for small volumetric fraction 
of nanoparticles (Tzou, 2008).  In the present work, 
we choose * *

c 2  . The asterisks are taken to make 

dissimilar the dimensional variables from the 
dimensionless variables (with no asterisks). The 
extension of Navier-Stokes equations for nanoscales 
under the Oberbeck-Boussinesq approximation are 
(Buongiorno 2006; Yadav et al. 2016d,e; Chand et 
al. 2016): 
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where, mK  is the  effective thermal conductivity of 

the porous medium, *  is the vector differential 
operator, 0  is the nanofluid density at reference 

temperature *
c  , *

DV


 is the Darcy velocity of 

nanofluid , *t  is the time, *P is the pressure,   is 
the viscosity of nanofluid,   is the density of 

nanofluid, p  is the density of nanoparticles,   is 

the thermal expansion coefficient, *  is the 

volumetric fraction of nanoparticles,  
p

c , 

 c and  
m

c  are the heat capacities of 

nanoparticles, nanofluid and overall porous 
medium, respectively, BD is the Brownian diffusion 

coefficient, TD  is the thermophoresis diffusion 

coefficient and *
ef


 is the force due to electrical field 

and given as (Landau and Lifshitz, 1960): 
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where, eE


*  is the Coulomb force and 

  *1
E E

2
 

 
 

 
* * *.   is the dielectrophoretic force. 

Here, e  is the charge density, *E


is the root mean 

square value of the electric field and *  is the 
dielectric parameter. Here the dielectric 
parameter *  is function of temperature. If AC 
electric field is applied then the second term in Eq. 
(5) cannot neglect. Since the second term depends 
on the gradient of * so this force dominates when 
an AC electric field is imposed on a dielectric fluid. 
If we ignore the effect of the Coulomb forces 
compared with the other forces (Turnbull and 
Melcher 1969), then we will retain only the 
dielectrophoretic force term in the Eq. (2). This 
situation can be happened when an AC electric field 
will be associated at a frequency greatly higher than 
the reciprocal of the electrical relaxation time. 

Considering the free charge density is zero, the 
related Maxwell equations are: 

E 0  


* *                                                       (6)  

 *E 0 


* *.                                                  (7) 

In sight of the Eq. (6), E


*
 can be written as:   

E  


* * *                                                      (8)  

where 
*  is the root mean square value of the 

electric potential. 

The dielectric parameter *  is given as: 
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*e                                     (9) 

Here, 0  is the dielectric parameter at reference 

temperature *
c  and e  is the thermal expansion 

coefficient of dielectric parameter (Roberts 1969). 
If the temperature is uniform and the flux of 
volumetric fraction of nanoparticle is vanish on the 
plates, then the boundary conditions for both plates 
are: 
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here,  * * * * * *
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 is the 

flux of volumetric fraction of nanoparticle, *w is the 
vertical velocity of nanofluids,  and * are the 

amplitude and angular frequency of pulsation, 
respectively. Since the considered plates are 
perfectly conducting so, Dirichlet boundary 
conditions for temperature (Eq. (10)) are realistic.  

We initiate the succeeding dimensionless variables: 
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0E  is 

the root mean square value of the electric field at 

0*z   and *

0  is a reference value for the 

nanoparticle volume fraction. 

Considering the Eq. (11), the governing equations 
then take the form: 
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In the non-dimensional form, the boundary 
conditions become: 

 
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The non-dimensional parameters that come out in 
Eqs. (12)-(21) are defined as: 
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2.1 Basic State 

Assuming the basic state to be calm and given as: 
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mean value of the basic volumetric fraction of 
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Equation (29) gives 
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Using Eq. (30) into Eq. (24), the basic solution for 
volumetric fraction of nanoparticle become 
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The basic solutions for temperature and volumetric 
fraction of nanoparticle were obtained by neglecting 

the terms containing A B

e

N N

L
 and B

e

N

L
. This 

approximation is valid for nanofluids.  Because for 
the majority of nanofluids, the Lewis number eL  is 

large and of arrange 210  to 310 , AN  is of arrange 
010  to 110 and BN  is of arrange 210  to 510 , hence 

the terms containing A B

e

N N

L
and B

e

N

L
are very small 

and can be neglected. In the nonappearance of 
throughflow i.e. 0Q  , Eq. (31) match with that of 

Wakif et al. (2018). 

2.2 Perturbation Equation and Frozen 
Profile 

We now take the frozen profile hypothesis. In the 
expression for the basic solution (Eqs. (23) and 

(31)), we write 0t for t  and  

 1 01 cosQ Q t   and 1
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We now suppose small perturbations on this basic 
solution in the form: 
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'  and    are the 

perturbed quantities over their equilibrium 
counterparts and function of x and t . 

Using Eq. (33) into Eqs. (12)-(21), ignoring the 
multiple of prime measures, abolishing the pressure 
term from the momentum Eq. (13) and holding the 
vertical component, we get the following linear 
stability equations : 
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          (35) 

2'      
 bV V

 
bt

                                  (36) 

 ' 2 2
bV V

1 1 1 1         


 
b A

e

N
t L

    
  

   (37) 

2 0 
z


  


                                                   (38)  

* e                                                             (39)  

Az z z
J N

 


       
                                       (40) 

where  2 2 2 2 2
H x z      is the horizontal 

Laplacian operator. Here, Eq. (36) is obtained by 

neglecting the terms containing A B

e

N N

L
and B

e

N

L
. 

This approximation is valid for nanofluid as 
explained above.  

In dimensionless form, the boundary conditions 
become: 

0  at    0 ,  1zw J
z

z  
     




                     (41) 

Allowing for the perturbation quantities to be of the 
form as: 

   ,  ,  ,  ,  ,  ,  

                         ,x yik x ik y st

w W z

e

  
   

         

         
(42) 

where xk  and yk  are the wave numbers along 

the x and y directions, respectively and s  is the 

growth rate of disturbances. The growth rate s  is in 
general a complex quantity such that r is s is  . 

The scheme with 0rs   is balanced for all time, 

whereas it is unbalanced when 0rs  . For neutral 

stability, the real part of s   is zero. Hence, we 

consider is is , where is  is real and is a 

dimensionless frequency. 

Using Eq. (42) into Eqs. (35)- (38), we have: 

 2 2 2 2

2 0

   

     

D N

e

D a W R a R a

R a
z

                  (43) 

2 2
1 0       
bdT

W D s a Q D
dz

                    (44) 

 

 

2 2

2 2 1

1

1
0

   

 
      
  



b A

e

e

d N
W D a

dz L

s Q
D a D

L




 

                   (45) 

 2 2D a D 0          
                           

(46) 

Here
d

D
dz

  and 2 2
x ya k k   is the resulting 

dimension-less wave number.  

In the perturbed dimensionless form, the boundary 
conditions become:    

0,  0,  0,  

0  at  0,1,A

W D

D N D z

    
    

                      (47) 

To obtain an analytical solution of Eqs. (43)-(47), 
the Galerkin weighted residuals method is applied. 
In view of that, the support functions ,  ,  W    
and   are considered as: 

1 1

1 1

, ,

, ,

N N

p p p p
P P

N N

p p p p
P P

W A W B

C D

 

 

   

     

 

 
                  (48) 

where sin , sin , cos ,p p p A pW p z N p z p z         

(trial functions agreeable the corresponding 
boundary conditions), ,pA  pB , pC  and pD

 
are new 

coefficients, and 1,2,3,..., .p N  Using past 

expression for ,  ,  W    and    into Eqs. (43)-
(46) and multiplying the resultant  first equation by 

pW second equation by p , third equations by p  

and fourth equation by p  and integrating in the 

restrictions from 0 to 1,  we obtained a system of 
4N linear algebraic equations in the 
4N unknowns ,pA pB pC  and ,pD  1,2,3,...,p N . 

For the occurrence of non-trivial result, the 
determinant of coefficients matrix necessity to be 
zero, which provides the characteristic equation for 
the scheme, with the thermal Rayleigh- Darcy 
number DR  as the eigenvalue. 

3. RESULTS AND DISCUSSION 

To obtain analytical outcome, we choose 1,N  and 
eliminating the complex numbers from the 
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denominator we get an expression for the thermal 
Darcy-Rayleigh number DR  as 

1 2 ,D iR is                                                      (49) 

where, 

 

   
  

2 2 2 2
1 e

1 2 2

2 2 2 2 2 2
1

2 2 2 2 2 2 2 2
1

4 R

4

4 4

4


   

    
 







A N e i e e

e e i

J Q a

a J

N R L s L Q J L

L Q L s J




     

  

(50) 

 
  

 

2 2 2
1

2 2 2 2 2 2 2 2 2
1

2 2
1

2 2

4 4

4

4
    

4

     
 










e A N e e

e e i

JL N R L L Q

L Q L s J

J Q

a

      

  





(51) 

Here,  2 2J a   and
 

 1 01 cosQ Q t   . 

Since DR  is a physical measure, it should be 

obligatorily genuine. Thus, it take after from Eq. 
(49) that either 0is   (stationary convection) or 

2 0  ( 0is  non-oscillatory convection). 

3.1 Stationary Convection 

Stationary convection happens when 0is  . For this 

situation, from Eq. (49), the stationary thermal 
Darcy-Rayleigh number S

DR  can be derived as: 

 

 

2
2 2 2 2

1 e
2 2 2 2

2

2 2 2 2
1

R
1

4

4
     ,

4

S
D

e A N

e

a Q a
R

a a

L N R

L Q



 

  
 

  
      










                (52) 

From Eq. (52), it is apparent that the thermal Darcy-
Rayleigh number does not depends on the sign of 

pulsating throughflow parameter 1Q . The effect of 

pulsating throughflow parameter 1Q  is stabilizing 

effect in both directions. This result was expected 
from the symmetry of the problem. The value of 

2
1Q  lies between a minimum  22 1Q  and a 

maximum  22 1Q   when 0t  varies. 

The expression for the stationary critical thermal 
Rayleigh-Darcy number ,

S
D cR  is derived 

corresponding to the critical value of the wave 
number ca  by setting 0S

DR    which satisfies 

the following equation 

   
   

2 2 4 2 2 3 2
1 1 e

2 2 2 2
1 1

4 2 4 4R

2 4 4 0,

Q Q

Q Q

    

  

   

    

 

 
     (53) 

where c ca   .  

In the nonattendance of pulsating throughflow, i.e. 

1 0,Q  Eqs. (52) and (53) give: 

 2
2 2 2

e
2 2 2

R
1S e

D A N

a a L
R N R

a a



 

  
      

      (54) 

2 4 2 3 2 2 2
e4 8 4R 8 4 0                   (55) 

In the nonattendance of electric field, Eq. (54) is 
identical with the outcome of Yadav and Lee (2015) 
for a thermal equilibrium case with 0a DD T   and 

Eq. (55) coincides with that of Chand et al. (2016). 

For regular fluid and in the nonattendance of 

electric field, i.e. eR 0,N BR N   Eqs. (52) 

and (53) give: 

 2
2 2 2

1
2 2

1
4

S
D

a Q
R

a





  
   

 


                                (56) 

ca                                                                   (57) 

From Eqs. (56) and (57), when pulsating 

throughflow is equal to one, i.e. 1 1Q  , the value of 

critical thermal Rayleigh-Darcy number is 
40.4784 . Recently, Barletta et al. (2016) obtained 
analytical result for the consequence of through 
flow on the buoyancy-induced instability in a 
horizontal porous layer by considering pressure and 
temperature as the dependent variables and it is 
equal to 40.8751when throughflow is equal to one. 
Hence the approximation formula used in this paper 
gives a value accurate to approximately1% . This 
shows that the approximation formula used in this 
paper is satisfactory. 

To examine the effect of the pulsating 

throughflow 1Q , the AC electric Rayleigh-Darcy 

number eR , the nanoparticle Rayleigh-Darcy 

number R N , the modified diffusivity ratio AN , the 

Lewis number eL and the porosity parameter  on 

the onset of stationary convection, we study 

analytically the behaviour of 1
S
DR Q   , eRS

DR  , 

RS
D NR  , e

S
DR L  , S

D AR N   and S
DR   . 

Equation (52) gives 

   
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 

 
2 2 2 2
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2
2 2 2 2

e
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4 4 2

4

     
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


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A e e ND

e

N L L Q RR

L L Q

    

 
      (62) 

 

 
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2
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1
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     
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


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e

L N L L Q RR

L Q
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  
  (63) 

From Eq. (58), it is found that 1
S
DR Q    is always 

positive for a stationary convection. This 

established that the pulsating throughflow 1Q  has 

always a stabilizing effect on a system. Similarly, 
from Eqs. (59-63), it is observed that the AC 
electric Rayleigh-Darcy number eR , the 

nanoparticle Rayleigh-Darcy number R N and the 

modified diffusivity ratio AN have always 

destabilizing result whereas, the Lewis 
number eL and the porosity parameter  have dual 

outcome on the stability of the system. If 

  2
1

2 2

2
1

4
e eL L Q

 





 then the Lewis number eL and 

the porosity parameter  have destabilizing and 
stabilizing outcome on the stability scheme, 
respectively. However, in the nonattendance of the 

pulsating throughflow, i.e. 1 0Q  , Eqs. (62) and 

(63), respectively show that the Lewis 
number eL and the porosity parameter  have 

always destabilizing and stabilizing result on the 
stability scheme. 

3.2 Oscillatory Convection 

On behalf of oscillatory convection 2 0   

and 0is  . By means of these in Eq. (49), the 

expressions for oscillatory Rayleigh-Darcy 

number Osc
DR  and the frequency of oscillations is  

can be written as: 

   
  

 
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e e i
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 (64) 
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 





   (65) 

Here, it is important to be noted that for existing of 
oscillatory convection, the frequency of 
oscillation is  must be positive. From Eq. (65) it is 

also found that the vertical AC electric field does 
not influence the occurrence of oscillatory 
convection. In the absence of nanoparticles, 
i.e., 0NR  , the value of the frequency of 

oscillation is  is always negative. Hence oscillatory 

mode of convection is ruled out for regular fluid. 
However for nanofluids, according to Yadav et al. 

(2016a,b), Buongiorno (2006) and Siddheshwar et 
al. (2017), for the majority of nanofluids, the Lewis 
number eL  is on the arrange of 1 310 10 , AN  is on 

the arrange of 1 10 , the nanoparticle Rayleigh-
Darcy number NR and  are on the arrange of 

1 10 , and hence from Eq. (65), the value of 2
i  

will be always negative. Since i is real for 

oscillatory convection, therefore oscillatory 
convection cannot take place also for the case of 
nanofluid. 

 
Fig. 2. Effect of the pulsating throughflow 

parameter 1Q on the critical stationary thermal 

Rayleigh-Darcy number ,
S
D cR for the different 

values of the AC electric Rayleigh-Darcy 
number eR with 0.5,nR   5,eL  A N 2,  0.7 . 

Analytically, the expression of the stationary 
thermal Rayleigh-Darcy number S

DR  (Eq. (52)) 

shows that the stability of the dielectric nanofluids 
varies on the values of six parameters which are 

e1  ,  R ,   , , eAQ N L  and N R . 

 
Fig. 3. Effect of the pulsating throughflow 

parameter 1Q on the critical wave number ca for 

the different values of the AC electric Rayleigh-
Darcy number eR with 0.5,nR   5,eL  A N 2,  

0.7 . 

To study the effect of  various values of the  control 

parameters ( e1  ,  R ,   , , eAQ N L  and N R ) on the 

onset of electroconvection, first we fix four 
parameters and then the variation of the critical 
thermal Rayleigh-Darcy number ,

S
D cR  and the 

critical wave number ac  are plotted  for diverse 

values of the fifth parameter as a function of the  

pulsating throughflow parameter 1Q (see Figs. 2-

11). According to Buongiorno (2006) and Yadav et 
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al. (2016d,e), we fix  eR 20,   5,2,A eN L    
0.7  and 0 5N R . .  

 
Fig. 4. Effect of the pulsating throughflow 

parameter 1Q on the critical stationary thermal 

Rayleigh-Darcy number ,
S
D cR for the different 

values of the nanoparticle Rayleigh-Darcy 
number R N with  20,eR   5,eL  A N 2,  0.7 . 

The value of pulsating throughflow parameter 1Q  

lies between a minimum  1Q  and a 

maximum  1Q   when 0t  varies. Therefore from 

the Figs 2-11 and Eq. (52), we can calculate two 
values of the critical Rayleigh-Darcy number as:  

   1, ,min  at 1S
D c D c QR R Q    and                (66) 

   , 1, max    at  1S
D c D c QR R Q                      (67) 

When the thermal Rayleigh-Darcy number DR  is 

less than  , min ,D cR  no convection possible. When 

the thermal Rayleigh-Darcy number DR   is greater 

than  , max ,D cR  continuous convection happens. 

For intermediate values of the thermal Rayleigh 
Darcy number DR , convection occurs for just part 

of each cycle. 

 
Fig. 5. Effect of the pulsating throughflow 

parameter 1Q on the critical wave number ca  for 

the different values of the nanoparticle Rayleigh-

Darcy number R N with 20,eR   5,eL  A N 2,  

0.7 . 

Figures 2 and 3 exhibit the effect of the AC electric 
Rayleigh-Darcy number eR on the onset of 

electroconvection. From Fig. 2, it is found that the 
critical stationary thermal Rayleigh-Darcy 
number ,

S
D cR decreases with the AC electric 

Rayleigh-Darcy number eR . Therefore, the 

inclusion of the external AC electric field decreases 
the stability of the scheme. 

 
Fig. 6. Effect of the pulsating throughflow 

parameter 1Q on the critical stationary thermal 

Rayleigh-Darcy number ,
S
D cR for the different 

values of the modified diffusivity ratio AN  

with 20,eR  5,eL  R 0.5,N   0.7 . 

From Fig. 2, it is also noted that on rising the value 

of the pulsating throughflow parameter 1Q , the 

critical value of the stationary thermal Rayleigh-

Darcy number ,
S
D cR raises; thus the result of 1Q

 
is to 

delay the onset of convection.  

 
Fig. 7. Effect of the pulsating throughflow 

parameter 1Q on the critical wave number ca  for 

the different values of the modified diffusivity 
ratio AN with 20,eR  5,eL  R 0.5,N   0.7 . 

From Fig. 3, it is established that an increase in the 
values of the AC electric Rayleigh-Darcy number 

eR and decrease in the pulsating throughflow 

parameter 1Q  tend to boost ca  and therefore its 

influence is to decrease the size of convection cells.  

Figures 4-7 display the effect of the nanoparticle 
Rayleigh-Darcy number R N and the modified 

diffusivity ratio AN  on the stability scheme. From 

Figs. 4 and 6, it is observed that enlarge in the value 
of one of these parameters allows to reduce the 
critical values of the stationary thermal Rayleigh-
Darcy number ,

S
D cR .  

These show that those parameters allow to speeding 
up the onset of electroconvection in dielectric 
nanofluids. It happens because enhance in the 
nanoparticle Rayleigh-Darcy number R N  and the 

modified diffusivity ratio AN  enhanced the 
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thermophoresis and also the Brownian motion of 
nanoparticles, and thus system is more unstable. 
From Figs. 5 and 7, we observed that the critical 
wave number ca  does not modify on the 

nanoparticle Rayleigh-Darcy number R N and the 

modified diffusivity ratio AN . 

 
Fig. 8. Effect of the pulsating throughflow 

parameter 1Q on the critical stationary thermal 

Rayleigh-Darcy number ,
S
D cR for the different 

values of the Lewis number  eL with 20,eR   

2,AN  R 0.5,N   0.7 . 

 
Fig. 9. Effect of the pulsating throughflow 

parameter 1Q on the critical wave number ca  for 

the different values of the Lewis number 

 eL with  20,eR  2,AN   R 0.5,N   0.7 . 

 
Fig. 10. Effect of the pulsating throughflow 

parameter 1Q on the critical stationary thermal 

Rayleigh-Darcy number ,
S
D cR for the different 

values of the porosity parameter  with 20,eR   

2,AN   R 0.5,N    5eL  . 

The impacts of the Lewis number eL  and porosity 

parameter   on the onset of electroconvection are 
displayed in Figs. 8-11. From Figs. 8 and 10, it is 
established that the Lewis number eL  and porosity 

parameter   have dual effect on the onset of 
convection in the attendance of pulsating 

throughflow parameter 1Q . From Figs. 9 and 11, we 

found that the Lewis number  eL and porosity 

parameter have no considerable impact on the 

critical wave number ca . 

 
Fig. 11. Effect of the pulsating throughflow 

parameter 1Q on the critical wave number ca  for 

the different values of the porosity parameter 
 with 20,eR  2,AN   R 0.5,N    5eL  . 

4. CONCLUSION 

The outcome of the pulsating throughflow and the 
external AC electric field on the convective 
instability in a porous medium layer soaked by a 
dielectric nanofluid is investigated utilizing the 
frozen profile approach. The study has been carried 
out for vanish flux nanoparticles condition at 
boundaries. The resultant eigenvalue problem is 
determined analytically and discussed graphically 
by means of the Galerkin weighted residuals 
method with thermal Rayleigh-Darcy number DR  

as the eigenvalue. The frozen profile approach 
shows that an expanded amplitude of throughflow 
oscillations prompts stability in both directions by a 
sum that relies upon the frequency. The effect of 
increasing the modified diffusive ratio AN , the 

external AC electric Rayleigh-Darcy number eR  

and the nanoparticle Rayleigh number NR  is to 

speed up the onset of convection, whereas the 
Lewis number eL and porosity parameter  have 

dual effect on the stability scheme. The effect of 
enhance in the pulsating throughflow parameter 

1Q and shrink in the external AC electric Rayleigh-

Darcy number eR is to diminish the critical wave 

number ca  and therefore to enlarge the size of 

convection cells. The critical wave number ca does 

not very on nanoparticle parameters and porosity 
parameter . 
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