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ABSTRACT 

A theoretical model for strong converging cylindrical and spherical shock waves in non-ideal gas 
characterized by the equation of state (EOS) of the Mie-Gruneisen type is investigated. The governing 
equations of unsteady one dimensional compressible flow including monochromatic radiation in Eulerian 
hydrodynamics are considered. These equations are reduced to a system of ordinary differential equations 
(ODEs) using similarity transformations. Shock is assumed to be strong and propagating into a medium 
according to a power law. In the present work, two different equations of state (EOS) of Mie-Gruneisen type 
have been considered and the cylindrical and spherical cases are worked out in detail. The complete set of 
governing equations is formulated as finite difference problem and solved numerically using MATLAB. The 
numerical technique applied in this paper provides a global solution to the problem for the flow variables, the 
similarity exponent ߙ for different Gruneisen parameters. It is observed that increase in measure of shock 

strength ߚ ቀ
ఘ

ఘబ
ቁ has effect on the shock front. The velocity and pressure behind the shock front increases 

quickly in the presence of the monochromatic radiation and decreases gradually. A comparison between the 
results obtained for non-ideal and perfect gas in the presence of monochromatic radiation has been illustrated 
graphically. 

Keywords: Shock waves; Radiation hydrodynamics; Finite difference methods; Rankine-Hugoniot jump 
relations; Mie-Gruneisen EOS; Numerical solution. 

NOMENCLATURE 

 similarity exponent   ߙ        proportionality constant              °ܣ 

 ܾ      non-idealness parameter          ߚ   shock density ratio 
஽

஽௧
  substantial derivative         ߛ   specific heat ratio 

 ݁      specific internal energy         ߣ      similarity variable 

 ݆     flux of monochromatic radiation   ߨ      non-dimensional pressure 

 density of gas     ߩ           absorption coefficient     ܭ 

 ଴     density of unperturbed mediumߩ          radial coordinate    ݎ 

 ܴ௦ሺݐሻ     radius of the shock wave    ߪ     material property 

 time coordinate         ߰    non-dimensional radiation flux   ݐ 

 ଴ሻ     gruneisen coefficientߩ/ߩሺ߁      velocity of gas particles      ݑ 

  ଴    gruneisen parameter߁   non-dimensional velocity      ݒ 

 ܹ   scale of velocity         ߗ     geometrical index 
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1. INTRODUCTION 

Shock processes occurs naturally in various 
processes which are related to hydrodynamics, 
astrophysical situations such as supernova 
explosions, photo-ionized gas, stellar winds, 
interstellar gas etc. They are considered to be 
discontinuities in mathematical point of view but 
shock wave is not a true physical discontinuity. The 
study of converging spherical and cylindrical shock 
waves in non-ideal stellar atmosphere under the 
action of monochromatic radiation is of importance 
because of its applications in the areas of nuclear 
engineering, cavitation, astrophysics, radioactively 
driven outflows, stellar convection, and inertial 
confinement fusion. The theory of radiation 
hydrodynamics plays an important role in studying 
phenomena in plasma physics. These shock fronts 
have a more complex structure than ordinary 
hydrodynamical shocks. In recent years, the 
problems of high-temperature gas dynamics have 
attracted much attention. The high temperatures 
generated in gases by shock waves give rise to 
physical and chemical phenomena such as 
molecular vibrational excitation, dissociation, 
ionization, chemical reactions, and inherently 
related radiation. In continuum regime, these 
processes start from the wave front, so that 
generally the gaseous media behind the shock 
waves may be in thermodynamic and chemical non-
equilibrium state. In the flow field of a gas at very 
high temperatures, the gas may be ionized and the 
radiation transfer is important. In classical gas 
dynamics the transfer of radiation is usually 
neglected, however, when the temperature of the 
gas is high, radiation can be considered as an 
important mode of energy transport. The gas 
temperature behind such a shock could depart 
strongly from that predicted by the standard 
Rankine-Hugoniot law. 

Gail et al. (1990) discussed applications to weak 
and strong shocks in a stellar atmosphere due to a 
shock wave trains. The effect of non-linear 
interactions of one dimensional adiabatic or 
isothermal hydrodynamic shock waves in the solar 
atmosphere have been studied by Fleck and 
Schmitz (1993). Barnwal and Srivastava (1983) 
have investigated the general Rankine-Hugoniot 
jump relations for a 3-dimensional shock in dusty 
gas in the presence of radiation. Neglecting the 
radiation pressure and energy, they have presented 
similarity solutions for a stellar line explosion into 
a non-uniform self-gravitating medium with effect 
of magnetic radiation flux. Several authors (Elliott 
1960; Helliwell 1969; Nicastro 1970; Ghoniem 
1993; Gretler and Steiner 1993; Sedov  studied the 
shock wave problem with thermal radiation by 
similarity method (Sedov 1982) in perfect gas. 
Marshak (1958) studied the effect of radiation on 
the shock propagation by introducing the radiation 
diffusion approximation. Elliott (1960) discussed 
the conditions leading to self-similarity with a 
specified functional form of the mean free-path of 
radiation and obtained a solution for self-similar 
explosion. Hirschler and Gretler (2002) studied 
similarity solutions of converging spherical shock 

wave with radiation effect by assuming medium to 
be optically thick. Khudyakov (1983) discussed the 
self-similar problem of motion of a gas under the 
action of monochromatic radiation.  

In recent times considerable study for the self-
similar solutions in the process occurring under the 
action of monochromatic radiation of gaseous 
substances in the stellar regions has gained 
importance. Several problems relating to shock 
wave propagation in perfect gas and non-ideal gas 
with radiative and magneto hydrodynamic effects 
have been studied by Zedan (2002), Leygnac et al. 
(2006), Sampaio (2013), Taylor and Ryan (2013). 
The assumption that the medium in an astrophysical 
environment to follow the ideal gas may not be true 
in reality and it is necessary to analyze the gas 
dynamic processes in a non-ideal medium with 
monochromatic radiation. In the present problem a 
model to determine the self-similar solutions for 
converging spherical and cylindrical strong shock 
waves in stellar atmosphere under the action of 
monochromatic radiation in non-uniform stellar 
interiors with constant intensity on a unit area with 
the assumption that the medium of propagation to 
be non-ideal gas is presented. Shock is assumed to 
be strong and obeys a power law. It is assumed that 
the radiation flux moves through the gas with 
constant intensity on a unit area of the shock wave 
propagation in a direction opposite to the radiation 
flux. The medium of flow is assumed to be obeying 
the equation of state of Mie-Grüneisen type i.e., 
Royce EOS (Ramu and Rangarao 1993). The 
perfect gas EOS results too are obtained from 
Royce EOS, and were found to match very closely 
with the literature. 

2. FORMULATION OF THE PROBLEM 

The basic equations for one-dimensional unsteady 
motion of cylindrical and spherical strong 
converging shock waves into the radiation 
hydrodynamic regime with the medium neglecting    
viscosity, heat conduction, and magnetic field 
characterized by the equation of state (EOS) of 
Mie-Grüneisen type can be written in Eulerian form 
(Gretler and Steiner 1993; Narsimhulu et al. 2013) 

஽ఘ

஽௧
൅ .ߘሺߩ ሻݑ ൅ ሺߗ െ 1ሻ

ఘ௨

௥
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ଵ

ఘ
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஽௘
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௣

ఘ

஽

஽௧
ቂ݈݊ ቀ

ఘ

ఘబ
ቁቃ ൅

ଵ

ఘ௥
ሻݎሺ݆ߘ ൌ 0           (3) 

݆ߘ ൌ  (4)                                                              ݆ܭ

where 
஽

஽௧
ൌ

డ

డ௧
൅ ሺݑ.  ,ሻ is the substantial derivativeߘ

which is the sum of local and convective 
derivatives. ߗ ൌ 2, 3 denote the geometrical index 
for cylindrical and spherical cases of the shock 
waves respectively and ߩ ,ߩ଴, ܭ ,݆ ,݁ ,݌ ,ݑ denote 
the density of gas, density of unperturbed medium, 
velocity of gas particles, pressure, specific internal 
energy per unit mass of volume, the flux of 
monochromatic radiation per unit area at radial 
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distance r from the axis at time t and absorption 
coefficient respectively. 

The equation of state under equilibrium condition is 
of Mie-Grüneisen type (Ramu and Ranga Rao 
1993; Ramu et al. 2014; Narsimhulu et al. 2016) 

݁ ൌ
௣

ఘ௰ሺఘ/ఘబሻ
                                                      (5) 

where ߁ሺߩ/ߩ଴ሻ is the Mie-Grüneisen coefficient. 

The above governing Eqs. (1)-(4) can be written in 
matrix equation as follows 

௧ܨ ൅ ௥ܨܣ ൅ ܤ ൌ 0                                                 (6)  

where ܣ ,ܨ and ܤ are given by 
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 ௥ are partial derivatives with respect to timeܨ ௧ andܨ
t and spacial coordinate r. The absorption 
coefficient K is considered to vary as Khudyakov 
(1983) 

ܭ ൌ  ௟                                              (7)ݐ௦ݎ௠݆௤݌௡ߩ଴ܭ

where the numbers ݊, ݉, ݏ ,ݍ, ݈ are rational 
exponents and  

ሾܭ଴ሿ ൌ  ଷ௡ା௠ି௦ܶଶ௠ାଷ௤ି௟                   (8)ܮ௡ି௠ି௤ିܯ

In the present problem, the quantities ݌଴, ߩ଴, ݆଴, and 
 ଴, andߩ ,଴݌ ଴ are dimensional constants, in whichܭ
݆଴ are dependent given by 

݆଴ ൌ ሾ݌଴ሿଷ/ଶሾߩ଴ሿିଵ/ଶ                                            (9) 

The radiation absorption coefficient ܭ depends on 
dimensions of ݆଴, ߩ଴, which is equivalent 
ݏ ൅ ݈ ൌ െ1.  

2.1  Rankine-Hugoniot Relations 

The jump conditions across a shock wave 
propagating in an electrically conducting and 
radiating gas are given by (Ramu et al. 2014; 
Narsimhulu et al. 2016) 

ሾሺݑ െܹሻߩሿଵ
ଶ ൌ 0                                               (10) 

ሾ݌ ൅ ଶሿଵݑߩ
ଶ ൌ 0                                                  (11) 

ቂ݁ ൅
௣

ఘ
൅

ଵ

ଶ
ሺݑ െܹሻଶቃ

ଵ

ଶ
ൌ 0                               (12) 

ሾ݆ሿଵ
ଶ ൌ 0                                                              (13) 

where the symbol ሾ… ሿଵ
ଶ represents the difference 

between the values of ahead upstream and behind 
downstream regions across shock wave respectively 
and 	ܹ represents the scale of velocity. We assume 
that shock is propagating into a non-ideal stellar 
medium at rest with gas density varying as the 

power law given by (Ramu and Rangarao 1993) 

ܴ௦ሺݐሻ ൌ Հሺെݐሻఈ                                               (14) 

where the function ܴ௦ሺݐሻ is the time-dependent 
radius of the shock wave, Հ is proportionality 
constant and ߙ is an unknown similarity exponent. 
It is assumed that the radiation pressure and 
radiation energy are very small in comparison to 
the material pressure and energy, hence neglected. 
For the case of strong shocks, the upstream medium 
can be approximated as a cold fluid	ሺܶ~0ሻ. The 
upstream pressure can therefore be neglected in 
comparison to other quantities appearing in the 
Rankine-Hugoniot jump conditions (10)-(13). 
Setting ݌ଵ ൌ ଵݑ ,0 ൌ 0 in the above equations, 
Rankine-Hugoniot jump conditions become 

ఘమ
ఘభ
ൌ  ଵ                                                            (15)ିߚ

ଶݑ ൌ ሺ1 െ                                                    ሻܹߚ
(16) 

ଶ݌ ൌ ଵሺ1ߩ െ  ሻܹଶ                                             (17)ߚ

݁ଶ ൌ
ଵ

ଶ
ሺ1 െ                                              ሻଶܹଶߚ

(18) 

݆ଵ ൌ ݆଴                                                                 (19) 

where ߚ is the shock density ratio and its 
magnitude is dependent on the equation of state 

(EOS) and	ܹ ൌ
ௗோೞ
ௗ௧
	. The effect of ionization, 

dissociation, and the interaction with radiation 
become important on the Rankine-Hugoniot jump 
relations when the shock is strong. Along with the 
strong shock relations (15)-(19) and the EOS (5), 
we get 

ሺߚ െ 1ሻ߁ሺߚሻ ൌ 2                                               (20) 

2.2  One-dimensional Self-similar Motion 

The basic equations are non-dimensionalized by 
using dimensionless functions of the similarity 
variable λ (Zeldovich and Raizer 1967; Ramu and 
Ranga Rao 1993; Ramu et al. 2014) are 

ߩ ൌ  ሻ                                                     (21. a)ߣ଴݃ሺߩ

ݑ ൌ  ሻܹ                                                     (21. b)ߣሺݒ

݌ ൌ   ሻ                                               (21. c)ߣሺߨ଴ܹଶߩ

݆ ൌ ݆଴߰ሺߣሻ                                                      (21. d) 

where ݃, ߨ ,ݒ, and ߰ are non-dimensional density, 
velocity, pressure, and radiation flux of similarity 
variable ߣ respectively. For computational 
convenience, we consider another set of 
transformations along with the above 
transformations as 

݃ሺߣሻ ൌ  ሻ                                                   (22. a)ߣሺܩ

ሻߣሺݒ ൌ
ఒ

ఈ
ܷሺߣሻ                                                (22. b) 

ሻߣሺߨ ൌ
ఒమ

ఈమ
ܲሺߣሻ                                               (22. c) 

߰ሺߣሻ ൌ  ሻ                                                   (22. d)ߣሺܬ

and ܻሺߣሻ ൌ ܲሺߣሻ/ܩሺߣሻ, where ܩ, ܷ, ܲ, and ܬ are 
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new reduced density, velocity, pressure, and 
radiation flux functions in terms of similarity 
variable λ respectively. 

Applying the similarity transformations the 
equations of motion take the form 

ሺ௎ିఈሻ

ீ
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ௗఒ
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where 

ሻܩሺߔ ൌ െ߁ሺܩሻ െ
ீ

௰ሺீሻ
ௗ௰ሺீሻ

ௗீ
   and   

1 െ ߶ሺܩሻ ൌ  (27)                                                    ߪ	

where ߪ	 is the material property. At the shock 
front, the boundary conditions (15)-(19) are 
transformed into the following form 

ሺ1ሻܩ ൌ
ଵ

ఉ
                                                             (28) 

ܷሺ1ሻ ൌ ሺ1 െ  (29)                                               ߙሻߚ

ܲሺ1ሻ ൌ ሺ1ߚ െ  ଶ                                           (30)ߙሻߚ

ሺ1ሻܬ ൌ 1                                                              (31) 

3. NUMERICAL SOLUTION  

3.1 Finite Difference Formulation  

An explicit finite difference method is employed in 
solving system of Eqs. (23)-(26). The solution 
domain is discretized by a one-dimensional set of 
discrete grid points, with the grid points equally 
spaced having uniform spacing Δλ. 

The finite difference approximations of the 
transformed system of Eqs. (23)-(26) are given by 

ௗீ

ௗఒ
ൌ

ீ೔శభିீ೔
௱ఒ

                                                    (32)  
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ൌ
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Substituting Eqs. (32)-(35) into Eqs. (23)-(26) the 
resulting system of equations can be written in the 
following matrix form, 

ሾܥ௜	ሿሾ ௜ܺାଵ	ሿ ൌ ሾܦ௜ሿ                                               (36) 

where ሾܥ௜	ሿ, ሾ ௜ܺାଵ	ሿ and ሾܦ௜ሿ are 4x4, 4x1and 4x1 
matrices respectively. 
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                                                                            (39) 

Crout’s reduction technique (Samuel D. Conte and 
Carl de Boor 1981) is employed to evaluate the 
flow parameters such as density ሺܩ௜ାଵሻ, velocity 
ሺ ௜ܷାଵሻ, pressure ሺ ௜ܻାଵሻ and radiation flux ሺܬ௜ାଵሻ 
where 

௜ାଵܩ ൌ
ሺ௎೔ିఈሻሺ஽భభሻሺ೔ሻିሺ஽మభ	ሻሺ೔ሻାீ೔ሺ஽యభሻሺ೔ሻ	

ሾሺ௎೔ିఈሻమା௒೔ఃሺீ೔ሻିଵሿ
                (40)  

௜ܻାଵ ൌ

൛ሺ஽మభሻ
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ீ೔ሼሺ௎೔ିఈሻమିଵሽ	ሺ஽యభሻሺ೔ሻ					
ሾሺ௎೔ିఈሻమା௒೔ఃሺீ೔ሻିଵሿீ೔

                  (41)  

௜ܷାଵ ൌ
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ሺ೔ሻି
ீ೔ሺ௎೔ିఈሻ	ሺ஽యభሻሺ೔ሻ

ሾሺ௎೔ିఈሻమା௒೔ఃሺீ೔ሻିଵሿீ೔
             (42) 

௜ାଵܬ ൌ 	 ሺܦସଵሻሺ௜ሻ                                                  (43) 

where the superscript ݅ refers to the location in the 
discretizing continuous solution domain and it is a 
positive integer. Numerical solution of system of 
Eqs. (40)-(43) along with boundary conditions (28)-
(31) are obtained for a step size of ݄ ൌ 10ିସ. 

3.2  Evaluation of ࢼሺ࣋/࣋૙ሻ the Measure 
of Shock Strength 

Considering the EOS of Mie-Grüneisen type (Ramu 
and Ranga Rao 1993): 

The Royce EOS defined by  

ሻܩሺ߁ ൌ ଴߁ െ ܾ ቀ1 െ
ଵ

ீ
ቁ                                       (44) 

where ܾ is constant such that ܾ ൐ 0 and ߁଴ is the 
non-idealness parameter. 

Using Eq. (44) in Eq. (20), gives a quadratic 
expression in terms of ߚ and it can be written as 

ܼሺߚሻ ≡ ሺ߁଴ െ ܾሻߚଶ ൅ ሺ2ܾ െ ଴߁ െ 2ሻߚ െ ܾ ൌ 0         (45)  

The Eq. (44) reduces to perfect gas EOS when 
଴߁  ൌ ሺߛ െ 1ሻ, ܾ ൌ 0 and along with Eq. (5) which 
is  

,ߩሺ݌ ݁ሻ ൌ ߛሺ݁ߩ െ 1ሻ                                           (46) 

the measure of shock strength β defined by the 
following relation 

ߚ ൌ
ఊାଵ

ఊିଵ
 , provided ߚ ് 0                                  (47) 

Positive roots are only considered in the subsequent 
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computation. The solution curves of the polynomial 
ܼሺߚሻ for two different values of non-idealness 
parameter ߁଴ are shown in Fig. 1. 

The values of measure of the shock strength ߚ, 
similarity exponent ߙ along with the known values 
of non-idealness parameter ߁଴, adiabatic index ߛ, 
and constant parameter ܾ are presented in Tables 1 
and 2 for Royce and perfect gas EOS respectively. 

 

Table 1 Selected values of ࢻ for Royce EOS 
଴߁ ܾ ൌ 1.4 ߁଴ ൌ 2.0 
 ߙ ߚ ߙ ߚ 

0.1 2.49240 0.43013 2.02598 0.45569 
0.3 2.64843 0.42271 2.08465 0.45215 
0.5 2.86086 0.41332 2.15470 0.44806 
0.7 3.17237 0.40085 2.24035 0.44324 
1.0 4.10850 0.37023 2.41421 0.43404 

Table 2 Selected values of ࢻ for Perfect gas 

 ߙ ߚ ߛ

1.2 11.00000 0.24828372 

1.4 6.00000 0.32571203 

1.6 4.33333 0.3779717 

1.8 3.50000 0.41763534 

2.0 3.00000 0.44948974 

3.3  Numerical Solution of Flow 
Parameters 

The numerical solution of the problem involves in 
applying Crout’s reduction technique (Samuel D. 
Conte and Carl de Boor 1981) to evaluate the flow 
parameters such as density ሺܩ௜ାଵሻ, velocity ሺ ௜ܷାଵሻ, 

pressure ሺ ௜ܻାଵሻ, and radiation flux ሺܬ௜ାଵሻ, from Eqs. 
(40-43) using MATLAB with a step size of ݄ ൌ
10ିସ	 and an error tolerance of 10 significant digits. 
The whole solution procedure is repeated until the 
shock conditions are satisfied within the said 
accuracy.  

4. RESULTS AND DISCUSSIONS 

In this paper, the entire computational work has 
been carried out using MATLAB. Numerical 
calculations are performed for the values of non-
ideal parameters ߩ଴ ൌ 1, ܴ ൌ 1, ݉ ൌ 3/2, 	
݊ ൌ െ1/2, ݏ ൌ ݍ ,1 ൌ 0 and ߪ ൌ 1.42. The 
similarity exponent ߙ for various values of constant 
parameter ܾ and fixed values of non-idealness 
parameter ߁଴ are listed in Tables 1 and 2. We 
observe from Table 1, decrease in the values of 
similarity exponent ߙ and increase in the measure 
of shock strength ߚ with increasing values of 
constant parameter ܾ and for fixed values of non-
idealness parameter ߁଴. Also from Table 2, for 
perfect gas case a reverse trend is observed in the 
values of similarity exponent ߙ and measure of 
shock strength ߚ for various values of adiabatic 
exponent ߛ. The variations of non-dimensional flow 
variables and radiation flux for the considered non-
idealness parameters for both Royce and ideal gas 
EOSs are shown in Figs. 2-13. 

It is observed from Figs. 2 and 3 that the flow 
variable density (for both cylindrical and spherical 
geometry) is high at the shock front (for the Royce 
EOS) reduces with the increase in the non-idealness 
parameters and reduce gradually as ߣ increases. It is 
observed that at the shock front discontinuity 
appeared in density profiles is subject to physical 
requirement that the radiation flux cannot change 
across it and the mean collision time of particles is 
proportional to the gas density. 

Also from Figs. 4 and 5, it is observed for Royce 
EOS for the cylindrical and spherical geometries 
for different values of non-ideal parameters a sharp 
increase in velocity profiles for ߣ ൌ 1 for a short 
range of	ߣ and decrease steadily with the  variation 
in ߣ. It is notable that increase in the non-idealness 
parameters (from Tables 1 and 2) have effect on ߚ. 
As ߚ value increases, increase in velocity, pressure 
is prominent for both the EOS. Thus it is observed 
from Fig. 3, that increase in ߚ does not 
automatically decelerate the shock front but the 
velocity and pressure behind the shock front 
increases quickly in the presence of mono-
chromatic radiation and decrease slowly and 
become constant. The variation in shock velocity 
causes the shock transition to expand to a scale 
larger than that of the system, so that the shock 
enters a different regime for real systems such as 
stellar atmosphere (Farnsworth and Clarke 1971). 
Hence the shock velocity will increase as cryogenic 
implosion performance improves allowing access to 
the radiative pressure regime.  

The effect of non-idealness parameters ሺܾ	ሻ on the 
pressure distribution in the presence of fixed non-
idealness parameter ሺ߁଴ሻ is presented in Figs. 6 and 7.  

Fig. 1. Graphical approach of ߄ሺߚሻ in the 

case of Royce EOS; (a) ߁଴ ൌ 1.4 and (b) 
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The pressure distribution ܻሺߣሻ increases as the 
constant parameter ܾ increases. This is in 
agreement with physical fact that the velocity 
distribution increases with increasing ܾ and also it 
is found that increase in pressure profiles has 
insignificant effect with increasing values of ߣ for 
both cases of geometry ߗ ൌ 2, 3 and also the gas 
pressure decreases with increase in ߣ.  

A similar trend is observed in the radiation profiles 
from Figs. 8 and 9. 

The density, velocity, and pressure profiles for ideal 
gas equation of state are presented in Figs. 10-12 
respectively for various values of ߛ. Figures 10(a) 
and 10(b) depict density profiles of both 
cylindrical, spherical geometry for different values 
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Fig. 2. Density profiles for Royce EOS when 
૙ࢣ ൌ 1.4, ࣌ ൌ 1.42; (a) ࢹ ൌ 2 and (b) ࢹ ൌ 3 
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Fig. 3. Density profiles for Royce EOS when  
૙ࢣ ൌ 2.0, ࣌ ൌ 1.42; (a) ࢹ ൌ 2 and (b) ࢹ ൌ 3 

Fig. 4. Velocity profiles for Royce EOS when  
૙ࢣ ൌ 1.4, ࣌ ൌ 1.42; (a) ࢹ ൌ 2 and (b) ࢹ ൌ 3 
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Fig. 5. Velocity profiles for Royce EOS when  
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Fig. 6. Pressure profiles for Royce EOS when 
૙ࢣ ൌ 1.4, ࣌ ൌ 1.42; (a) ࢹ ൌ 2 and (b) ࢹ ൌ 3 

Fig. 7. Pressure profiles for Royce EOS when 
૙ࢣ ൌ 2.0, ࣌ ൌ 1.42; (a) ࢹ ൌ 2 and (b) ࢹ ൌ 3 

 

 

 

 

Fig. 8. Radiation profiles for Royce EOS when  
૙ࢣ ൌ 1.4, ࣌ ൌ 1.42; (a) ࢹ ൌ 2 and (b) ࢹ ൌ 3
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Fig. 9. Radiation profiles for Royce EOS when  
૙ࢣ ൌ 2.0, ࣌ ൌ 1.42; (a) ࢹ ൌ 2 and (b) ࢹ ൌ 3 
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of adiabatic index ሺߛሻ respectively. We observe 
from Fig. 10 that density distribution increases with 
the increase of ߛ and decreases in a short range of ߣ 
and a small increase is seen as a bounce and then 
reduces along the ߣ. The velocity profiles for 
different values of adiabatic index ߛ presented in 
Fig. 11. A sharp raise in the velocity profiles is 
observed initially and decrease rapidly along ߣ-axis 
for both cases of geometry ߗ ൌ 2, 3 respectively. 
Moreover, this behavior is similar to the case of 
Royce EOS for fixed values of adiabatic index ߛ 
and non-idealness parameter ሺܾሻ but it is just an 
opposite trend for different values of adiabatic 
index ߛ. Figures 12(a) and 12(b) represent pressure 
profiles versus ߣ, for various values of adiabatic 
index ߛ.  

The radiation flux profiles for perfect gas are 
presented in Fig. 13. It is observed that initially no 
variation in radiation flux distribution but then it is 
more with an increasing values of ߣ. It is observed 
that effect of radiation from the volume of a gas 
becomes important at distances away from the 
initial point and it modifies the shock structure.  

5. CONCLUSIONS 

Similarity solutions for the governing partial 
differential equations (PDEs) of one-dimensional 
unsteady motion of strong converging spherical and 
cylindrical shock wave with the effect of radiation 
is developed. We studied the behavior of flow  
parameters such as density, velocity, pressure, and 
radiation flux for flow-field behind a strong 

converging cylindrical, spherical shock wave  
propagating through a non-ideal stellar medium in 
the presence of monochromatic radiation. The finite 
difference approximation method is employed in 
the solution process. The effects of various physical 
parameters such as non-idealness parameter ሺܾሻ, 
Gruneisen parameter ሺ߁଴ሻ, as well as the specific 
heat ratio ሺߛሻ and material property ሺߪሻ on the flow 
variables are shown graphically. It is observed that 

increase in measure of shock strength ߚ ቀ
ఘ

ఘబ
ቁ  has 

effect on the shock front i.e., the velocity and 
pressure behind the shock front increases quickly in 
the presence of the monochromatic radiation and 
decreases gradually. We conclude from the above 
investigation (i) at the shock front discontinuity 
appeared in density profiles is subject to physical 
requirement that the radiation flux cannot change 
across it and the mean collision time of particles is 
proportional to the gas density and (ii) that effect of 
radiation from the volume of a gas becomes 
important at distances away from the initial point 
and it modifies the shock structure. 
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Fig. 10. Density profiles for perfect gas when 
࣌  ൌ ࢹ (a) ;ࢽ ൌ 2 and (b) ࢹ ൌ 3 

 

Fig. 11. Velocity profiles for perfect gas when ࣌ ൌ
ࢹ (a) ;ࢽ ൌ 2 and (b) ࢹ ൌ 3 
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Fig. 12. Pressure profiles for perfect gas when 
࣌  ൌ ࢹ (a) ;ࢽ ൌ 2 and (b) ࢹ ൌ 3 

Fig. 13. Radiation profiles for perfect gas when 
࣌ ൌ ࢹ (a)  ;ࢽ ൌ 2 and (b) ࢹ ൌ 3 
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