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ABSTRACT 

The diffraction of obliquely incident wave by a symmetric rectangular submarine trench with the effect of 

surface tension at the free surface is investigated using two dimensional linearized potential theory. The 

reflection and transmission coefficients are computed numerically using appropriate multiterm Galerkin 

approximations involving ultraspherical Gegenbauer polynomials. These coefficients are represented 

graphically against the wave number in a number of figures. The theoretical observations are validated 

computationally. The derived result will coincide analytically and graphically with the results already present 

in the literature neglecting the effect of surface tension, which confirms the correctness of the result presented 

here. We observed the zero reflection phenomenon in the graphical representation. It is also noted that the 

values of reflection coefficient decreases as the surface tension increases. We conclude that realistic changes in 

surface tension on the free surface have a significant effect on the present study. 

Keywords: Water wave scattering; Galerkin approximation; Surface tension; Submarine trench; Reflection and 

transmission coefficients. 

NOMENCLATURE 

a depth of the fluid 

d depth of the trench 

g acceleration due to gravity 

, ,i j n space index 

M surface tension 

N truncation size 

R reflection coefficient 

T transmission coefficient 

 coefficient of surface tension

2l  width of the trench

 incident angle

 angular frequency

( , )x y potential function

1 incident wave number

1( , )x y  symmetric part of potential function 

 density of fluid

2 ( , )x y  antisymmetric part of potential function 

1. INTRODUCTION

For over half a century, there has been considerable 

interest of the problem of the diffraction of obliquely 

incident wave by obstacles of various geometrical 

shapes of infinite depth water and finite depth water 

in the literature. The study of scattering of water 

wave over various depth geometries has been 

investigated using different method for a long time 

(Kreisel (1949), Mei and Black (1969), Lassiter 

(1972), Lee and Ayer (1981), Miles (1982), Kirby 

and Dalrymple (1983)). Recently, problem of 

obliquely incidence water wave scattering by 

rectangular trench is investigated by Chakraborty 

and Mandal (2015) applying the multiterm Galerkin 

approximations involving ultraspherical Gegenbauer 

polynomials for solving the integral equations 

arising in the mathematical analysis. 

None of the results documented above accounts 

for the effect of surface tension. Very few attempts 

have been made to include the effect of surface 

tension in water wave problems involving 

obstacles in the free surface. But the problems of 

water wave scattering by obstacles in presence of 

surface tension are investigated by some of the 

researchers such as Evans (1968a), Evans (1968b), 
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Rhodes-Robinson (1970), Rhodes-Robinson 

(1971), Rhodes-Robinson (1982), Chakrabarti and 

Sahoo (1998). Indeed, to the authour’s knowledge 

no previous investigation has been made on the 

existence of water wave scattering by rectangular 

submarine trench in presence of surface tension. 

The amplitude and the frequency of the wave 

depend on both the surface tension and gravity. 

For this reason it may not be possible to neglect 

the effect of surface tension while doing 

experimental study. As mentioned by Hocking and 

Mahdmina (1991), another important reason for 

including surface tension is that in the absence of 

surface tension the transient motion initiated by an 

impulsive start is singular, but when the effect of 

surface tension is taken into account this 

singularity is removed. The uniqueness of the 

solution of the problem depends on the behavior 

of a special combination of the derivatives of the 

velocity potential at the edge because of the effect 

of surface tension as mentioned by Chakrabarti 

and Sahoo (1998). This is also an important reason 

for including surface tension. 

Our aim in the present study is to enhance 

understanding of whether it is physically realistic 

to include the effect of surface tension of the 

problem of oblique wave scattering by rectangular 

trench of finite depth. Problem is split into two 

separate problems involving the symmetric and 

antisymmetric potential functions describing the 

resultant motion in the fluid region because of the 

geometrical symmetry of the rectangular trench as 

was done by Kanoria et al. (1999). To solve the 

problem the potential function is reduced to linear 

integral equations using the eigenfunction 

expansions along with the Havelock inversion 

formula followed by a matching process. Using 

the multiterm Galerkin approximations the 

integral equations are approximated involving 

ultraspherical Gegenbauer polynomials. We have 

shown the effect of surface tension of the problem 

of normal incident wave as a special case. It has 

been seen that when surface tension effect is 

excluded the result is analytically equal to the 

result done by Chakraborty and Mandal (2015) 

and Chakraborty and Mandal (2014). The 

transmission coefficient is represented graphically 

against wave number neglecting effect of surface 

tension for oblique incident wave in a number of 

figure which are coincide with the results obtained 

by Kirby and Dalrymple (1983). For normal 

incidence wave, the numerical estimate of 

reflection coefficient is depicted graphically 

against wave number neglecting effect of surface 

tension which agree with the result obtained by 

Lee and Ayer (1981). Numerical estimates for the 

reflection coefficient are obtained for various 

values of different parameters involved in the 

problem. We have seen that surface tension affects 

the reflection coefficient significantly. It is also 

found that in presence of surface tension width of 

the trench affects the reflection and transmission 

coefficient significantly. The zero reflection 

phenomenon and the multiple reflections are also 

observed here. 

Fig. 1. Definition diagram of the trench. 
 

2. FORMULATION OF THE 

PROBLEM 

Under the assumption of irrotational motion of a 

homogeneous, inviscid and incompressible fluid, the 

problem is studied in 3D cartesian coordinate system 

in which y  axis is taken vertically downwards 

along the line of symmetry of the rectangular trench 

of width 2l . The depth of the trench from the mean 

free surface is d and the bottom of an ocean of 

uniform finite depth a (see Fig. 1). The fluid 

occupies the region ,x z   , except for the 

trench in the fluid region. Assuming linear theory, a 

train of progressive waves represented By 
  0 00

0

1 cos sin2cosh ( )

cosh
{ }

i x z ta y

a
e

    



  
  is obliquely 

incident from very large distance on the right side of 

the trench with 
2

(0 )    being the angle of 

incident of the wave with positive x  axis and  the 

angular frequency of the wave. The wave number 

0 0 1( 2 / )     satisfies the dispersion equation 

2(1 ) tanh ,M a K    where 
2

g
K   with g is 

acceleration due to gravity and
g

M 


 ,   is the 

coefficient of surface tension at the free surface of 

the ocean,   is the density of fluid and 
1 λ1 the 

wavelength. Due to the geometrical symmetry of the 

problem, the z dependence can be eliminated by 

assuming the velocity potential to be of the form
 0 sin

{ ( , ) }
i z t

x y e
  




 . Then ( , )x y  satisfies 

the following boundary value problem 

(∇2 − ν2)𝜙 = 0 in the fluid region                          (1) 

Where 0 sin    

3

3
K  + 0 0,M on y

y y

 


 
  

 
                    (2) 

0 , ( , ), ( )on x l y a d d a
x


    


            (3) 
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0 ,on x a x l
y


  


                                          (4) 

0, ,on x d x l
y


  


                                        (5)               

1
3r   is bounded as  0r                                      (6) 

where r is the distance from a submerged edge of the 

trench 

 

0

0

0

0

cosh ( ) ( ) ( )

cosh

cosh ( ) ( )

cosh

{ Re },

,

, ~

a y i x l i x l

a

a y i x l

a

x

e

as x

as

y

Te x

  


 




   

  

 
 
 

 
 

  
 

           

(7)           

where R and T are unknown reflection and 

transmission coefficients to be determined, 

respectively; and 0 cos   . 

3. SOLUTION PROCEDURE 

To solve the problem we split the velocity potential 

function ( , )x y  into a symmetric and 

antisymmetric parts 
1( , )x y  and 

2 ( , )x y

respectively due to the geometrical symmetry of the 

trench about y axis. Thus 

1 2( , ) ( , ) ( , )x y x y x y                                            (8)                                                        

Where 

1 1 2 2( , ) ( , ), ( , ) ( , )x y x y x y x y             (9)                          

We may analyze only the region x ≥ 0. Now 

1( , )x y and 
2 ( , )x y  satisfy Eqs. (1) to (6) 

together with 

1
2

(0, )
( , ) 0, 0

y
o y y d

x





   


                 (10) 

Let for large x the behavior of 
1,2 ( , )x y be 

represented by 

0

0

cosh ( ) ( ) ( )
1,2 1,2cosh

( , ) { }

                  

a y i x l i x l

a
x y e R e

as x

  



   



   

(11)                                   

where R1 and R2 unknown constants which are to be 

determined by using the Eq. (7). These constants are 

related to R and T by the equations 

2 21 2 1 2( ) ( )
,

2 2

i l i lR R R R
R e T e   
         

(12)                                

Now the eigenfunction expansions of 
1,2 ( , )x y

satisfying Eqs. (1).− (3), (5), (6), (10) and (11) are 

given below. 

0

0

( ) ( )
1

( )

1

1

0
0

0

1

cosh ( )

cosh

{ }

cos ( )

,

( , ) ( ,0 )

cosh ( )
cos( )

cosh

cosh( )cos ( )

,

(0 ,0 )

n

i x l i x l

p x l
n n

n

n n n

n

a y

a

e R e

A a y e

x y for x l y a

d y
B sx

d

B t x d y

for x l y d

 















  

  







 
 
 
  
 
 
 
 
 

    
 
 
 
 

 
 
 
    
 





 (13)   

0

0

( ) ( )
2

( )

1

2

0
0

0

1

cosh ( )

cosh

{ }

cos ( )

,

( , ) ( ,0 )

cosh ( )
cos( )

cosh

cosh( )cos ( ),

(0 ,0 )

n

i x l i x l

p x l
n n

n

n n n

n

a y

a

e R e

C a y e

x y for x l y a

d y
D sx

d

D t x d y

for x l y d

 















  

  







 
 
 
  
 
 
 
 
 

    
 
 
 
 
 
  
 
    
 





(14)                 

Where  

2 2 2 2 2 2, , ,n n n n np s t          

,n ( 1,2,........)n n  are the real positive roots 

of the dispersion equation 
2(1 ) tan( )x Mx xa K   and 

0  is the root of the 

dispersion equation 
2(1 ) tanh( )M d K    . 

Now we define a function as follows 

1,2
1,2

( 0, )
( ), 0

l y
f y y a

x

 
  


                   (15)                          

Using the matching conditions 

1,2 1,2( 0, ) ( 0, )
, 0

l y l y

x x
y a

    

 
    in Eq. (15) we 

get 

1,21,2 ( ), 0( 0, )

0,

f y y al y

x a y d

      
  

    
             (16)                         

Also, due to the edge condition described by Eq. (6), 

we find that 

1
3

1,2( ) ( ),f y O y a as y a


                       (17)                         

Using the expansion (13) for 
1,2 ( , )x y in Eq. (15) 

followed by Havelock’s inversion formula, we 
obtain 
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1,2

0 0
1,2 00

0

1

4 cosh( )
( )cosh ( )

a

R

i a
f y a y dy

 


 

 


      (18)                  

With 

2 2
0 0 0 0

0 2
0

2 (1 ) (1 3 )sinh(2 )

(1 )

a M M a

M

   




  



 

And 

10

4
( )cos ( ) ,

an
n n

n n

A f y a y dy
p





                     (19)                     

20

4
( )cos ( ) ,

an
n n

n n

C f y a y dy
p





                  (20)              

With 

2 2

2

2 (1 ) (1 3 )sinh(2 )

(1 )

n n n n
n

n

a M M a

M

   




  



 

Using the expansion (14) for 
1,2 ( , )x y in Eq. (16) 

followed by Havelock’s inversion formula, we 

obtain 

0 0
0 0

0

1,2 00

4 cosh( )
( , )

( sin( ),cos( ))

( )cosh ( ) ,
a

d
B D

s sl sl

f y d y dy

 








 

             (21) 

With 

2 2
0 0 0 0

0 2
0

2 (1 ) (1 3 )sinh(2 )

(1 )

d M M d

M

   




  



 

And 

1,20

4
( , )

(sinh( ),cosh( ))

( )cos ( ) ,

n
n n

n n n

a

n

B D
t t l t l

f y d y dy









 

               (22) 

with 

2 2

2

2 (1 ) (1 3 )sin(2 )

(1 )

n n n n
n

n

d M M d

M

   




  



 

Now matching of 
1,2 ( , )x y  across the line x l  

through the right corner points of the gap, gives the 

relation 

1,2 1,2( 0, ) ( 0, ), 0l y l y y a                   (23) 

which ultimately produce the integral equations 

0
1,2 1,20

0

cosh ( )
( ) ( , ) ,

cosh

a a y
g u F y u du

a






    

              0 y a                                            (24)   

Where 

2
0 0

1,2 1,2
0 1,2

4 cosh ( )
( ) ( ), 0

(1 )

a
g y f y y a

R

 

 
  


     (25) 

And 

1,2( , ), (0 , )F y u y u a                                            (26) 

The function 1,2( , ), (0 , )F y u y u a   is real and 

symmetric in y and u. 

We define the constants k1 and k2 by 

1 2
1 2

1 2

1 1
,

1 1

R R
k i k i

R R

 
   

 
                              (27) 

Now using relations (18) and (24), we find that 

0
1,2 1,20

0

cosh ( )
( )

cosh

a a y
g y dy k

a






                     (28) 

It is important to note that 
1,2 ( )g y and

1k , 
2k are 

real quantities. To evaluate 
1k , 

2k we can used the 

solution of the integral equation in the relation (24). 

Then using the value of 
1k , 

2k we produce the 

actual reflection and transmission coefficients |R| 

and |T |respectively, as follows 

1 2

2 2 2
1 2 1 2

1 2

2 2 2
1 2 1 2

1

1 ( )

1 ( )

k k
R

k k k k

k k
and T

k k k k




  




  

                      (29) 

which are obtained from Eqs. (27) and (12). Now 

from the Eq. (29), we can easily show the energy 

identity as follows 

2 2
1R T   

4. MULTI-TERM GALERKIN 

APPROXIMATION 

In this section, we solve the integral Eq. in (24) using 

Multi-Term Galerkin Approximation method. The 

unknown functions 
1,2 ( )g y  are approximated as 

1,2 1,2( ) ( )g y F y . An appropriate multi-term form 

of the functions 
1( )F y  and 

2 ( )F y are chosen in 

terms of suitable basis functions as follows 

1 20 0
( ) ( ), ( ) ( ),

           0

N N
i i i ii i

F y c b y F y e h y

y a

 
 

 

 
  

(30) 

with ic  and ie  are unknown constants. Since the 

horizontal velocity of the fluid near the corner points 

( , )l a  of the trench has a cube root of singularity, 

as mention by Chakraborty and Mandal (2014), the 

basis functions ( )ib y  and ( )ih y can be found as 

( ) ( ) 0
aKy Kt

ii y

d
b y e e b t dt y a

dy

 
   

    

(31)                   
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( ) ( ) 0
aKy Kt

ii y

d
h y e e b t dt y a

dy

 
   

   (32)                           

where ( )ib t  is chosen in terms of ultraspherical 

Gegenbauer polynomials of order 1/6 as 

7
16 1
6 6

21 1
2 21 3 3

3

2 ( )(2 )!
( ) ( ),

(2 ) ( )

              0

y
i i a

i
b t C

i a a y

y a






  

 

   (33)            

Now we substitute the expansion (33) in the Eq. (32) 

and putting in the Eq. (31), we get the approximate 

forms of 
1( )F y  and 

2 ( )F y . Multiplying both side 

of the Eq. (24) by ( )ib y and ( )ih y , using the 

approximation form of 
1( )F y  and 

2 ( )F y  and 

integrating over (0 )y a  , we determined the 

linear systems 

0 0

, , 0,1,2,........,
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i ij i i ij i

i i

c e j N

 
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
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0
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Using the different properties and standard results on 

Gegenbauer polynomials, integrating Eqs. (35), (36), 

(37) and (38) we can evaluated explicitly, as done by 
Kanoria et al. (1999). Thus we obtained 
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(39) 

and 

1 02
6

1
6

0

( )

, 0,1,2,.....,

( )

i

i i

I a

i N

a






  L H         (40)                          

Now the constants , ( 0,1,2,....., )i ic e i N  are 

deter-mined by solving the linear systems (34), and 

then relation (28) produce 

1 2

0 0

,
N N

i i i i

i i

k c k e

 

  H G                                        (41)                      

Now using the values of 
1k and 

2k we evaluated the 

reflection and transmission coefficient from the 

relation (29). 

5. NUMERICAL RESULTS AND 

DISCUSSION 

In this section, to construct a solution, it is first 

necessary to truncate infinite series in the equation 

(34) involving 𝒦𝑖𝑗 , 𝒢𝑖𝑗 to a finite number of terms 

given by N . We have seen that accuracy of the 

solution depends on the number of terms. It is 

observed that the accuracy can be further increased 

by taking more terms in the series in (39) as 

mentioned by Chakraborty and Mandal (2014). It is 

also seen that the computed results for reflection 

coefficients in presence of surface tension converges 

very rapidly with N . The reflection coefficients are 

computed numerically for various values of different 

dimensionless parameters and they are presented 
graphically. 

In Fig. 2 the reflection coefficients are plotted against 

wave number with fixed value of 

22, 5, 1d l M
a a a
     for different values of 

angle ( 30 , 45 ,60 ,89 )o o o o  . It is observed that 

the peak value of reflection coefficient increases as 

the angle of incident increases. Also we have seen 

that number of zeros of reflection coefficient 

increases as the angle of incident decreases. From the 

figure, it is clear that present result satisfy the 

geometry of the problem. It is also noted that when 

value of incident angle tends to 90o
 reflection 

coefficient be-comes almost unity. 
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Table 1 Values of R , T  and 
2 2

R T  for 

fixed values of 

2 1.5, 45 , 4, 2o l dM
a aa

     

0a  R  T  
2 2

R T  

0.1 0.137817 0.990458 1.0000 

0.3 0.301439 0.953485 1.0000 

0.5 0.243715 0.969847 1.0000 

0.7 0.0514609 0.998675 1.0000 

0.9 0.0420428 0.999116 1.0000 
 

 
Fig. 2. Reflection coefficient against 

0a for 

different values of angles. 
 

The effects of surface tension on reflection and 

transmission coefficients are shown in Fig. 3 and Fig. 

4, respectively . In these figures the graphs are 

plotted for three different values of 

2 ( 1,1.5, 2)M
a

 and for

45 , 4, 2o l d
a a

    . From Fig. 3, it is clear 

that the peak value of reflection coefficients 

decreases as the surface tension increases. Its 

happens because of the fact that the cohesive force 

between fluid molecules at the free surface. The inter 

molecular force increases with the surface tension. 

Due to this fact the free surface of the fluid becomes 

stretched. Thus in presence of surface tension, more 

energy will be transmitted and less energy will be 

reflected. From Fig. 4, it is observed that for large 

wave number, transmission coefficient is almost 

equal to unity. The waves of short wavelength are 

confined near the free surface and these do not feel 

the existence of submerged trench and as such these 

propagate without any hindrance. The results using 

the present method are validated through the 

calculated values of R , T and 
2 2

R T and 

given in Table 1. This table shows that in presence of 

surface tension the value of 
2 2

R T is exactly 

equal to unity. This implies that the energy identity 

is always satisfied numerically. Thus, the present 

procedure for the numerical computation of R  

(and T ) is quite efficient. 

The reflection coefficients are plotted against wave 

number in Fig. 5 with fixed value of 2,d
a

   

 
Fig. 3. Reflection coefficients against 

0a  for 

different values of surface tension. 

 

 
Fig. 4. Transmission coefficients against 

0a  for 

different values of surface tension. 

 

245 , 1o M
a

  for different values of 

( 2,3,5)l
a
 . It is observed that the peak value of 

reflection coefficient increases as the width of the 

trench increases. Also we have seen that number of 

zeros of reflection coefficient increases as the width 

of the trench increases. 

The graphs depicted in Fig. 6 are the reflection 

coefficients against wave number with fixed value of 

24, 45 , 1ol M
a a

   for different values of 

depth of the trench ( 2,2.5,3)d
a
 . It is seen that 

the peak value of reflection coefficient increases as 

the depth of the trench increases. 

Results for normal incidence of surface waves on a 

rectangular trench are calculated and analyzed 

numerically in Figs. 7-9 as a function of 0a . 

Mathematically, this can be achieved by considering 

0o  in the problem. In Fig. 7 R  are depicted for

2 0.1,0.5,0.9M
a

  with

0 , 2, 5o d l
a a

    . It is observed from the 

figure that the reflection coefficients  R decreases 

as the surface tension increases. 
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Fig. 5. Reflection coefficients against 

0a for 

different values of width of the trench. 

 

 
Fig. 6. Reflection coefficient against 

0a for 

different values of depth of the trench. 

 

The reflection coefficients R are plotted against 

the wave number for different values of depth of 

trench in Fig. 8. In this figure we consider 

20 , 1, 5o lM
aa

    and for

2,2.25,2.5d
a
 . It is observed that the reflection 

coefficients R  increases as the depth of the trench 

increases. 

The graphs for R are plotted against the wave 

number aα0 in Fig. 9 for three different values of 

( 2,3,5)l
a
  with

20 , 1,, , 2o dM
aa

    . It is clear that the 

pick values of R are decreases as the width of the 

trench decreases. 

All these figures show the existence of zeros of 

reflection coefficient for discrete values of 

wavenumber. This occurs when the two sides of the 

trench are equal and the number of zeros increases 

with the depth and width of the trench increases. 

Zero re-flection phenomenon is also observed by Xie 

et al. (2011) and Liu et al. (2013) for symmetric 

trench. It is also noted that the curve for reflection 

and transmission coefficients are oscillatory in 

nature. The oscillatory nature is attributed to multiple 

re- 

 

 
Fig. 7. Reflection coefficients versus 

0a for 

different values of surface tension. 
 

flections of the incident wave train by two sides of 

the symmetric trench. 

5.1   Accuracy of the Results 

In this section we consider the motion of the fluid be 

under the action of gravity only. So we take 0M 

in Eq. (2). The corresponding problem matches 

exactly with the one considered by Chakraborty and 

Mandal (2015) and Lee and Ayer (1981). A 

numerical study of the results in absence of surface 

tension have been done in Figs. 10-13 and compared 

with some previously published works in the 

literature. We plotted transmission coefficients 

versus 
0a in the Figs. 10-12 for the different values 

of non-dimensional parameters and angle of 

incidence, such as taken by Kirby and Dalrymple 

(1983). It is observed that the Fig.10 from present 

study almost coincide with the Fig. (4) plotted by 

Kirby and Dalrymple (1983). In Fig. 11 and Fig. 12 

transmission coefficients are plotted for two different 

depth of the trench at defferent angles, namely, 

0o  and 45o   ignoring the surface tension. 

These graphs matches closely with the Fig. (4) and 

Fig. 5 by Kirby and Dalrymple (1983). 

For normally incident waves (i.e. when 0o  ) and 

neglecting the effect of surface tension (i.e. when 

0M  ), the numerical values of R are calculated. 

Corresponding graph is depicted as a function of 

incident wave number 
0

2

a


 for 

2 0, 2, 2.5, 0od lM
a aa

     in Fig. 13. 

From this figure, it is clear that present results agree 

closely with the result plotted in Fig. 2 by Lee and 

Ayer (1981) and Fig. 4 by Chakraborty and Mandal 

(2015). 
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Fig. 8. Reflection coefficients versus 

0a  for 

different values of trench depth. 

 

 
Fig. 9. Reflection coefficients versus 0a for 

different values of trench width. 

 

 

Fig. 10. Transmission coefficient for 2 0M
a

  

with fixed values of 2, 5d l
a a
   and 

different values of q 0o  and 45o  . 

 

Fig. 11. Transmission coefficient for  2 0M
a

  

with fixed values of 3, 5d l
a a
  and different 

values of 0o   and 45o  . 
 

 

Fig. 12. Transmission coefficient for  2 0M
a

  

with fixed values of 3, 10d l
a a
  and 

different values of 45o  . 

 

 

Fig. 13. Reflection coefficient against 
0

2

a

  for

20 , 0, 2, 2.5o d lM
a aa

     . 
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6. CONCLUSION 

In the present study, the scattering of oblique 

incident waves by a rectangular symmetric trench in 

presence of surface tension at the free surface is 

investigated by employing multiterm Galerkin 

approximation method. The numerical results are 

illustrated graphically. It is seen that the derived 

result will coincide analytically and graphically with 

the results already present in the literature. From the 

computational results it is clear that for some fixed 

wave number the peak value of reflection coefficient 

decreases when the value of surface tension 

increases. In presence of surface tension the length 

and depth of the trench play an important role to the 

scattering behavior of the surface waves by a 

rectangular trench. The zero reflection and multiple 

reflections phenomenon are also observed here. It is 

also noted that the values of reflection are negligible 

for small wave number. This is due to fact that for 

long wave, corresponding to smaller wavenumbers, 

the potential behaves like a uniform horizontal flow 

far from the trench and free surface is stretched with 

the effect of surface tension, so more wave energy 

transmitted. 
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