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ABSTRACT 

In this paper, the two-dimensional steady boundary layer flow and heat transfer over a flat plate with slip 

velocity and temperature jump conditions at the walls were analyzed. Using similarity transforms, the 

governing equations were reduced to a system of ordinary differential equations. Semi-analytical solutions to 

the resulting boundary value problem were obtained using the differential transform method (DTM). In order 

to cover the asymptotic boundary conditions, a method of switching curves was proposed. In this switching 

approach, the traditional solution to the DTM, which is valid for finite horizons, was followed by another path 

that was also an analytical solution to the problem. The main preference of the resulting closed form solution 

with respect to numerical solution is the possibility of parametric studies. The method was verified using 

some available numerical data, and the results showed that our proposed method had reasonable efficiency 

and accuracy.  

Keywords: Shape optimization; Optimization; Heat transfer; Approximation. 

NOMENCLATURE 

pC  fluid heat capacity 

f  transformed velocity  

k  fluid thermal conductivity 

Kn  Knudsen number  

l  characteristic length 

Pr  Prandtl number 

Re  Reynolds number 

T  temperature 

gT  gas temperature adjacent to the wall 

wT    
      

wall temperature 

T  free-stream temperature 

u  stream-wise velocity component 

gu  gas velocity adjacent to the wall 

U 
 free-stream velocity 

wu  wall velocity  

  fluid kinematic viscosity 

v  velocity component vertical to stream 

directions 

x  component of the coordinate system 

y  component of the coordinate system 

 

M  tangential momentum coefficient 

  non-dimensional velocity parameter 

  non-dimensional thermal slip parameter 

  specific heat ratio 

  similarity variable  

  transformed temperature  

  free path 

T  thermal accommodation coefficient 

  fluid density 

  stream function 

 

1. INTODUCTION 

Boundary layer flow theory has been of interest to 

many researchers in fluid mechanics, and its various 

applications appear in many real world situations. 

Boundary layer theory was initially developed by 

some pioneering publications (Blasius 1907, 

Falkner and Skan 1931, Prandtl 1905, Sakiadis 

1961), and comprehensive reviews of this theory 

and related topics are given by Caflisch and 
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Sammartino(2000), Garratt (1990), Kachanov 

(1994), Oleinik and Samokhin (1999), Schlichting 

et al. (1995), Tani (1977), and Weinan (2000). 

Among the different aspects of the theory, the 

problem of laminar boundary layers and heat 

transfer flow on a semi-infinite flat plate, called 

Blasius boundary layer flow, have been broadly 

studied (e.g. see Aziz 2009, Bataller 2008, 

Bhattacharyya 2011, Cortell 2008), where the latter 

can be used as abenchmark flow for the validation 

of different numerical methods (Cortell 2005 and 

Wang 2004). 

During recent years, with the rapid development of 

micro-and nano-measuring science and 

technologies, it has been found that there are many 

significant differences between fluid flow at 

macroscopic scales and that at micro/nano scales, 

e.g. the wall-slip phenomena (Kumaranand Pop 

2011). Rarefied gas flows with slip boundary 

conditions are often countered in micro-scale 

devices and low-pressure situations (Gad-el-Hak 

1999). The effects of slip conditions are very 

important in technological applications for some 

fluids that exhibit wall slip, e.g. when polishing 

artificial heart valves and their internal cavities. The 

first reference that proposed boundary layer with 

slip condition is Beavers and Joseph (1967), where 

the effect of the boundary layer was replaced by the 

slip velocity. In the work of Martin and Boyd 

(2001), the slip flow condition was added to the 

Blasius problem in order to study 

microelectromechanical system (MEMS) scale 

flows. Among more recent studies (Aziz et al.2015, 

Aziz et al. 2014, Cai 2015 and Parida et al. 2015), 

Aziz et al.2015 considered the convective boundary 

layer flow of  a power-law fluid on a porous plate 

with suction/injection. They investigated the effects 

of different physical parameters, such as the power-

law index, slip, and permeability on the fluid flow 

and heat transfer characteristics. 

In the present paper, the Blasius boundary layer and 

heat transfer flow with slip boundary conditions 

were studied. Applying the differential transform 

method (DTM) led to closed forms of the solutions 

to this problem. Introduced by Zhou (1986), the 

DTM was originally an analytical method for 

solving initial value problems. The method was 

subsequently extended and adopted to solve various 

mathematical problems such as boundary value 

problems, partial differential equations and integral 

equations (Usmanet al. 2017, Sepasgozar et al. 

2017, Sheikholeslami and Ganji 2015, 

Mosayebidorcheh et al. 2017, Vimala and Omega 

2016, Mosayebidorcheh 2015 and Thiagarajan and 

Senthilkumar 2013). A recent application of this 

method appears, for example, in Usman et al. 

(2017), where the DTM was applied to study the 

two unsteady phases of a nano fluid flow and heat 

transfer between moving parallel plates in the 

presence of a magnetic field. In the work of 

Sepasgozar et al. (2017), the analytical solutions of 

the momentum and heat transfer equations of a non-

Newtonian fluid flowing in an axisymmetric 

channel with a porous wall were obtained via the 

DTM. This method was also used successfully by 

Sheikholeslami and Ganji (2015) to solve the 

problem of nano fluid hydro thermals in the 

presence of a variable magnetic field. A hybrid 

versionof the DTM and the finite difference method 

was also developed to solve flow and heat transfer 

equations by Mosayebidorcheh et al. (2017). 

In the problems considered in the current paper, 

there are two boundary conditions at infinity. As the 

validity of the regular DTM is restricted to finite 

horizons, the related solution diverges over this 

range, and therefore the asymptotic behavior of the 

solution is not attained. The traditional method used 

to cover asymptotic conditions is to represent the 

polynomial solution with a rational function, i.e. a 

Padé approximation (Rashidi 2010). However, this 

approach and the consequent solutions depend on 

the degree of the polynomials used in the numerator 

and denominator. Therefore, determining the best 

fitting values of these parameters is based on trial 

and error. In the approach of this paper, the 

switching of the DTM result to a solution that 

satisfied the final boundary condition, and joint 

restriction, was introduced. In comparison with the 

Padé approximation, the proposed method was not 

based on trial and error, but instead it provided a 

systematic procedure to find the optimal location of 

switching. Therefore, the novelty of our method lies 

in introducing this technique. In order to check the 

validity and accuracy of the method, we applied it 

to different examples with and without the slip 

condition. Comparison of our results with those 

published in the literature confirmed the efficiency 

of our proposed approach.  

2. MATHEMATICAL FORMULATION 

The steady two-dimensional laminar viscous fluid 

flow and heat transfer over a flat plate were 

considered in this study. The governing equations 

for the conservation of mass, momentum and 

energy, based on the boundary layer approximation, 

can be expressed as: 

0
u v

x y

 
 

 
  (1) 

2

2

u u u
u v

x y y


  
 

  
  (2) 

2

2

p

T T k T
u v

x y C y

  
 

  
  (3) 

where T is the temperature, u and v are the 

velocity components in the stream-wise and vertical 

directions, respectively, v is the fluid’s kinematic 

viscosity, k is the fluid’s thermal conductivity, 

pC is the fluid’s heat capacity, and  is the fluid’s 

density. 

Considering the no-slip and constant temperature 

conditions on the wall, and the free-stream 

condition outside of the boundary layer, the proper 

boundary conditions of the boundary layer flow 

over a flat plat are given by: 
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     ,0 0, ,0 0, ,0 wu x v x T x T     (4) 

     ,,, 0, ,u x U v x T x T      

  

(5) 

Where 
wT  is the wall’s temperature, and U 

and 

T
 are the free-stream’s velocity and temperature, 

respectively. For flows with 0.001Kn  , where 

/Kn l  is the Knudsen number that is defined 

as the mean free path (  ) divided by the 

characteristic length ( l ), the no-slip and constant 

temperature conditions are valid. In the slip flow 

regime, 0.001 0.1Kn  , and following slip 

boundary conditions can be used (Cai 2015): 

0

2

3

4

M

g w

M y

wg

u
u u

y

T

T x










  
   

 

 
  

 

  (6) 

0

2 2

1 Pr

T

g w

T y

T
T T

y

  

 


  
   

  
  

(7) 

where the w and g  subscripts represent the wall 

and the adjacent gas, respectively. In addition, 
M  

and 
T  are the tangential momentum and thermal 

accommodation coefficients, respectively, Pr  is the 

Prandtl number, and   is the specific heat ratio. 

The second term in Eq. (6) contains the stream-wise 

temperature gradient, also called the thermal creep, 

which is neglected in this study. 

By introducing the following similarity 

transformations: 

   ,
w

T T
f

T TxU


  








 


  (8) 

U
y

x



   

(9) 

the variables are transformed from  ,x y  

to  ,x  . Here   is a similarity variable and  is 

the stream function defined as: 

,u v
y x

  
  
 

  (10) 

The velocity components also are based on the 

stream function as: 

   
1

,
2

U
u U f v f f

x


  


      (11) 

By substituting Eqs. (9) and (11) into the 

momentum and energy equations (Eqs. (2) and (3)), 

the following system of ordinary differential 

equations (ODE) is obtained: 

2 0,f ff     (12) 

2 Pr 0,f     (13) 

The boundary equations are also transformed into 

the following form as: 

       ''

1/2

0 0, 1, 0 0 ,

2
ReM

x x

M

f f f f

Kn








    




  (14) 

     

1/2

0, 0 1 0 ,

2 2
Re

1 Pr

T x

x

T

Kn

  

 


 

   






  

(15) 

where 
xKn  and Rex

 are, respectively, the 

Knudsen and Reynolds numbers based on x , and 

  and   are the non-dimensional velocity and 

thermal slip parameters, respectively. 

Using the viscosity definition based on the kinetic 

theory of gases (Cai 2015 and Howarth 1938), we 

find: 

8

3

RT



   

(15) 

Based on the kinetic gas estimation of the viscosity, 

the slip boundary conditions can be also expressed 

as follows: 

 

 
1/2

0

' 0

'' 0

2 3

2 2

M

M

f

f

x
M



 

 





  
  

 

  (16) 

 

 
1/2

0

0 1

' 0

2 2 1 3

1 Pr 2 2

T

T

x
M






  

  






  
  

  

 

(17) 

3. METHOD OF SOLUTION 

3.1   The Traditional DTM 

Herein, we review some basic definitions of the 

differential transform, which were initially 

introduced by Zhou (1986): 

Definition 1: If  y t  is an analytical function in 

domainT  , then it can be differentiated 

continuously with respect to t . Let 
0t T  be 

fixed, then the differential transform of this function 

at 
0t  is defined as a 

sequence       0 , 1 , 2 ,Y Y Y , in which: 
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 
0

, 0,1,2,...
k

k

t t

d y
Y k k

dt


 
  
 

  

(18) 

It is clear that  Y k , which is called the spectrum 

of  y t , is the k-th coefficient in the Taylor series 

of  y t at 
0t t . Therefore, if D  denotes the 

differential transform, then ( )y t  is the inverse of 

the transform of  Y k :  

 
 

 

       

0

0

1

!

0 , 1 , 2 ,

k

k

t t
y t Y k

k

D Y Y Y







 
 
 
 




  

(19) 

Some useful and important properties of the 

differential transforms are summarized in Table1. In 

this table, it is assumed that  R k ,  S k , and 

 X k  are the differential transforms of  r t , 

 s t  ,  x t , respectively.  

 

Table 1 Some properties of the differential 

transform 

Original function Transformed form 

     x t r t s t       X k R k S k  

    ,x t r t






    X k R k 

     x t r t s t      
0

k

l

X k R k S k l


  

 
 dr t

x t
dt

      1 1X k k R k   

 
 n

n

d r t
x t

dt
 

 

 
 

!

!

X k

k n
R k n

k






 

   
0

t

t

x t r d    
 1

, 1
R k

X k k
k


  

  nx t t 

   

1, if 

0, otherwise

X k k n

k n

 


 


 

  tx t e   
!

k

X k
k


 

   sinx t t  

 
  sin

! 2

k k
X k

k

 


 
  

 
 

   cosx t t  

 
  cos

! 2

k k
X k

k

 


 
  

 
 

 

When solving a two-point boundary equation with 

the DTM, the first step is to take the differential 

transform of both sides of the equation.  If the 

original equation is: 

   L y h t   (20) 

Where  .L is thedifferential operator, then the 

equivalent equation in transformed form is: 

     D L y D h t   (21) 

After performing the differential transform, this 

equation has an algebraic form like: 

      , 0, 1, 2,Y K H K k    (22) 

Where  Y K  and  H K  are the differential 

transforms of  .y  and,  .h  respectively. 

Equation (22) is also called the equivalent equation 

in the K -domain, which is usually a recursive 

iteration. If Eq. (22) is solved for  Y K , then the 

solution of Eq. (20) will be calculated using Eq. 

(19).  

When the initial conditions, for example when L  is 

of the second degree, aregiven as: 

   0 0 0 0,y t y y t y     

Then the initial values for solving Eq. (22) are: 

   0 00 , 1Y y Y y     

When Eq. (20) has boundary conditions like: 

   0 0 , f fy t y y t y    

Then the method starts with: 

   00 , 1Y y Y     

Where   is a parameter that will be found by 

applying  f fy t y  at the end to the resulting 

solution of the form Eq. (19).  

In the present problem of this paper, some finial 

conditions have an asymptotic form as: 

  1f      

Some references propose using the Padé 

approximation to approximate the resulting 

polynomial of Eq. (19) as a rational function, in 

order to find solutions that will have the appropriate 

asymptotic behavior.  

3.2.   The Switching DTM  

In the proceeding section, we introduced a different 

approach based on switching to a second curve to 

satisfy the final conditions.  

Lets take the differential transform from both sides 

of Eqs. (12)- (13). Then, the corresponding 

equations based on the properties inTable1 in K-

space are: 
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 
   

      
0

1
3

2 1 2 3

1 2 2 ,

1,2,

k

l

F k
k k k

l l F k l F l

k




 

  

   





 

(23) 

 
  

     
0

Pr
Θ 2

2 1 2

1 Θ 1 ,

1,2,

k

l

k
k k

l F k l l

k




 

 

  



   

(24) 

where  F k  and  k  denote the differential 

transforms of f and , respectively. To start the 

above iterations, the following initial conditions are 

employed, which are equivalent to the initial 

conditions of Eqs. (14) and (15), which are also in 

K-space: 

     
1

0 0, 2 1 ,
2

F F F


    
(25) 

   Θ 0 1 Θ 1 ,    (26) 

With these initial conditions, the resulting 

coefficients obtained from Eqs. (23) and (24) are 

functions of Pr ,   and   , that are given and two 

unknown coefficients  2F  and  Θ 1 . These two 

coefficients are taken as parameters that control the 

final conditions of Eqs. (14) and (15) by defining: 

   2

1
2 0 ,

2
f F f     

(27) 

   1 Θ 1 0 ,t     (28) 

Let us now consider that the resulting solutions 

to  .f  and  . , which are infinite series, are 

truncated in N terms as follows: 

   
0

,
N

k

N

k

f F k 


   
(29) 

   
0

Θ ,
N

k

N

k

k  


   
(30) 

where  Nf   satisfies both Eq. (12) 

approximately, and its initial condition. In order to 

satisfy the final condition at infinity, we propose 

that the velocity profile is a constant value at a 

suitable point    as follows: 

 

  ,

1,

Nf

f

  



 





 


 
 

   

(31) 

Then, it satisfies the final condition   1f     

trivially.  

Now, 
 and 

2f  are two parameters which have to 

be found in such a way that at the switch point, the 

value of the first derivative is 1 and the second 

derivatives must be as small as possible, that is 

  1f 
    and   0f 

  . In order to find the 

optimal values of 
 and

2f , the following 

optimization problem needs to be solved 

numerically: 

      22 ''min 1f f      

 

(32) 

Similarly, the switched form of the temperature is 

assumed as: 

 

 

 

,

,

N   

 

   



 




 
 

  

(33) 

Unlike the final course curve for  f   in Eq. (31), 

which is a constant straight line, in the case 

of    , some analytical effort is needed.  

Due to the switching of  f   at 
 to a constant 

value of 1,  f   has the form 
0a   for   , 

where,  0 Na f      is a known constant. 

Therefore, Eq. (13) changes to the following 

format:  

 02 Pr 0,a        (34) 

or equivalently: 

 
 0

1
Pr ,

2

d
a

d


 





    

(35) 

The above linear first-order equation can be solved 

for    : 

 
 

     

 

0

0

1
Pr

2

Ln Ln

1
Pr ,

2

d
a d

a d






 



   

 





  

 







 

 



  

(36) 

Therefore: 

      

  

2

2

Pr
exp

4

Pr
exp

4

N

N

f

f

    

  

 

 

  
  

 

 
   
 







  

(37) 

By integrating the above equation, the final form of 
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    is found as: 

   

    

  

  

2Pr
exp

4 Pr

Pr
Erf

2

Pr
Erf

2

N

N

N

f

f

f

   


  

  



 

 

 





 
 



 
 

  
    

  

 
   

 
  

(38) 

where  Erf x  is the error function defined as: 

   2

0

2
Erf exp

x

x s ds


    
(39) 

In order that the proposed solution to Eq. (33) is 

continuous, it should satisfied    N      

and    
1

2
N   

  at   , which is 

established when  N   and  N 
  are used 

in Eq. (39), that is: 

   

    

  

  

2Pr
exp

4 Pr

Pr
Erf

2

Pr
Erf

2

N

N N

N

N

f

f

f

   


  

  



 

 

 





 
  

 

  
    

  

 
   





 

 

(40) 

This solution should also satisfy the final condition  

  0   . It is clear that the proposed solution 

has a parameter
0a , which we will use as a 

controlling parameter for its asymptote. Since the 

limit of the error function at infinity is 1, if we take 

the limit from     as  , we have: 

   

    

  

2

lim

Pr
exp

4

Pr
1 Erf

Pr 2

N

N N

N

f

f

    

  




  

 





 
  

 

  
   

  





  

(41) 

Now, it is enough to solve the following equation 

for
: 

   

    

  

2 1

2

, ,

Pr
exp

4

Pr
1 Erf 0

Pr 2

N

N N

N

L f t

f

f

  

  




 

 



 

 
  

 

  
    

  





  

(42) 

But, as it has been seen before, 
 is estimated 

from Eq. (32), and in order to find its optimal value, 

Eq. (42) must be zero. Next, we can combine Eqs. 

(32) and (42) by minimizing the following objective 

function: 

    

     

2

2 2

2 2

2 1

, , 1

, ,

N

N

I f t f

f L f t

 

 

 

 

 

 

  

(43) 

By solving Eq. (43), the switch point of Eqs. (31) 

and (33), and the required parameters that satisfy 

the final conditions are obtained.  

4. RESUTS 

In this section, our proposed method was applied to 

three cases to demonstrate its accuracy and 

efficiency.  

Case 1: In the simplest case, the following Blasius 

problem is considered, where the velocity slip  is 

zero: 

2 0,f ff     

     0 0, 0 0, 1,f f f       

 

(44) 

The corresponding equation in K-space is the 

following single recursive relation: 

 
   

      
0

1
3

2 1 2 3

1 2 2 ,

1, 2, 3,

k

l

F k
k k k

l l F k l F l

k




 

  

   



  

(45) 

The initial conditions are also translated as: 

   0 0, 1 0,F F    (46) 

It is also assumed that    2

1
2 0

2
f F f     is a 

free parameter that will be obtained in such a way 

that the final condition   1f     is satisfied. In 

this example, the solution is expressed up to 17th 

power of   as follows: 
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 
2 5 3 8

2 2 2

17 2

4 11 5 14

2 2

6 17

2

11

60 20160

5 9299

266112 14529715200

1272379

59281238016000

f f
f f

f f

f

 
 

 



  

 



  

 
2 4 3 7 4 10

2 2 2

17 2

5 13 6 16

2 2

11 5
2

12 2520 24192

9299 1272379

1037836800 3487131648000

f f f
f f

f f

  
 

 

    

 

 

 
2 3 3 6 4 9

2 2 2

17 2

5 12 6 15

2 2

11 25
2

3 360 12096

9299 1272379

79833600 217945728000

f f f
f f

f f

  


 

    

 

  

(47) 

This solution gives a family of approximate 

solutions of the Blasius problem that satisfies the 

Blasius equation and initial conditions in a region 

of 0  . Now, the proposed solution that satisfies 

the final condition has a s witched form as: 

 

 17 ,

1,

f

f

  



 





 


 
 

   

(48) 

Therefore, 
 and 

2f  are two parameters which 

have to be found in such a way that at the switch 

point, the value of the first derivative is 1 and the 

second derivatives must be as small as possible, that 

is   1f 
   and   0f 

  . In order to find 

the optimal values of 
 and 

2f , the following 

optimization problem is solved numerically: 

      2 2

min 1f f  
     

(49) 

The optimal values of the decision variables are 

3.96046   and 
2 0.180281f  . The results 

are depicted in Figs. 1 and 2. In these figures, the 

computed results of  f   and its first and second 

derivatives are compared with the numerical results 

of Howarth (1938). As can be seen, very good 

agreement is observed between the results obtained 

with the switching DTM and the numerical results 

reported by Howarth (1938). 

Another parameter that measures the quality of the 

solution is the absolute value of the difference of 

the two sides of the Blasius equation with the 

approximate solution put into the right hand side of 

Eq. (1). That is,  Error 2N N N Nf f f f   . A 

smaller  Error Nf  means a better approximation. 

In Fig. 3, the corresponding errors are depicted for 

different number of terms.  



f
(

)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

present method

Num. of Howarth (1938)

 

Fig. 1. The profile of  f   for case1. The solid 

line indicates presents our differential transform 

method (DTM) results, while the circles show the 

numerical results of Howarth (1938). 

 


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'(

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f '()
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Fig. 2. The profiles of ( )f    and ( )f   for 

case1. The solid lines present our differential 

transform method (DTM) results, and the circles 

indicate the numerical results of Howarth (1938). 
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Fig. 3. Errors of the first part of the solution in 

case1. 
 

It can be concluded from Fig. 3 that the validity of 

polynomial part of the solution changes with the 
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order of the polynomial. The decreasing error from 

5N   to 17N  shows that higher orders lead to 

better solutions of the differential equations. It is 

also noted that the error will increase after a near 

zero course, where the length of this favorable 

region increases with the polynomial’s order. As the 

solution obtained with the proposed method has 

changed from a polynomial to a straight line 

at   , this grows of error lost its importance, 

while in the remaining, no errors are achieved. It 

should also be noted that in case 1 with 17N  , 

the maximum error beyond    is 0.65.  

Therefore, the solution obtained with our proposed 

method satisfies the Blasius equation with 

reasonable accuracy in its polynomial part, and 

when the error starts to increase, we switched to its 

straight line form, which is an exact solution to Eq. 

(1).  

Case 2: In this case, the Blasius problem with 

 0was considered. The boundary value problem 

is: 

2 0,f ff     

       0 0, 0 0 , 1,f f f f        

(50) 

The corresponding equation in K-space is similar to 

thatof case1, but the second initial condition has 

changed to: 

     
1

0 0, 2 1 ,
2

F F F


    
(51) 

So, with  1 1f F  as the unknown parameter, the 

general form of the semi-analytical solution up to 

the 8th power of   is found as: 

 
2 2 4 2 5

1 1 1

8 1 2

3 6 3 7

1 1

2

3 4

81 1

3

2 48 240

11

960 20160

111

672 32240

f f f
f f

f f

f f

  
 

  

 

 




   

 

 
  

 

  

 
2 3 2 4 3 5

1 1 1 1

8 1 2

3 6 3 4

71 1 1

2 3

12 16048

11 111

84 322880 240

f f f f
f f

f f f

   


  




 

     

 
   

 

 
2 2 2 3 3 4

1 1 1 1

8 2

3 5 3 4

61 1 1

2 3

4 3212

11 111

12 32480 240

f f f f
f

f f f

  


  




 

    

 
   

 

  

(52) 

Computations for case 2 were performed for 

different values of  . Figure 4 shows the 

normalized velocity profiles within the boundary 

layer for 0,1,2,3,4   and 5 . The velocity 

profile of 0   represents the classical solution 

tothe Blasius flow in which the no-slip condition is 

imposed at the wall. As shown in Fig. 4, the 

normalized slip velocity  0f   increases with an 

increase in . As an example, for 2  , the values 

of  f   are compared with the numerical result 

of Martin and Boyed (2001) obtained with the 

shooting method, where reasonable agreement is 

observed. 

In Figs. 5 and 6 two important parameters,  0f   

and  0f  , which represent the normalized slip 

velocity and wall shear stress are shown, 

respectively. The accuracy of our results is 

confirmed by comparing them with the results of 

Martin and Boyed (2001). It is noted that when the 

Knudsen number is large enough,  approaches 

infinity, and the normalized slip velocity and the 

wall shear stress approaches 1 and zero, 

respectively. This condition corresponds tocomplete 

slip flow (i.e. hundred percent slip at the wall).  

 



f
'(


)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

  
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Fig. 4. Normalized velocity profiles 

 ( )
u

f
U




 forcase2.The solid lines indicate 

our differential transform method (DTM) results 

for different values of δ , while the circles show 

the numerical results of Martin and Boyed 

(2001) for δ 2   
 

The percentage of friction reduction 

    
0

FR=100% 0 '' 0f f
 

   was also 

obtained for three different values 

of 0.2,0.5,and 0.8v  , as shown in Fig. 7. The 

results show that the friction is large at the initial 

portion of the plate, but then it reduces the rate 

proportional to the value of 
v  . 

Case 3. In this case, boundary layer flow and heat 

transfer over a flat plate with velocity slip and 

thermal jump conditions are considered. So, the 

boundary value problem is expressed by Eqs. (12)- 

(15).  
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Fig. 5. Slip velocity (  
wall

0
u

f
U 


 


) for 

various values of δ  for case2.The solid lines give 

ourdifferential transform method (DTM) results, 

and the circles indicate the numerical results of 

Martin and Boyed (2001). 
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Fig. 6. Wall shear stress 

 
1/2 1/2 1/2

1/2
0w

U
f

x

 
    for various values of 

δ  for case 2. The solid lines indicate 

thedifferential transform method (DTM) results, 

and the circles indicate the numerical results of 

Martin and Boyed (2001). 
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Fig. 7. The percentage of friction reduction in 

terms of /x   for various values of v  
for 

case2. 

For example, with eight approximate terms, the 

solution has the following closed form: 

 
4

3 1 1

8 1 1 1 1

2 2 5

1 1

2 2

61 1 1 1

2 2

3 2 71 1 1 1

1 12 2

3 3 3 2

1 1 1 1 1 1

2

1 1 1

1

Pr1
1 Pr

12 48

1
Pr

160

5 Pr1
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60 48 24

Pr1 1
Pr Pr

84 32240 24

Pr Pr1
Pr

112 960 192 64

51
Pr

10 48

f t
t t f t

f t

f t f t

f t f t
f t

f t f t f t

f t f
f


    






 


 

  



    



 
   

 

 
    

 


  



  
2

81Pr

24

t




 
 
 

 

(53) 

 
3

2 1 1

8 1 1

2 2

2 2 4 51 1 1 1

1 1

2 2

3 2 61 1 1 1

1 12 2

3 3 3 2

1 1 1 1 1 1

2 2

1 1 1 1

1

Pr1
Pr

4 12

5 Pr1 1
Pr Pr

32 10 48 24

Pr1 1
Pr Pr

12 32240 24

Pr Pr1
Pr

14 960 192 64

5 Pr1
Pr

10 48 24

f t
t f t

f t f t
f t

f t f t
f t

f t f t f t

f t f t
f


  



 
 


 

  

 

   

 
    

 

 
    

 


  




  



7

 


 

(54) 

where Pr ,  and   are given constants and 
1f  

and 
1t  are parameters that control the solutions in 

order to match the final conditions.
1f , 

1t  and 
  

are found by minimizing Eq. (23). 

As an example to check the accuracy of our 

method, we solved the problem for Pr 0.5 , 

0.2   and 0.1  . The results for 11N   are 

as follows: 

  2

11

4 5

0.0753 0.1884

0.0006 0.0006

f   

 

 

 
  

13.4284, 0.0754f     

(55) 

Due to rounding the coefficients to four decimal 

places, the confidences of 
6  to 

11  are zero.  

Then, the complete solution is: 

 

 11 , 3.4284

2.1849 , 3.4284

f

f

 



 




 
  

  

(56) 

Moreover, when finding     the following 

results are obtained: 
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1 00.2433, 3.2863t a      

  3

11

4

0.9756 0.2436 0.0008

0.0009

   



  


  

  

  

0.2722 0.2883 0.0452

Erf 0.3535 3.3151

 



   

    

 

 

 

11 , 3.4284

, 3.4284

  

 

  




 
 

   

(57) 

In Figs. 8 and 9, the velocity and temperature 

profiles for case 3 are compared with the results of 

Bhattacharyya et al. (2011), respectively. 

Reasonable agreement between the switching DTM 

and the shooting method is clearly detected. The 

highest deviation of the normalized velocity from 

the numerical results of Bhattacharyya et al. 

(2011) is observed where the normalized velocity 

approaches 1 (i.e. close to the boundary layer’s 

edge). 
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Fig. 8. The velocity profile of case 3 compared 

with the results of Bhattacharyya et al. (2011). 
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Fig. 9. The temperature profile forcase3 

compared with the results of Bhattacharyya et 

al. (2011). 

Moreover, to study the impact of thermal slip on 

heat transfer from the plate, the profiles of     

and  '   for values of   0.0, 0.3, 0.7, 1.3, and 

2.0 are depicted in Figs. 10 and 11, respectively. 

These figures show that as the thermal slip 

increases, the magnitude of the temperature and its 

gradient monotonically decrease, which leads to 

weakening of the heat transfer from the plate. 
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Fig. 10.  Temperature profiles for case 3 against 

various values of the thermal slip. 
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Fig. 11. Temperature gradient profiles for case 3 

versus various values of the thermal slip. 

 

The problem has been also solved for 1.0   and 

  0.0, 1.0, 3.0, and 8.0. In Fig. 12, the 

temperature profiles     of the various values of 

the velocity slip parameters are shown. As 

expected, the results indicate that when the slip 

parameter increases, the temperature reduces. 

Figure 13 demonstrates the temperature gradient 

profiles for the different velocity slip parameters. It 

is observed that, in an agreement with the results of 

Bhattacharyya et al. (2011), the temperature 

gradient decreases with   before 2  , and it 

increases after this point. 
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Fig. 12. Temperature profiles for case3 versus 

various values of the velocity slip. 
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Fig. 13. Temperature gradient profiles for case 3 

against various values of the velocity slip. 
 

5. CONCLUSIONS 

The switching DTM method was proposed in this 

paper to solve problems with asymptotic boundary 

conditions. The method was successfully applied to 

the boundary layer slip flow with heat transfer over 

a flat plate. The results revealed the accuracy of our 

method for different cases, which were comparable 

with other available numerical methods. The 

advantage of the proposed method with respect to 

numerical methods lies in the fact that with DTM, a 

semi-analytical solution will be obtained rather than 

a discrete one. The presented switching version of 

DTM did not contain the problem of choosing the 

degree of the numerator and denominator 

polynomials that appeared in the Padé 

approximation.  
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