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ABSTRACT 

An analysis is made for the effect of throughflow on the onset of convection in a rectangular box under the 

assumption that total flux (sum of diffusive, thermophoretic, and convective) is zero on the boundaries. A linear 

stability analysis and Galerkin weighted residual method are used to obtain the Rayleigh number and stability 

curves for the onset of convection. Three dominating combination of parameters are extracted from the non-

dimensional analysis. All rescaled parameters promote the convection. Aspect ratios, throughflow, and 

nanoparticles play an important role in the formulation of cell distribution and development of convection. 

Oscillatory convection is possible for permissible range of nanofluid parameters. It is also found that the size 

of a cellular mode is altered by throughflow and nanoparticles. 

Keywords: Aspect ratio; Convective nanoparticle flux; Lateral walls; Rectangular box. 

 

1. INTRODUCTION 

Beck (1972) was the first who examined the 

instability in rectangular box using linear stability 

and energy method and found that lateral walls have 

less influence on Rayleigh number. Tewari and 

Torrance (1981) studied the thermal instability in a 

rectangular box when the top of the box is 

permeable. Assuming that the aspect ratio is one; 

Yamaguchi et al. (1999) explored the effect of the 

magnetic field in the rectangular box. Later, Wang 

(1999) proposed the model for thermo-convective 

instability when the bottom of the box is heated by 

constant flux. In the same context, Davis (2006) 

investigated the linear stability theory of three- 

dimensional rectangular box. Very recently, Saini 

and Sharma (2018a) examined the thermal instability 

of rectangular box saturated by a nanofluid. 

Choi (1995) defined a new class of fluid which 

consistent with nano-sized particles, known as a 

nanofluid. Nanofluid has many applications such as 

cooling, microchannel heat sinks, microheat pipes, 

microreactors, polymer coatings, process industries, 

aerospace tribology, biomedical such as cancer 

therapy, microfluid delivery devices etc. 

Incorporating the effect of thermophoresis and 

Brownian motion, Buongiorno (2006) developed a 

mathematical model for nanofluid. Pioneering work 

on convection has been analyzed by Tzou (2008) and 

Nield and Kuznetsov (2009, 2010). They observed 

that nanoparticles enhance the thermal conductivity 

of the fluid. Nield and Kuznetsov (2014a, 2014b) 

suggested the more realistic flow on the boundaries. 

Saini and Sharma (2018b) examined the onset of 

double diffusive convection using the revised 

boundary conditions. 

The readers are referred to the work of Nield and 

Kuznetsov (2011a, 2015) to study the throughflow 

effect on nanofluid. Recently, Saini and Sharma 

2018c, 2018d) examined the instability of nanofluid 

bioconvection with the effect of throughflow. 

In this paper, we study the onset of convection in a 

rectangular box using the modified mass flux 

conditions (nanoparticle flux is zero on boundaries) 

with the effect of throughflow. Nield and Kuznetsov 

(2011b) studied the similar analysis for the regular 

fluid and they observed that cellular mode is not 

altered by throughflow. In this article, we found that 

throughflow and nanoparticles play an important part 

in the formulation of the cell and the development of 

convection. It is also found that oscillatory 

convection is possible which is completely ruled out 

in previous studies (Nield and Kuznetsov 2014a, 

2015). These are the benchmarks of this study. In this 

article, we derive the Rayleigh number in terms of 

throughflow and nanofluid parameters. The effects 

of various physical parameters are graphically 

presented. 

2. MATHEMATICAL FORMULATION 

We assume a three-dimensional rectangular box
* * *0 ,0 ,0 ,y xz H y L x L       and the direction of 
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Z-axis is taken upward. Here yL , 
xL are the lengths 

of the domain in the Y- and X- direction, and H is 

depth of the box. We take temperatures *
hT and *

cT  at 

the bottom and the top wall of the box and another 

walls (side walls) are taken as insulated. Suspension 

of nanoparticles is assumed to be dilute, stable and 

do not to agglomerate. Oberbeck–Boussinesq 

approximations are used.  

Following (Buongiorno 2006; Nield and Kuznetsov 

2011a, 2014a, 2015), the conservation equations in 

dimensional form are as 

 

Fig. 1. Geometric configuration of the problem. 

 

* *. 0 V                                                                (1) 

Here * * * *( , , )u v wV is the nanofluid velocity. 

 * * * * * * *(1 ) (1 ( ))p f T cp T T            
  

V g (2) 

In Eq. (2),  is the viscosity,
 p is the density of 

nanoparticles,  
* is the nanoparticles volume 

fraction, 
*p is the pressure,  f is the density of the 

nanofluid,
 T is the volumetric thermal expansion 

coefficient, 
g is the gravity vector, *T  is the 

nanofluid temperature, and *
cT  is the reference 

temperature. 
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Equation (3) is the thermal energy equation. First-

term on R.H.S represents the heat transfer by 

conduction and the expression inside the square 

bracket represents the total nanoparticle flux. Inside 

the square bracket, the Ist and IInd terms represent the 

heat transfer by nanoparticles that have a relative 

velocity to the base fluid (due to thermophoresis and 

Brownian motion) and IIIrd term represents the 

convective contribution of nanoparticle flux.  

* * * *2 * *2 *

* *
. T

B

C

D
T D

t T
 

 
      

 
V            (4) 

Equation (4) is the nanoparticle conservation 

equation that accounts for nanoparticle transport by 

thermophoresis (Ist term) and Brownian diffusion 

(IInd term) of  R.H.S. 

In Eqs. (3) - (4), *t is the time,
 

( ) fc is the volumetric 

heat capacity for the nanofluid,
 TD is the 

thermophoresis diffusion coefficient, *
0  is the 

reference volume fraction, and BD is the Brownian 

diffusion coefficient.

 
To non-dimensionalise the equations, variables are 

introduced as 

** * * * *

, , , , ,
yx

m m m x y

u Lu L w H x y z
u v w x y z

L L H  
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Equations (1)- (4) take the form as 

2 2 0x y

u v w
M M

x y z

  
  

  
                                        (5) 

ˆ ˆ ˆ
m a np R R T R     V k k k                                  (6) 
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        

       
               
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2
2 2 2

2

2 2 2 2 2
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1
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e
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t x y z L x
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 
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    

      
      
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)8( 

Now applying the operator curl on both sides of Eq. 

(6) and write the resulting equation in component 

form, we get  

a n

w v T
R R

y z y y

   
  

   
                                      9(a)   

a n

u w T
R R

z x x x

   
   

   
                                   9(b)    

0
v u

x y

 
 

 
                                                          9(c) 

The dimensionless parameters in Eqs. (5)-9(c) 

namely aspect ratios ,x yM M , the Rayleigh number

,aR basic density  Rayleigh number ,mR  Lewis 

number eL , nanoparticle Rayleigh number ,nR  

Péclet number Q , modified particle density 

increment BN , and modified diffusivity Ratio AN    

are defined as
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In horizontal boundaries, we have taken the 

temperature to be constant, through flow velocity has 

uniform value and in addition the nanoparticle flux 

(thermophoretic, convective, and diffusive) is 

supposed to be zero. The horizontal boundary 

conditions are taken as

 

, 1, 0 at 0A e

T
w Q T N QL z

z z




 
     

 
10(a) 

, 0, 0 at 1A e

T
w Q T N QL z

z z




 
     

 
 

10(b) 

Vertical boundaries are assumed to be impermeable 

and adiabatic. Then we have vertical boundary 

conditions are 

0, 0, 0 at 0 and 1A e

T T
u N QL x

x x x




  
     

  
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
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     
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We seek a time-independent solution of Eqs.(7)-(8)

with 0, 0,u v w Q    , then Eqs. (7)-(9c) become 

0 a n

T
R R

y y

 
 

 
                                              13(a)

0 a n

T
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                                            13(b) 
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          (15) 

By using Eqs. 13(a)-13(b), Eqs.(14)-(15) permit 

basic solutions of temperature and nanoparticle 

concentration of the form ( ), ( )b bT T z z   , then 

Eqs.(14)-(15) become 

2

2

2

b b b b bB
B b

e
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  (16) 
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e e

d d d TN
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 
                                   (17) 

Using the boundary conditions 10(a)-10(b), we get  

,
1 (1 )( 1)

e

Q Qz Qz
QL z A

b bQ Q
e

e e N e
T e

e L e

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3. LINEAR INSTABILITY ANALYSIS 

The perturbed state is assumed as
' ' ' ' '( , , ) ( , ,Q ), , .b bu v w u v w T T T       =

Substituting perturbed solution in Eqs. (7)-9(c), we 

get 
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Applying the operator 2
yM

y




 to the both sides of 

Eq. 21(a) and 2
yM

y




 to the both sides of Eq. 21(b), 

then subtracting and by using Eq. (18), we get  
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Let us assume solutions of Eqs. (19)-(20),(22) are of 

the form 

' sin cos ( ) ,
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                    (24) 

These solutions are substituted in Eqs. (19),(20), 

(22) with boundary condition Eq. 23(a) which results 

a system of ordinary differential equations (ODE), as 

follows 
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where  
1/2

2 2 2 2, x y

d
D m M n M

dz
      

4. METHOD OF SOLUTION  

Equations (25)-(27) with Eq.(28) are solved 

numerically using the single-term Galerkin weighted 

residual method. Accordingly ,W  , and   are 

taken as 

1 1 1
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Here ,i iP Q , and iR  are constants. The trial functions 

are chosen as
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Equations (29)-(30) are substituted in Eqs. (25)-(27) 

to obtain residues and making these residues 

orthogonal (in inner product sense) to these trial 

functions, we get a system of linear simultaneous 

homogeneous equations. The vanishing of the 

determinant of coefficients produces the eigenvalue 

for the system (Finlayson, 1972). For a first-order 

Galerkin approximation, we take N = 1 and follow 

the above procedure, we get the following 

eigenvalue equation 
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To obtain an approximate solution, we take 1Q  , 

so that Galerkin method leads to a useful result. This 

produces the following expression for Rayleigh 

number 

    

    

     
   

2

2 2

2 1 2 2 1

2 2 1 2

2 1 2 2 1

e A v

v e v

e A v n

v e v

a

s s s L sN Q

a Q sL Q
R

s L N Q R

Q sL Q

   

 

  

 

   

    

    


 



  

)32( 

where v BQ N Q  is rescaled Péclet number. Setting,

s i , here  is real, we get 
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The Rayleigh number is a physical parameter and it 

must be real. Then from Eq. (33) either 1 0P  or

0  . We first consider the case of direct bifurcation 

( 0  ), then Eq. (33) becomes 

3
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                     (35) 

where A
A

e

N
N

L
 is rescaled diffusivity ratio and

 

n e nR L R  is rescaled nanoparticle Rayleigh number. 

In the absence of throughflow and nanoparticles, Eq. 

(35) becomes  

3

2aR



                                                                (36) 

This is the similar expression for aR  was gotten by 

Beck (1972). 

To study the behavior of rescaled Péclet number vQ , 

we examine a

v

R

Q




analytically. Then from Eq. (35) 

we get  

2 2 2 2
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From Eq. (37), it is found that the effect of 

throughflow on convection depends on rescaled 

nanoparticle Rayleigh number as well as the aspect 

ratios of a rectangular box. To simplify the above 

expression, the value of  is assumed to be  . 
Under these assumptions Eq. (37) becomes as 

follows 

2 2 2

2 2

4 (4 1)(4 )

( 4 (1 ))

a n
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R R

Q Q Q

  



  
 

  
                           (38) 

This shows that the rescaled Péclet number has a 

destabilized effect if 2 4 nR  . 

Rayleigh number attains its minimum over the 

positive integers ,m n . The corresponding positive 

integers are 

( , , )v n xm m Q R M                                                39(a)                                

( , , )v n yn n Q R M                                                39(b) 

Full mathematical expressions of ,m n are too 

lengthy to present here. From Eqs.39 (a) -39(b), it is 

observed that positive integers ( ,m n ) are dependent 

on the rescaled Péclet number, rescaled nanoparticle 

Rayleigh number and aspect ratios, respectively. 

From Table 1, it is observed that an increase in the 

values of rescaled Péclet number tends to increase 

. Thus, vQ reduces the size of a convection cell. The 

value of   decreases with increasing values of 

rescaled nanoparticle Rayleigh number thus its 

effects is to make higher the size of the cell. 

Now, we investigate the possibility of oscillatory 

convection. When 1 0, 0P   (Hopf bifurcation), 
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Eq. (34) providing the frequency of oscillation  
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It is found that for the modest value of nR  and for 

small values of Péclet number, Lewis number, and 

diffusivity ratio, 2 is positive and real. Therefore, 

oscillatory convection is possible for an admissible 

range of parameters. This result is in marked contrast 

with the corresponding result obtained by Kuznetsov 

(2014a, 2015) who completely ruled out the 

possibility of oscillatory convection. 

 

Table 1 Numerical values of α for different 

values of n vR andQ  

vQ  
nR    

0.01 1 3.14038 

0.02 1 3.14076 

0.03 1 3.14113 

0.01 2 3.14110 

0.01 3 3.14107 

0.01 4 3.14035 
 

5. RESULTS AND DISCUSSION 

Using the data given by Buongiorno (2006), klpNield 

and Kuznetsov (2009) the following parameters 

value for alumina/water nanofluid of 1-100 nm are 

utilized: 

10, 0.1, 2, 0.1, 0.1, 3.14

( 2, 1, 2.82, 1.41, 1)

e n A B

x y

L R N Q N

m n L L H

     

    

The above parameters are fixed except when the 

variation is considered with respect to that particular 

parameter. The trends of aR verses vQ  for various 

values of nR are shown in Fig. 2. It is observed that 

aR  decreases with increasing value of nR . 

Therefore, the rescaled nanoparticle Rayleigh 

number destabilizes the system. This may be 

physically interpreted as; an increase in a volumetric 

fraction increases the Brownian motion of 

nanoparticles which produce a destabilizing effect. 

From figure, it is also observed that the value of aR  

decreases with increase in rescaled Péclet number. 

Thus, throughflow destabilized the convection for 

the small amount of throughflow.  This may be 

physically interpreted as, increasing the rescaled 

Péclet number ( )vQ , increases the convective 

contribution of nanoparticle flux in the thermal 

energy equation, which enhances the destabilizing 

effect. Thus, the rescaled Péclet number helps to 

construct the convection pattern.  

The variation of the square of oscillation frequency 

with nanoparticle Rayleigh number is shown in Figs. 

3(a)-3(b). From Fig. 3(a), it is found that for small 

values of eL  (1 10) , 2  is positive when the value 

of nR  is lies between in range 0to0.02 . For larger 

values of (50 100)  , 2  is positive when the value 

of nR is lies between in range 0to0.002 . From Fig. 

3(b), it is found that for small values of (1 10)AN , 

2  is positive when the value of nR is lies between 

in range 0to0.002 . Thus, oscillatory convection is 

possible for the small amount of throughflow, small 

values of andA eN L , and the modest value of nR . 

 

 
Fig. 2. Plot of Rayleigh number versus rescaled 

Péclet number for various values of nR . 

 

Fig. 3(a) Plot of square of oscillation frequency
2

(ω )  versus nR  for various values of Lewis 

number. 
 

6. CONCLUSIONS 

We have taken a fresh look to study linear instability 

in a rectangular box saturated by nanofluid with the 

effect of throughflow using the modified mass flux 

conditions (nanoparticle flux is zero on boundaries). 

Stationary Rayleigh number depends on three 

combinations of parameters such as

/ L , ,A e B n eN QN R L .We rescale these combinations 

of parameters and found that all three rescaled 

parameters ( , ,A v nN Q R ) prompt the convection. By 

using the modified flux conditions, the minimization 
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process over the integers ,m n is affected by 

nanofluid and throughflow parameters. It is found 

that aspect ratios, throughflow, and nanoparticles 

play a significant role in the formulation of cell 

distribution. The effect of throughflow is dependent 

on aspect ratios as well as nanofluid parameters. The 

convective component of nanoparticle flux enhances 

the destabilizing effect, this result that modified 

boundary conditions produce a more destabilizing 

effect as compared to previous boundary conditions.  

Oscillatory convection is also possible for a 

permissible range of nanofluid and throughflow 

parameters. 

 

   
Fig. 3(b) Plot of square of oscillation frequency

2
(ω )  versus nR  for various values of modified 

diffusivity ratio. 
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