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ABSTRACT 

Generally, the Gaussian assumption has been considered in analyzing the data pertaining to the wind effects on 

the structures or bluff bodies due to the abundance of the statistical information. In this study, Horizontal Axis 

Wind Turbine (HAWT) tower system with dimension of 1:330 scale is studied in order to understand their peak 

pressure behavior for wind resistant design. Generally, tower systems are constructed of various geometrical 

structures such as lattice towers, tubular steel towers, concrete towers, but in this present study tubular 

cylindrical tower is only considered. Simultaneous pressure measurements on the surface of the tower were 

performed in the low-speed boundary layer wind tunnel with test section dimension of 18 m × 2.5 m × 2.15 m 

having Reynolds number ranging from 102 to 104.  The peak pressures acting on the tower systems are 

calculated for a number of ten-minute samples on various locations of the wind turbine. Peak value calculations 

based on Gaussian and Non – Gaussian processes are discussed mathematically and applied to the data collected 

from the wind tunnel tests. A mathematical model of Davenport and Kareem – Zhou is used in calculating the 

peak factor for Gaussian and non – Gaussian processes,  respectively. The results indicate that higher moments 

dominate as most of the distribution is skewed and with kurtosis value. Henceforth, a study on extreme value 

analysis is deemed necessary in designing wind resistant structures or bluff bodies. Considering Gaussian nature 

alone may under-represent the peak value of the HAWT tower. 
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NOMENCLATURE 

g peak factor 

bg  peak factor for any bandwidth 

ngg  non-Gaussian peak factor 

Hn Hermite moment of order n. 

m0, m2, m4 spectral moments 

( )S n  power spectrum  

g  mean crossing rate for Gaussian 

process 

ng  mean crossing rate for non-Gaussian 

process 

 

ε  bandwidth parameter 

3  skewness of the random distribution 

4  kurtosis of the random distribution 

 
1. INTRODUCTION 

The attention on wind energy resources has been 

increasing in the recent years due to depletion of 

fossil fuels, negative environmental impact and a 

plethora of innovative technological solutions. 

Horizontal axis wind turbine (HAWT) is a known 

technology to harness electrical energy by 

converting the kinetic energy of wind into 

mechanical and then into electrical energy. World 

wind energy (2014) reports that, total wind energy 

capacity of the world reaches 369 GW, out of which 

50 MW added in 2014 itself, and also the cumulative 

market growth of 16%. Various configurations of the 

wind turbine tower have been built around the world; 

however, tubular tower configuration is preferred 

over lattice towers. This is because the area occupied 

is smaller and the distance between rotor and tower 

is increased to reduce the aerodynamic interference. 

Otherwise, from a structural point of view, the 

tubular tower is a statically determinate structure, 

such structures reported easier failure than common 
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structures as outlined in Chien et al. (2009). During 

the last decade, several wind turbine towers are 

damaged due to strong wind conditions. Wind 

turbine tower damage due to strong wind on the 

Miyakojima Island in Japan is reported by Tamura. 

(2009). Extreme value pressure distribution is not 

only important in many high rise structures, but also 

in wind turbine tower systems. Also, the tubular 

tower structures are designed as truncated cones with 

the change in diameter, which is increasing towards 

the base in order to increase the strength and to 

decrease the materials involved. Lavassas et al. 

(2003) demonstrated that the steel tubular tower has 

a high aspect ratio that makes it particularly more 

slender and wind sensitive than any other structure. 

The numerical investigation had been performed on 

stiffened and unstiffened shells by Dimopoulos et al.  

(2012) and the result delineates that the slender shell 

structure has the tendency to greatly resist buckling 

in the elastic region.  The structural analysis of steel 

towers has been studied in order to ensure the safe 

design, however, the nature of the pressure 

distribution around the tower contributes remarkably. 

Total mean wind forces and local peak pressures are 

measured and discussed for the wind turbine nacelle 

systems with various wind directions and the 

importance of peak wind forces and peak wind 

pressure distribution on the wind turbine nacelle is 

studied by Noda et al. (2005). Pillai et al. (2009) 

discussed the peak factor for the general random 

processes in wind engineering. Gusella et al. (2000) 

studied the non-Gaussian characteristics in both time 

and frequency domain which can be considered for 

such surface pressure of HAWT. There are various 

reasons reported for such wind turbine tower out of 

which non-gaussianity of the HAWT cannot be 

neglected. Non-Gaussian response characteristics in 

a wind turbine tower have been discussed by Binh et 

al. (2008), where the non-gaussianity in the HAWT 

is dominant. However, the basic study of the wind 

pressure characteristics may be an important 

challenge while the rotor is rotating.  

Kwon et al. (2012) compared the wind loading 

effects on wind turbine power systems due to normal 

boundary layer wind and at gust front loading 

conditions. The non-Gaussian random process 

analysis is inevitable for statistical prediction of any 

random process where nonlinear characteristics are 

present. Davenport’s (1964) paper on peak factor 

still followed in many international standards based 

on Gaussian processes and application to gust 

loading has certain limitations in considering non-

Gaussian probability density function. Cartwright 

and Longuet-Higgins (1956) discussed statistical 

maxima and minima for the random processes by 

considering the narrow band or wide band in the 

frequency domain, where non- gaussianity is not 

considered. 

The probability density functions which are 

applicable for representing non-Gaussian processes 

have been reported (Pillai et al. 2009; Gurley et al. 

1997; Kareem et al. 2004; Grigoroiu. 1984 and 

Winterstein. 1985). In the present study, for the non-

Gaussian probability distribution, Gram- Charlier 

probability density function based on the Hermite 

polynomial is used. For the simplicity and the 

physical significance up to the fourth moment of the 

Hermite polynomials are outlined in Kareem et al. 

(2004) 

Although considerable attention has been given to 

the random process in the HAWT tower, 

comparatively little is known of non-Gaussian 

analysis and the associated probabilistic prediction 

of the process in wind turbine tower systems is 

necessary. In this study, simultaneous pressure 

measurement around the wind turbine tower with 

and without rotor for various Reynolds number is 

made in the low-speed wind tunnel and peak 

pressures were measured. From this data, the 

calculated peak factor is compared with various peak 

factors such as Davenport’s peak factor, Cartwright 

– Longuet Higgins peak factor and Kareem – Zhou’s 

peak factor. 

2. PEAK FACTOR 

In engineering design of wind turbine tower systems, 

it is important to determine the expected maximum 

value due to the stochastic nature of the processes. 

The expected maximum value for any random 

process X (t) can be represented by Davenport (1964) 

as 

max
.

x
X X g                 (2.1) 

Here 
max

X  is the expected maximum value, X is 

the mean value, g  is the peak factor and 
x

  is the 

standard deviation of the random processes. In 

general, the available procedures are reasonably well 

established to predict the peak factor g for the 

Gaussian process, but they are less clear for the non-

Gaussian process in the random analysis. In this 

section, the derivation for calculating the maximum 

of any non-Gaussian random process is derived. The 

probability density functions which are applicable 

for representing non-Gaussian processes have been 

reported (Pillai et al. 2009; Kareem et al. 2004 and 

Winterstein. 1985). In this study, the Gram- Charlier 

probability density function based on the Hermite 

polynomial is discussed. Also, the derived 

probability density function characterizes the non-

Gaussian parameters like Skewness and kurtosis. 

2.1 Probability Density Distribution of 

Gaussian Process 

Consider a stationary random process having normal 

probability distribution with mean 
x

m and standard 

deviation
x

 . The reduced variate is defined as

0 ( ) [ ] /
xxx t x m   . The probability density function 

can be written as  

 0

2

0

1 1
( ) exp

22

P x x



 

                             (2.2)

 

The cumulative probability density function, ( )
0

Q x
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, will be defined as the probability of the function 

exceeding some value 
0

x . 

0

2
0

2 2

0 1 /

2 2

0

1
exp( ) ( 1 )

2
1

( )
2

1 1
exp( ) exp( )

2 2

x

x

x dx

Q x

x x dx

 







 
 

 



 
   

 
  

 
  

 





 

          (2.3) 

In which    

2

2

0 4

1
m

m m
  

  
     

              (2.4) 

Where, 

0

( )
r

r
m n S n dn



                                               (2.5) 

( )S n is the power spectrum of the random function 

at the frequency n. For narrowband spectrum  = 0 

and it increases as the bandwidth increases, reaches 

 = 1 for the wideband processes.  

2.2 Davenport’s Peak factor formula 

Let us consider the sample of N maxima, the 

probability 
max 0( )P x  the largest of them has the 

value, is the probability that one of the maxima has 

his value and the rest are smaller, that can be written 

as follows 

 
1

max 0 0 0
( ) 1 ( ) ( )

N

P x N Q x P x


 
            (2.6)

 

0
( ) /Q x N                                (2.7) 

Where, 0 N  . For large values of N, it can be 

written by considering limit in the asymptotic form 

as 

 
1

max 0 0 0
( ) 1 / exp( ( ))

N

P x dx d N d NQ x


   

                               (2.8) 

Here, considering the (bandwidth parameter   

which is negligible and assumed that it is a narrow 

band process. Also, in this present study, only the 

non-gaussianity and whether it is narrowband or 

broadband in the frequency domain is not considered 

in the evaluation of peak factor. 

2 2

0

20

0

3 2

0

1
( 1 ) exp( )

2
( )

1 1
exp

2

x

Q x
x

terms of higher order
x





  





 
  
 

         
                (2.9) 

For the maxima, during the period N can be 

represented as, 

              

1/ 2

4

2

m
N T T

m
 

 
 
 

                 (2.10) 

Where T is the time period.  From Eqs. (2.7), (2.9) it 

can be written as 

        2
0

1
exp

2
NQ vT x 

 
   

 
                 (2.11) 

The probability density of the largest of the maxima 

is given by 

 

 

2
max 0 0 0

1
exp exp

2

exp

P x dx d vT x

d 

  
    

  

 

      (2.12) 

The mean of the maximum value can be represented 

as 

 

 

0max 0 max 0 0

0 exp

x x P x dx

x d 











 





                             (2.13) 

Then the value of the 0maxx  can be calculated as 

shown in the Eq. (2.14) 

  

 
 

0max

2

3

2log 2log

log 1 log
2log ..........

22log 2log

ex vT

vT
vT vT



 

 

 
    

 
 

                             (2.14) 

Using the expression for 0maxx , the Eq. (2.13) can 

be evaluated using some standard integrals found in 

the extreme value analysis, namely 

 
0

log expe d   


                              (2.15) 

Where 0.5772  , the above Eq. (2.14) can be 

approximated and can be shown as 

 1/2 1/2
0max 2log 2logx N N


         

1/2

1/2
2log

2log
g N

N




 
 

    
    

                  (2.16) 

Here g is the peak factor which represents the 

Gaussian process. This peak factor is derived by 

Davenport (1964) is widely used in wind engineering 

problems.  

2.3 Non- Gaussian Probability Density 

Function 

The probability density function applicable to the 

non-Gaussian random process was developed by 

applying the concept of polynomials orthogonal with 
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respect to the probability density function. The 

function of non-Gaussian process given in terms of 

standardized random data with mean
xm and the 

standard deviation
x , that is 

0
( ) [ ] /

x x
x t x m    

given by 

0 0

1

( ) ( ) 1 ( )

N

n n

n

P x x h H x


  
 

         
          (2.17) 

Where 
0

( )x  is the standard Gaussian probability 

density function,
1/ 2 2

0 0
( ) (2 ) exp( / 2)x x   and 

the Hermite polynomials 
0

( )
n

H x . 

2.4 Gram- Charlier Probability Density 

Function 

The Hermite polynomial of degree n, denoted by 

 
0n

H x  is defined as a function which satisfies the 

following relationship given by 

   
2 2
0 0/2 /2

0
0

1 0,1,2,3......
n

nx x
n

d
e H x e n

dx

 
           

                             (2.18) 

From the above Equation, the following Hermite 

polynomials can be given as  

 

 

 

 

 

0 0

1 0 0

2
2 0 0

3
3 0 0 0

4 2
4 0 0 0

1

1

3

6 3

H x

H x x

H x x

H x x x

H x x x etc





 

 

  

                    (2.19) 

By applying the above Hermite polynomials the 

probability density function for the non-Gaussian 

processes derived by Ochi. (1986) and shown as  

 
 

   

2

3 4
3 4

1 1
exp

22

1
3! 4!

x

xx

x x

x x

x m
P x

x m x m
H H

 

 

 

 
  
 
 

      
         
     

 

(2.20) 

Where, 
3 4
,   are the skewness and the kurtosis 

minus three of the distribution respectively. 
x

  is 

the standard deviation. H3 and H4 are the respective 

hermite moments. Also, the Hermite moments of 

softening process (
4

3  ) are taken from Kareem 

et al. (2004) 

2.5 Moment- Based Hermite 

Transformation Method 

Hermite moment model represents the non-Gaussian 

random process in terms of Hermite polynomials 

considering the standard Gaussian process. Any non-

Gaussian process x(t), can be expressed in terms of 

standard Gaussian process u(t) through a monotonic 

function. Further, the relation between the 

standardized non-Gaussian and Gaussian for the 

softening process can be represented as follows, 

    2 3
3 41 2x u h u h u u                  (2.21) 

Where, 

 
1

2 2 2
3 41 2 6h h


   3

3
44 2 1 1.5

h





 
            

and       
4

4

1 1.5 1

18
h

 
                               

Thus, by using this probability density function can 

be derived.  Based on the studies, Grigoriu. (1984) 

and Winterstein. (1985), the crossing rate and the 

peak distribution can be derived by the Hermite 

moment method. The stationary mean crossing rate 

considering the skewness and kurtosis can be derived 

as 

 
 2

exp
2

ng

u x
v x v

 
  
  

                                (2.22) 

2

0

1

2
g

m
v

m
                                                  (2.23) 

Where 

 
2

2 2 2
0 3 2

1 1

2 1 4 18
ng

m
v

m h h 


 
   (2.24)   

2.6 Non-Gaussian Peak Factor 

Formula 

Kareem et al. (2004) shows the improved method for 

calculating the non-Gaussian peak factor by 

considering the skewness and kurtosis. The effect of 

the non-Gaussian terms such as skewness and 

kurtosis following the moment-based Hermite 

transformation approach.  

In Poisson distribution model, the extreme value 

distribution for time period T is 

 
 2

max 0exp exp
2

u x
P x v T

   
    
    

             (2.25) 

Where ( )u x is the standardized Gaussian variable 

defined in the Eq. (2.2).The mean value of the 

positive maximum values over the time T can be 

given as  

max

0

( ) .
x

xdP x g 



                                     (2.26) 

Where, g represents the peak factor and 
x

  is the 

standard deviation of the random data x (t). For the 

Gaussian distribution and narrowband process 

Davenport. (1964) derived the expression shown in 

Eq. (2.16). It can be written as  
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Fig. 1(a). Experimental pressure model withonly 

tower case 

 

 
Fig. 1(b). Experimental pressure model with 

tower and rotor case 

 

g





                                                    (2.27) 

Where  2 log
g

v T  , 0.5772   

In Kareem et al. (2004), the non-Gaussian peak 

factor for the narrowband approximation can be 

given as 

 

 

2
3

2 2
3

4

2 1

3
3 1

12 2

ng

h

g

h


  




 
   



  
      

   
                  

 

          (2.28) 

Where
ng

g is the peak factor for non- Gaussian 

processes. Here,  2 log
g

v T  , 0.5772 
 

3. EXPERIMENTAL SETUP  

Boundary Layer open circuit Wind Tunnel with 18 

m × 2.5 m × 2.15 m size test section with wind speed 

ranging from 0.5 to 55 m/s at Council of Scientific 

and Industrial Research – Structural Engineering 

Research Centre (CSIR-SERC) having the blockage 

ratio of less than 3 %  is used for the present study. 

The wind speed can be simulated in a controlled 

fashion and various flow parameters can be 

calculated. The research centre is equipped with 

multi-channel pressure scanner which can measure 

simultaneous pressure measurement with the 

sampling frequency of 1000 Hz. The horizontal axis 

wind turbine pressure model with pressure taps for 

only tower and tower with rotor are shown in the 

Figs. 1(a) & 1(b) respectively for a scale ratio of 

1:330.. Pressure taps made at every 30 deg at four 

levels on wind turbine tower and the schematic of 

geometric details are shown in Figs. 2(a) – (b). There 

are totally 48 pressure points in the turbine tower 

distributed at the height of z/H = 0.2, 0.4, 0.6 and 0.8.  

The turbulence intensity is less than 12% in the test 

section of the wind tunnel. Electronic pressure 

scanning is used to measure the pressure distribution 

on the surface of the tower and more than 10000 data 

per pressure point per set is obtained. Three nominal 

wind speeds were tested for the wind turbine 

configuration which corresponds to the Reynolds 

number ranging from 102 – 104. 

4. RESULTS AND DISCUSSIONS 

In order to understand the probability distribution of 

the random pressure, probability density function is 

calculated and plotted for various pressure taps. Even 

though all the pressure tap data are analyzed for 

probability density function, certain pressure taps 

were considered for the discussion.  

Probability distribution function for an example 

random pressure data in Fig. 3(a) for 10 seconds time 

period with a sampling frequency of 1000 Hz is 

shown in Fig. 3(b). The probability density function 

has been plotted initially for non– parametric fit and 

then compared with the corresponding Gaussian fit. 

As shown in Fig. 2(b) four levels of pressure have 

been measured where ports 1, 13, 25, 37 are facing 

towards the wind and can be considered as the 

stagnation point of the circular cylinder to that 

corresponding levels. Figures 4 (a), 5(a), 6(a) & 7(a) 

are the pressure taps located at the stagnation point 

which is the windward direction. Hence, the 

probability distribution of the non-parametric fit 

agrees with a Gaussian distribution. Figures 4(b), 

5(b), 6(b) & 7(b) , 4(d), 5(d), 6(d) & 7(d) are the 

pressure taps on the sidewards of the wind turbine 

tower. The probability distribution function of the 

aforementioned ports deviates from the Gaussian  



N. I. Haroon Rashid et al. / JAFM, Vol. 12, No. 2, pp. 505-514, 2019.  

  

510 

z/H=0.8

 150 mm

  
3

0
0

 m
mz/H=0.6

z/H=0.4

z/H=0.2

 

1   13   25   37 43   31  19   7

10

22

34

46

2

40

28

16

4

3 5

6

8

911

12

z/H = 0.2

z/H = 0.4

z/H = 0.6

z/H = 0.8

 
Fig. 2(a). Schematic of wind turbine model with 

pressure taps on various heights, Not to scale. 

Fig. 2(b). Distribution of pressure taps on 

the surface of the tower at various height, 

Not to scale. 

 
 

Fig. 3(a). Random pressure data measured from 

the wind tunnel for HAWT tower. 

 

Fig. 3(b). Probability density function for an 

example random pressure data. 

  
Fig. 4(a). Probability density at pressure tap 1. 

 

Fig. 4(b). Probability density at pressure tap 13. 

 

  
Fig. 4(c). Probability density at pressure tap 25. Fig. 4(d). Probability density at pressure tap 37. 
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Fig. 5(a). Probability density at pressure tap 4. Fig. 5(b). Probability density at pressure tap 16. 

  
Fig. 5(c). Probability density at pressure tap 28. Fig. 5(d). Probability density at pressure tap 40. 

  
Fig. 6(a). Probability density at pressure tap 7. Fig. 6(b). Probability density at pressure tap 19. 

  
Fig. 6(c). Probability density at pressure tap 31. Fig. 6(d). Probability density at pressure tap 43. 
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Fig. 7(a). Probability density at pressure tap 10. Fig. 7(b). Probability density at pressure tap 22. 

  
Fig. 7(c). Probability density at pressure tap 34. Fig. 7(d). Probability density at pressure tap 46. 
 

 

  
Fig. 8(a).  Skewness for the pressure data with and 

without rotor rotation. 

Fig. 8(b).  Kurtosis for the pressure data with and 

without rotor rotation. 
 

 

fit. This is most likely due to the non-Gaussian 

behavior of random wind pressure data on the 

sideward ports. Figures 4(c), 5(c), 6(c) & 7(c) are the 

pressure taps on the leeward side of the wind turbine 

tower also deviates from the Gaussian fit and this 

may be due to the formation of wake region on the 

rear side of the wind turbine.  Majority of the 

pressure distribution deviates from the Gaussian 

distribution where a mixed behavior, which is both 

Gaussian and non – Gaussian is widely seen from the 

skewness and kurtosis for the tower only and tower 

with rotor rotating cases shown in Figs. 8(a) & (b). 

In Fig. 8, the values shown at the lower levels are the 
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For example, the rotor rotation effect could be seen 
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of the rotor rotation, the influence is seen in z/H = 

0.4 & 0.6. All these conditions are discussed for the 

wind turbine when the rotor is rotating and tower 

only cases. Hence, the effect of non-gaussianity 
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turbine tower. In order to understand the behavior of 

the non-Gaussianity, the peak factor analysis has 

been performed for the various pressure taps. 

The characteristics of the non-Gaussian distribution 

function are generally represented by a third and the 

fourth moments which are skewness and kurtosis of 

the probability distribution function. The effect of 

non-gaussianity for the wind turbine tower with and 

without rotor has been shown in terms of skewness 

and kurtosis in Figs. 8(a) and 8(b) respectively. 

Figure 8(a) shows the characteristics where the 

skewness value is insignificant for even at tower only 

case. Hence, shows the symmetricity of the  
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Fig. 9. Comparison of Theoretical and experimental peak factor on HAWT tower with and without 

rotor cases. 
 

 

distribution for wind turbine without a rotor. 

However, for a wind turbine with rotor rotating 

shows considerable skewness value and proves the 

non-gaussianity at the lower levels where the 

influence of the rotating rotor is limited, By having 

such considerable skewness the peak factor cannot 

be predicted based on Gaussian assumption. 

Additionally, to compute the peak factor, it becomes 

quintessential to consider kurtosis values.  Figure 

8(b) shows kurtosis for both with and without rotor 

is considerable. Kurtosis value is predominant in the 

lower levels for the turbine with rotor case. Hence, 

the non-gaussianity of the random pressure data in 

HAWT tower needs a certain attention. Figure 9 

shows the peak factor g based on the experimental 

data, Davenport, Kareem Zhou, Cartwright & 

longuet Higgins Peak factor for the Eq. (2.1). 

Further, it discerns that Davenport’s method and 

Longuet – Higgins method doesn’t exhibit 

significant difference, this may be because of the 

random process can be narrowband in the frequency 

domain. Davenport’s method based on Eq. (2.16) 

which is based on Gaussian assumption couldn’t 

predict the peak factor of the pressures on the surface 

of the HAWT. Also, Cartwright and Longuet – 

Higgins method underpredict the experimental peak 

factor. It is evident from Fig. 9 that Kareem Zhou’s 

peak factor which is based on Hermit transformation 

agrees closely with the experimental results. This is 

because of Kareem Zhou peak factor method 

considers the non-gaussianity by including skewness 

and kurtosis. It can be seen from the results that the 

non-gaussianity in the random pressures dominates 

when the wind turbine with rotating rotor than the 

simple tower.  

4. CONCLUSION 

Wind turbine tower with various levels of pressure 

measured at different heights and the peak pressure 

is calculated and the following conclusions are made.   

(i)  The pressure distribution follows the Gaussian 

distribution for the random pressure data of the 

HAWT tower and it can be evident from the 

skewness and kurtosis values.  

(ii) The Davenport’s method to calculate the 

maximum value is applicable for the HAWT 

without rotor and also the stagnation points of 

the tower with a rotor which is generally 

Gaussian nature. 

(iii)  For a HAWT tower with the rotor, considerable 

non-Gaussian behavior for the random pressure 

data has been observed which should be 

considered while designing the tower structure.  

(iv) For such non-Gaussian behavior peak factor of 

the experimental random pressures agrees very 

well with Kareem Zhou’s non-Gaussian peak 

factor method. 

The wind turbine model is placed in a uniform wind 

speed test section limited to open terrain condition of 

atmospheric boundary layer terrain category. 

However, for peak value, non-Gaussian behavior 

needs to be considered while designing the HAWT 

tower systems. 
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