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ABSTRACT 

An analytical solution is given to investigate the vibrations of a membrane under the effect of an incoming 

fluid flow perpendicular to it. The membrane is located at the stagnation point of the flow and is of finite 

width but infinite length. A rigid wall extends through the finite width of the membrane to infinity. The flow is 

considered to be a small perturbation on the two dimensional potential stagnation flow solution due to the 

vibrations of the membrane, and the membrane is modeled by the linear vibration equation. The resulting 

coupled problem is solved by a Galerkin procedure and the eigenvalue equation relating the membrane 

frequency to the other parameters is derived. 
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1. INTRODUCTION

Membrane structures are widely encountered in 

many forms including  tympanic  membrane  in  the  

human  ear,  lightweight  (inflatable)  civil  and 

aerospace structures, paper manufacturing processes, 

several types of pumps, sails and parachutes. 

Naturally, these structures will be acted upon by 

forces due to the fluid in which they are situated. The 

case in which the fluid is more or less stagnant is of 

interest to the biomechanics of the ear drum for 

example (deBoer and Viergever, 1983). In many 

cases, the fluid flow is essentially parallel to the 

undisturbed membrane; in this case, small 

disturbance theory familiar from thin airfoil 

aerodynamics has been succesfully applied to a range 

of problems. 

Newman and Paidoussis (1991) considered the 

stability of a membrane similar to present study, but 

under an approximately parallel flow. They used 

small disturbace theory and investigated the stability 

behavior with respect to incidence angle and 

membrane tension. Newman and Tse (1980), again 

using small disturbance or thin airfoil theory, 

computed the flow around an airfoil made up of two 

curved membranes. Newman (1987) using similar 

techniques gave a general account of the 

aerodynamics of membranes. Newman and Low 

(1984) reported about experiments on sails. Kunieda 

(1975) considered vibrations of curved membranes 

under parallel flow. Szygulski (1997) considered 

the stability of a membrane bounded by rigid walls 

using finite and boundary element methods. 

Yamaguchi et al. (2000), using a distributed vortex 

approach, computed the stability behavior of 

membranes in high speed flow. Huang (2001) 

investigated the vibration behavior of a membrane 

which forms the part of the boundary of a viscous 

Poiseuille flow. Pan et al.  (2001) developed a 

model for a valveles micropump involving plate 

theory, while Watanabe et al. (2002) considered 

paper flutter using both potential flow and viscous 

flow approaches. In most of these studies, except 

(Pan et al. 2001), the fluid flow is predominantly 

parallel to the membrane surface. 

One aspect of the attempt to understand the dynamics 

of membrane structures under fluid flow that seems 

to be missing is the case in which the flow is 

perpendicular to the membrane. This kind of study 

may be important in inflatable structures and sails or 

conceivably some kind of biomechanical problem. 

Another significant application of membrane-fluid 

interactions is energy harvesting from mechanical 

vibrations using piezoelectric materials (Li et al. 

2014). A conventional fluttering device is arranged 

in parallel with the flow direction, but experiments 

by Li et al. (2011) show that the cross flow 

architecture could help to increase the performance 

of such devices. This study may be used in the 

theoretical investigation of piezo-electric energy 

harvesting employing vibrations of thin membrane 

structures under the effect of an incoming flow. At 

any rate, the proposed problem can be considered as 

one of the basic problems of membrane-fluid 

interactions. 
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In this paper, a membrane in the shape of an infinite 

strip placed symmetrically at the stagnation point of 

an incoming incompressible irrotational flow has 

been studied. The membrane vibrates due to 

disturbances in the flow; the conditions under which 

these vibrations lead to instability will be derived. 

The choice of potential flow for the investigation of 

flutter phenomena in general stems from the fact that 

it is the normal forces, i.e., pressure, rather than the 

shear forces parallel to the membrane surface that 

cause the membrane to vibrate. Therefore, the 

viscous or shear forces are of secondary importance 

and can be neglected. Inviscid flows naturally tend 

to be potential or irrotational since viscosity is 

mainly responsible for imparting rotation on 

infinitesimal fluid elements. Also, the assumption is 

made in this study that the flow velocity is not very 

high so that the incompressibility assumption holds. 

As a result, the flow field is governed by the 

Laplace’s equation. 

2.  PROBLEM FORMULATION AND 

SOLUTION 

A schematic of the problem is shown in Fig. 1. The 

membrane occupies b x b   and is of infinite 

length in z-direction. The stagnation point of the 

incoming two dimensional incompressible potential 

flow is the origin. As is wellknown (Currie, 1974), 

the potential flow around a stagnation point on a rigid 

wall is approximately given by the velocity potential 

2 21
( )

2
U x y                                                           (1)                                              

satisfying the two dimensional Laplace’s equation 

2 2

2 2
0

x y

  
 

 
                                                                     (2) 

U is a constant with dimension 
-1(time) .This can be 

extended to the case in Fig. 1 , where part of the rigid 

wall is replaced by the membrane, by assuming that 

the flow differs from Eq.(1) by a small amount 

1( , , )x y t , the perturbation potential, which is 

time-dependent since the vibrations of the membrane 

disturbs the original steady flow given by Eq.(1), 

2 2
1

1
( , , ) ( ) ( , , )

2
x y t U x y x y t                         (3) 

It should be noted here that the unsteady potential 

incompressible flow also satisfies the Laplace’s 

equation. Substituting Eq.(3) in Eq.(2) gives 

2 2
1 1
2 2

0
x y

  
 

 
                                                            (4) 

The governing partial differential equation for the 

tranverse membrane vibrations is 

2 2

2 2
0mT p

x t

 


 
  

 
                                              (5) 

( , )x t is the displacement of the membrane, m  is 

the mass per unit area of the membrane, T is tension 

per unit lenght, and p  is the fluid pressure on the 

membrane computed from the unsteady Bernoulli 

equation 

22
1

2
p

x y t

  
 
           
       

                          (6) 

 

 
Fig. 1. Two dimensional stagnation point flow 

near the membrane. 
 

  is the density of the fluid. Ignoring the nonlinear 

terms in terms of 1  and taking the membrane to be 

approximately at 0y  , the pressure on the 

membrane becomes 

2 2 1

0

1

2 y

p U x
x t

 
 



  
    

  
                            (8) 

The first term causes a static deflection of the 

membrane. The other term is time-dependent and 

causes vibrations in the membrane which are of 

interest. Therefore, we use the second term as the 

forcing in the vibration equation Eq. (5), 

2 2

12 2
0mT p

x t

 


 
  

 
                                                (8) 

with 

1 1
1

0y

p Ux
x t

 




  
   

  
                                           (9) 

The boundary conditions on the membrane are that it 

is fixed at the sides : 

0     at     x b                                                      (10) 

On the membrane, the normal components of the 

fluid and membrane velocities should be the same; 

again taking the membrane to be at 0y   and 

ignoring nonlinear terms, this gives 

1

0

( , )

                                for   

y

Ux f x t
x t x

x b

  



  
  

  



                            (11) 
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1

0

0    for  
y

x b
x






 


                                        (12) 

where, the middle expression in Eq.(11) is given the 

name ( , )f x t for brevity. Finally, 1  should fall to 

zero fast enough at infinity. The solution of Eq.(4) 

with Eq.(12) is 

1

2 2

( , , )

1
                ln ( ) ( , )

2

b

b

x y z

x y f t d



  
 



  
 

   (13) 

To investigate the vibrations of the membrane, the 

membrane displacement is taken as 

( , ) ( ) i tx t V x e                                                       (14) 

Since the problem is linear, each variable in the 

problem is assumed to be harmonic (i.e., real or 

imaginary parts are taken in Eq. (14), for 

example). Different frequencies do not effect each 

other, and only one parametric (angular) 

frequency ω can be considered. Similarly, the 

pressure becomes 

1( , ) ( ) i tp x t P x e                                                     (15) 

where 

ln ( )
Ux

P i x F d
x


   

 





 
    

 
           (16) 

( ) ( ) ( )F x i V x UxV x                                            (17) 

And ( )V x  satisfies 

2
2

2

ln ( ) 0

m

d V
T V

dx

Ux
i x F d

x

 


   

 





 

 
    

 


           (18)

0        at           V x b                                           (19) 

Equations Eq. (17) and Eq. (18) constitute an 

integro-differential eigenvalue problem for ( )V x

with the eigenvalue . 

1

( ) sin
N

n
n

n x
V x a

b





                                                    (20) 

This form satisfies the boundary conditions (19). 

In the Galerkin method, after substituting the 

assumed solution form, Eq. (20), into the 

governing equation, the inner product of the result 

(called the residual) and the base functions (the 

sine functions in Eq. (20) in this case) are equated 

to zero to give a set of (infinite) algebraic 

equations. Substituting  

Eq. (20)  into (18), multiplying by sin
m x

b

 
 
 

and 

integrating between b  and b , we obtain 





2
2

2 2

1

2 2 2

( )

( ) 0

for 1,2,.... . Here

p p m

N

n nm nm
n

nm nm

m
T h ba

b

a i i U b A i n Ub B

U i U b C n U b D

m N


 


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

 





  
      

  

  



 (21) 

1 1

1 1
        ln sin( )sin( )

nmA

u n u m dud   
 



 
      (22) 

1 1

1 1
        ln cos( )sin( )

nmB

u u n u m dud   
 



 
 (23) 

1 1

1 1
        ln cos( )sin( )

nmB

u u n u m dud   
 



 
 (24) 

1 1

1 1
        cos( )sin( )

nmD

u
n u m dud

u


  

 



 
          (25) 

These integrals can be evaluated in terms of sine and 

cosine integrals 

0

sin
( )

x t
Si x dt

t
                                                       (26) 

cos
( )

x

t
Ci x d

t


                                                     (27) 

The resulting expressions are long; they are written 

in the appendix for reference. Eq. (21) is a linear 

homogeneous system of algebraic equations; the 

determinant of the coefficients give the characteristic 

eigenvalue equation for  . We use the following 

non-dimensional quantities. 

2T
T

b




                                                                        (28) 

k
U


                                                                      (29) 

m mh

b





                                                                 (30) 

  is basically the mass ratio between the membrane 

material and fluid. With these definitions, Eq.(21) 

becomes 





4 2

2
1

1
( 1)

( )

( 1) 0

N

m nm
n

nm nm nm n

T
m k a ik ik A

nUb

ikn B ik C n D a



 



 
     
 

    


 

(31) 

Note that U has the dimension of velocity per length 

while Ub  has the dimension of velocity. We will 

refer to Ub  as the velocity. 
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3. RESULTS AND DISCUSSION 

Eqs. (31) are a linear system of homogeneous 

algebraic equations for the expansion coefficients an 

. The determinant of this system is an algebraic 

equation of the form 

2
, , 0

( )

T
f k

Ub

 

  
 

                                             (32) 

For given values of Ub  and  , Eq. (32) is to be 

solved for the complex eigenvalue k . If the 

imaginary part of k  is negative the motion is stable, 

since ( , ) ( ) iUktx t V x e  . The value of Ub  at 

which  Im k first becomes zero is the flutter 

velocity above which there are always unstable 

modes present. 

The accuracy of the method increases as the number 

or modes N  increases. In general, Eq.(32) has to be 

solved numerically; but for 1N  , we can obtain an 

explicit expression for flutter velocity: 

11

( ) 3,6689fl

T T
Ub

D b
                                      

(33) 

This simply follows from Eq.(31), for the case 

1m n N   , by noting that 11 11 11 0A B C  

, and setting the discriminant of the resulting 

quadratic equation for k  to zero. 

Taking 3 to 5 terms in the expansion gives adequate 

accuracy. It seems that the flutter velocity computed 

from Eq. (33) is about 15% higher than the accurate 

result as long as T  is less than 5000. Fig. 2 shows 

both results for the flutter velocity as a function of 

T . Another interesting result is the fact that the 

flutter velocity is independent of the mass ratio 

although it is present in Eq.(32). This is explicitly 

seen from Eq. (33) and it is also confirmed by 

computations with higher number of modes. 

 

 
Fig. 2. Variation of the flutter velocity with 

respect to T  , (+) from Eq.(23) , (•) from Eq.(21) 

with N=5. 

Flutter velocity increases with the increase of the 

tension force on the membrane as should be 

expected; and can be roughly estimated by Eq.(33), 

which states that ( )flUb is proportional to the square 

root of the tension force. 

4. CONCLUSION 

An analytical solution was derived that allows 

computation of the critical flutter velocity of an 

incompressible potential flow towards a membrane 

placed at the stagnation point. The end result 

basically can be summarized with Eq.(33) . The 

flutter velocity is proportional to the square-root of 

the tension force on the membrane. If the formula is 

modified slightly as mentioned before, 

( ) 3,0966fl

T
Ub

b
                                                    (34) 

this gives the flutter velocity in the linearized 

approximation quite closely. 

The result presented in Eq. (34) is simple, elegant, 

and might be very useful in practice. The engineer 

can change the parameters of the problem, i.e., 

physical constants of the material and the tension in 

the membrane, and quickly infer whether the design 

under consideration will lead to unstable oscillations, 

or the safety margin before the danger of instability. 

A   APPENDIX 

Explicit expressions for nmA , nmB , nmC  and 

nmD in terms of the sine and cosine integrals: 

2 2

2

2

2

2( (2 ) ln(2 ) (2 ))
      ,

2( 1)
(( )( )

( ) ( )

( (2 ) ln(2 ))
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    
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 
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2 2 2
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1
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