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ABSTRACT 

In this study, attempts to suppress numerical viscosity in incompressible smoothed particle hydrodynamics 

(SPH) computations are reported. Two-dimensional computations are performed for inviscid and viscous flows 

to evaluate the effects of numerical viscosity suppression. The first approach is to reduce numerical viscosity 

at the wall by considering only the wall-normal components of the forces between fluid particles and wall 

particles. The second approach is to reduce numerical viscosity within the flow field by employing elliptic 

kernel functions whose major axes are aligned with the local mean flow direction. It is found that special 

treatment of the wall radically reduces the numerical wall friction. Using an elliptic kernel function is found to 

work reasonably well in reducing numerical viscosity. 

Keywords: Incompressible SPH computation, Numerical viscosity, Wall friction, Elliptic kernel function, 
Special wall treatment. . 

NOMENCLATURE 

f fluttering factor 

h smoothing length 

m mass 

r radial coordinate 

r position vector 

t time 

W kernel 

x Streamwise coordinate 

y wall-normal coordinate 

ρ density 

α major axis radius 

β minor axis radius 

0u initial velocity 

u streamwise velocity

u tangential velocity

ν velocity vector

1. INTRODUCTION

Smoothed particle hydrodynamics (SPH) is a 

Lagrangian particle method in which the fluid 

continuum is discretized as a group of particles and 

the flow is directly represented by the movement of 

the particles (Monaghan 2005). Lagrangian methods 

are free from the numerical instability deriving from 

the convection term in the Eulerian formulations. 

Besides, they are also advantageous for calculating 

moving boundaries, since these boundaries are 

automatically represented by the motion of the 

particles. The SPH method was originally developed 

to simulate galaxy formation, which can be treated as 

a compressible flow in astrophysics (Gingold and 

Monaghan 1977). In the SPH method, a kernel 

function is defined for smoothly distributing the 

physical quantities for each particle. A physical 

quantity at an arbitrary position is obtained by 

summing the values of its surrounding particles, 

which are weighted according to the kernel function. 

When solving partial differential equations, the 

derivatives at the center of a particle can be obtained 

as the vector sum of the gradients of the kernels of 

the surrounding particles. The SPH method has 

attracted attention because it is easy to simulate flows 

that contain a large deformation at the boundary as 

well as to simulate multi-phase flows. The technique 

is currently utilized for elastic body problems and 

heat conduction analyses, to name several examples. 

There have been attempts to modify SPH to use it for 

computing incompressible flows. For instance, 

Monaghan (1994) used an artificial equation of state 

to simulate free-surface flows at low Reynolds 

numbers on the assumption that the flow is weakly 

compressible in which the Mach number is nearly 

equal to 0.1. This approach is named the “weakly 
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compressible” SPH (WCSPH). However, WCSPH 

requires very small time step. Instead, Cummins and 

Rudman (1999) proposed an alternative approach 

based on the projection method in which a pressure 

Poisson equation derived from an approximate 

pressure projection was solved to obtain the 

divergence-free velocity field. This projection SPH 

(PSPH) technique is capable to simulate 

incompressible flows at higher Reynolds numbers in 

the order of several hundred; however, it has a 

downside that the numerical error is accumulated in 

the density field. Pozorski (2002) and Szewc et al. 

(2012) proposed a correction algorithm to resolve the 

problem of accumulation of the density errors in 

PSPH. Also, Lee et al. (2008) formulated the 

governing equations based on the fractional step 

method and Imasato and Sakai (2006) applied the 

simplified marker and cell (SMAC) algorithm-

generally to the SPH method. 

The moving particle semi-implicit (MPS) method 

(Koshizuka and Oka 1996) is an extension of the 

SPH method for the incompressible flow 

computations. In the MPS method, the 

incompressible condition is satisfied by keeping the 

particle number density constant. The constant 

particle number density is obtained by solving 

Poisson’s equation for pressure. Although the MPS 

method allows increasing the time step, the 

computational cost increases significantly because of 

the large linear system of (Poisson’s) equations that 

must be solved. In addition, it is difficult to set 

boundary conditions, and nonphysical pressure 

vibration sometimes appears in the computation. 

Our research group has analyzed low Mach number 

flows in various fields, double-diffusive convection 

(Shigeta et al. 2009), welding operation (Ito et al. 

2015), drifting object swept by sudden water flow 

(Wakui et al. 2018) and flapping flags (Nishiura et 

al. 2018), by incorporating an incompressible 

approximation technique into the SPH method. In 

this technique, incompressible flows are calculated 

by correcting the particle velocities at each time step 

while keeping the density variation relatively small. 

During each iteration, the velocities of the particles 

are corrected by the density gradients caused by 

spatial non-uniformity of the particle distribution. 

However, with this approach, the particles become 

likely to form a regular close-packed structure as the 

number of iterations for density correction increases. 

Once such structures are formed in the flow field, the 

particles tend to move as a group and their moments 

spread instantaneously within the structure. As a 

result, the numerical viscosity increases. In this 

study, the principle underlying this change in 

numerical viscosity in the aforementioned 

incompressible SPH method is investigated in detail. 

Furthermore, techniques to reduce the numerical 

viscosity are proposed. 

2. COMPUTATIONAL METHOD 

2.1   Incompressible SPH Method 

In the SPH method, a continuous function, termed 

the kernel function, provides each particle a smooth 

distribution of physical quantities. The physical 

quantities at any arbitrary position can be obtained 

by superimposition of these kernel functions. The 

density ( )a r  at the position ar r , for example, is 

represented by 

aρ( )= b ab

b

m Wr                                                              (1) 

where W is the kernel function. We use the M4 spline 

kernel Monaghan and Lattanzio (1985), based on the 

cubic B-spline function, 

2 3

3

2

3 3
1           (0 1)

2 4

1
( , ) (2 )                  (1 2) 

4

0                               (2 )

q q q

W q h q q
h

q




   




   

 



    (2) 

where σ is a normalization constant which is 10 / 7

in two-dimensional case, and /q h r  is the 

distance normalized using the effective size of the 

kernel h, which corresponds to the effective radius of 

the particles. This effective radius h also corresponds 

to the shortest distance between the neighboring 

particles. This function gives non-zero values only 

within the range of r<2h and, accordingly, the 

particle interactions occur only between particles 

that exist within that range. The accuracy of this 

kernel was discussed in detail by Monaghan and 

Lattanzio 1985. 

Incompressibility is enforced by a density 

homogenization algorithm based on the predictor-

modifier method in which the particle velocity of the 

predictor is corrected such that the local density 

becomes smooth instead of solving the pressure 

Poisson equation. An outline of the algorithm is 

shown in Fig. 1. First, the particle velocity ( )tν at 

time t is obtained from the difference in location 

between the previous time step t t and the 

current time t. This velocity is used as the initial 

value for the predictor-corrector method, as follows: 

(0)( ) ( ).t tν ν                                                                (3) 

Tentatively, the particles move distances 
0( )t tν . 

Because the velocity predictor shown in Eq. (3) 

provides an estimate irrespective of the motion of 

other particles, the density distribution becomes 

uneven after all of the particles move. Thus, the 

velocity 
0( )tν is corrected as follows to even out the 

density distribution: 

* *
( ) *0 0

*2 * 2

ρ -ρ ρ -ρ
+  

ρ ρ

n a b
a b a ab

b a b

C m W
 

    
 
 
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where C is a constant that determines the degree of 

correction, 0ρ  is the reference density of the fluid, 

and 
*ρ  is the density at the tentative particle 

location. The correction corrν  is added to the 
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velocity predν , and each particle moves again in 

accordance with the new velocity. The n-th velocity 

is expressed by the following equation: 

( ) ( 1) ( 1)

1
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n n n
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Fig. 1. Adjustment of velocity by predictor-

corrector method. 

 
By choosing an appropriate value for C, the density 

inhomogeneity improves iteratively. The number of 

iterations N is constant during the calculation. 

2.2 Increase in Numerical Viscosity by 

Crystallization 

Figure 2 illustrates one possible cause for the 

numerical viscosity. Following the density 

homogenization process, the particles tend to form a 

closest packing structure, as shown in Fig. 2(a), 

because it is the optimal solution. When particles are 

arranged as shown in Fig. 2(a) and the upper layer is 

moving rightward relative to the lower layer, after a 

short time ∆t, the particles in the upper layer will 

move to positions shown in Fig. 2(b). Then, a 

repulsive force (denoted by blue arrows) will act 

between particle “A” in the upper layer and particle 

“B” in the lower layer. Consequently, the 

components of the repulsive forces in their respective 

directions of motion (signified by red arrows) will 

push particle “A” to the left and particle “B” to the 

right, which is equivalent to an exchange of 

momentum between the two particles. Similarly, 

particle “A” is also pushed leftward by the attractive 

force between particle “A” and particle next on the 

left side of particle “B”. Such nonphysical 

momentum exchange between the particles acts to 

increase the numerical viscosity. Once the particles 

form a packed formation during the density 

homogenizing process, the momenta of the particles 

will be distributed throughout the group via 

momentum exchanges. This phenomenon is 

equivalent to a strong viscous diffusion of 

momentum. 

 

 

 

 
Fig. 2. Density adjustment process and 

numerical viscosity. 
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Fig. 3. Behavior of particles near wall. 

 
 

2.3 New Wall Surface Model to Reduce Wall 

Resistance 

The effect of numerical viscosity is particularly 

apparent near the wall. Figure 3 shows an enlarged 

view of the particles near the lower wall, a region of 

inviscid uniform flow between the parallel plates 

calculated using the incompressible SPH method. 

The vectors indicate the x-direction velocities. The 

velocities of particles near the wall decrease even 

though the slip condition is applied at the wall 

surface. A fluid particle, marked by a circle, can be 

observed getting stuck between the particles of the 

wall. This is because the fluid particle and the wall 

particles form a triangular structure in an attempt to 

satisfy the equal-density condition during the density 

homogenization process. Once the particle stops 

moving, it starts to behave as if part of the wall, 

thereby blocking the flow. Afterward, the 

surrounding fluid particles lose their momenta due to 

the blockage and, consequently, the velocity of the 

fluid near the wall rapidly attenuates. 

To prevent the aforementioned phenomenon from 

occurring, the technique whose schematic is shown 

in Fig. 4 is proposed. In the conventional method, the 

velocity corrector vector has both a wall-normal 

component and a wall-tangential component, as 

shown in Fig. 4(a). The wall-tangential component 

causes numerical viscosity, as previously described. 

The proposed idea is to use only the wall-normal 

component when correcting the predictor velocity 

during the iterative process. This technique is 

intended to allow fluid particles near the wall to flow 

smoothly past the wall particles. It is noted here that 

the reduction of numerical viscosity at the wall can 

also be achieved by making the size of wall particles 

smaller than that of fluid particles. However, the use 

of smaller particles will result in the increase of the 

computational cost. 

2.4  Anisotropic Elliptic Kernel to Reduce 

Numerical Viscosity within Flow Field 

As demonstrated by the sample calculation of flow 

between parallel plates in section 2.2, the numerical 

viscosity promotes the transfer of low-velocity 

momentum to the center of the channel with time. 

Thus, we attempt to suppress the numerical viscosity 

within the flow as follows. 

In the density homogenization process, Eq. (4) is 

used for the velocity corrector calculation and, 

accordingly, the velocity correction is carried out in 

the direction indicated by the gradient of the kernel. 

For example, when particle “A” in Fig. 5 is moving 

rightward relative to particle “B,” the velocity 

corrector vector will appear as shown in Fig. 5(a), 

which is caused by the interaction between the two 

particles. Then, because of the tangential 

component-that is, the component tangential to the 

velocity of the particle relative to the other particle-

of the vector, an exchange of tangential momentum 

occurs between the two particles. This exchange of 

momentum serves to increase the numerical 

viscosity. The proposed idea is to alter the shape of 

the kernel function. Since the velocity corrector 

vector is in the direction of the gradient of the kernel 

function, when the shape of the kernel function is (b) 

Velocity corrector in new wall model elliptic, the 

velocity corrector vector will appear as shown in Fig. 

5(b). Therefore, the tangential component of the 

vector becomes considerably shorter. 
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Fig. 4. Schematic view of proposed technique to 

handle interaction between solid and liquid 

particles. 

 
By suppressing the aforementioned exchange of 

tangential momentum, excessive momentum 

exchanges between neighboring particles along the 

directions of the minor axes should be suppressed. 

As a result, if the major axes of the elliptic kernel 

functions are aligned with the velocity vectors of the 

particles in the shear layer, the numerical viscosity 

should be suppressed. It should be noted that, when 

elliptic kernels are used, since the vectors of the 

forces acting between the particles do not pass 

through the centers of the particles, moments that 

induce rotation of the particles appear. These 

moments are ignored in this model. Moreover, the 

directions of the elliptic kernels are not preserved, 

and they must be set along the directions of local 

flow at every time step. 

M4 spline curves are used to create an elliptic kernel 

function, which is equivalent to the conventional 

circular kernel function case. For computation in two 

dimensions, the conventional M4 spline kernel 

function is expressed as Eq. (2) using /q h r , 

where q  is redefined to construct an anisotropic 

elliptic kernel, as follows: 

 

22
1

α β

x y
q

h

  
    
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                                                   (6) 

 
 

 
Fig. 5. Schematic view of interaction between 

particles when elliptic kernel is used. 

 

where x, y denote the major axis and minor axis 

directions, respectively, α  is the major axis radius 

of the kernel at W = 0, and β is the minor axis radius. 

α  and β are given by the following equations using 

a flattening factor f (0 ≤ f < 1): 

α ,     β 1 .
1

h
h f

f
  


                                           (7) 

In the expression above, when f = 0, α  is equal to β, 

which is an expression of the ordinary circular kernel 

given by Eq. (2). The flattening factor f determines 

the aspect ratio of the ellipse, and a flat elliptic kernel 

can be obtained by increasing f . For example, when 

f = 0.5, the kernel assumes an anisotropic elliptical 

shape as shown in Fig. 6. It should be noted that 

2αβ=h regardless of f. In other words, even if f is 

varied between 0 ≤ f < 1, the area does not change on 

the same W section of the kernel. Therefore, the 

integrated value of the kernel is constant regardless 

of the value of f , which corresponds to the mass of a 

particle being constant. 

2.5   Calculating the Effect of Viscosity When 

Elliptic Kernel is Used 

When an elliptic kernel is used, the gradient of the 

kernel function depends not only on the distance 

between two particles but also on the direction of the 

line that passes through the centers of both particles. 

Furthermore, whereas the gradient of the kernel 

function itself can be used in the case of a circular 
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particle, the gradient corresponding to the steepest 

direction of the kernel function at each local point, 

which is given as the direction normal to the kernel 

contours, the must be obtained for the elliptic particle 

case. Another issue that must be taken into account 

is that, when the elliptic kernel is vertically short and 

horizontally wide, diffusion increases in the vertical 

direction but decreases in the horizontal direction. 

Thus, the viscous term for two-dimensional flows 

can be calculated by 

2

.2 ρ
( )

ρ ρ

ab a ab
a b ab

a bb ab

Wm
C

 


r
ν ν

r
                              (8) 

where ρ=(ρ ρ ) / 2a b  and abC  as a transform 

coefficient, which is written by 

2 2

2 2

(β ) (α )1 x y
ab

x y

r r
C

h r r





                 (9) 

Here, ( , )ab x yr rr . The value of abC represents a 

window size that determines the local diffusion flux 

at each direction: the maximum value is /a b on 

the minor axis and the minimum is /b a  on the 

major axis, while 1abC  for the circular kernel 

function. It is noted that, in two-dimensional case, 

the swept area of a relative position vector abr is the 

same for both kernel functions. In other words, total 

diffusion flux is independent of kernel functions. 

 

 
Fig. 6. Elliptic kernel function ( f = 0.5). 

 
 

3. RESULTS AND DISCUSSION 

3.1   New Wall Model Tested in Uniform 

Flow between Parallel Plates 

To verify the effect of the new wall model in 

reducing numerical viscosity at the wall, a uniform 

flow between the parallel plates is computed. Figure 

7 shows the computational domain. The dimensions 

in the figure are normalized lengths. The dimensional 

quantities (length, time) are normalized by the 

effective radius of the particles h and the initial 

uniform velocity. The normalized computational 

time step is ∆t = 0.05. A periodic boundary condition 

is applied in the x direction. In both the conventional 

method and the new technique, the fluid is treated as 

inviscid and the slip condition is applied at the wall 

surface. A uniform velocity is used for the initial 

velocity, and changes in the velocity field caused by 

the numerical viscosity are examined. The initial 

particle distribution satisfies a uniform density. This 

arrangement is obtained by distributing the particles 

equally in space, slightly disturbing them randomly, 

and then carrying out the density homogenization 

process. 

 

 
Fig. 7. Computational domain and initial velocity 

profile for inviscid uniform flow between parallel 

plates using new wall model. 
 

Figure 8 compares the time variations of the aver-

aged profiles of flow direction velocity. It is noted 

here that the velocity ranges are different in both 

figures. With the conventional method, although the 

slip condition is applied at the top and bottom walls, 

the particle velocities near the walls decrease and the 

profile becomes like that of a Poiseuille flow. 

Subsequently, the velocity of the entire flow 

gradually decreases. Since the fluid is treated as 

inviscid, the numerical viscosity must be the cause of 

the change in the velocity profile. The result clearly 

shows that the influence of the numerical viscosity is 

very large when the conventional method is used and 
that the slip condition at the wall cannot be realized. 

On the contrary, when the new technique is applied, 

the velocity profile changes little with time, and the 

fluid slips at the wall surface. It can clearly be 

observed that the proposed technique can more 

effectively suppress the numerical viscosity at the 

wall relative to the conventional method. In the 

following calculations, this technique is applied at 

the wall for all cases. 

3.2 Elliptic Kernel Model Applied to Inviscid 

Flow between Parallel Plates 

Two-dimensional computation of inviscid flow 

between two parallel plates is carried out, focusing 

on the numerical viscosity. Computations using the 

normal circular kernel function and the newly 

proposed elliptic kernel function are performed and 

the results are compared. 



Y. Fukunishi et al. / JAFM, Vol. 12, No. 4, pp. 1231-1240, 2019.  

 

1237 

 
 

 
Fig. 8. Time variation of streamwise velocity pro-

files in testing the new wall model. 

 

 
Fig. 9. Computational domain and initial velocity 

profile for inviscid flow between parallel plates 

using elliptic kernel functions. 

 

 
Fig. 10. Velocity profile of u at t = 2400 in testing 

the elliptic kernel function of f = 0.5. 

 
The computational domain is shown in Fig. 9. A slip 

condition is applied at both wall surfaces and a 

periodic boundary condition is applied in the x 

direction. The dimensional quantities are normalized 

by the effective radius of the particles h and the 

maximum value of the initial velocity distribution. A 

parabolic velocity distribution, 

2
0 1 2u C y C y                  (10) 

is used for the initial velocity profile. Here the values 

of the coefficients are 3
1 2.84 10C     and 

2
2 1.07 10C   , and the normalized computational 

time step is ∆t = 0.05. 

Figure 10 shows the averaged profile of the velocity 

in the mean flow direction at t = 2400. In the figure, 

the closed-circle symbol represents the initial 

velocity profile, the open-circle symbol shows the 

case in which the normal circular kernel is used, and 

the cross symbol shows the case in which the elliptic 

kernel is used. When the ordinary circular kernel is 

used, the velocity profile quickly flattens at the center 

and the velocity decreases. This is due to the high 

numerical viscosity, where the momentum of 

particles in the central region is rapidly transferred to 

particles in the near-wall regions. On the other hand, 

when the elliptic kernel is used, the change from the 

initial profile is smaller. The result shows that the 

elliptic kernel results in a lower numerical viscosity. 

3.3 Elliptic Kernel Model Applied to 

Rayleigh Flow Computation 

Two-dimensional computation of a Rayleigh flow in 

which the velocity of the bottom surface diffuses due 

to viscosity is carried out, and computations using 

the normal circular kernel function and the proposed 

elliptic kernel function are compared. Again, the 

periodic boundary condition is applied in the x 

direction. The calculation domain is shown in Fig. 

11. The slip condition is applied to the upper wall 

while the non-slip condition is applied to the bottom 

wall. The bottom wall begins to move at a constant 

velocity U = 1.0 in the positive x direction starting at 

t = 0. All of the particles have zero velocity prior to t 
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= 0. Here, the dimensional quantities are normalized 

as well by h and U, and ∆t = 0.25. In this calculation, 

the fluid is treated as a viscous fluid of kinematic 

viscosity coefficient, given by 3 21.50 10 m /s   . 

The remaining computational conditions are 

identical to those from the previous section. 

 

 
Fig. 11. Computational domain for Rayleigh flow 

computations using elliptic kernel functions. 

 

 
Fig. 12. Time variations in boundary layer 

thicknesses. 

 
Figure 12 shows the variation of the boundary layer 

thickness with time, where the boundary layer 

thickness is defined as the distance between the wall 

and the y coordinate at which the average velocity 

reaches 0.01U. The thickness at the final time step, 

1000, is also plotted in Fig. 13. The sold line in each 

figure represents the theoretical value. Theoretically, 

the boundary layer thickness, which represents the 

height that has been reached by the influence of 

viscous action, should increase proportionally with 

the square root of the product of the kinematic 

viscosity coefficient and time. The computational 

result in Fig. 12 shows that the boundary layer is 

much thicker when a normal circular kernel is used, 

due to the additional viscosity resulting from the 

numerical viscosity. However, the additional 

viscosity gradually decreases when an elliptic kernel 

with a large flattening factor f is used. Figure 13 

shows that, when a circular kernel is used, the net 

kinematic viscosity in the computation is 

approximately 1.5 times the true value. On the other 

hand, this value is 0.98 for an elliptic kernel with f = 

0.6. This result demonstrates that the elliptic kernel 

performs reasonably well at sup-pressing the 

numerical viscosity. However, when the flattening 

factor exceeds 0.7, a small amount of noise begins to 

appear in the flow field, causing the calculation to 

become unstable. This is probably due to the 

deterioration of calculation accuracy of diffusion 

flux. In the preset computations, the diffusion flux is 

simply obtained under the assumption that the radial 

flux is just an orthogonal projection component of 

exact diffusion flux vector whose direction is normal 

to the kernel contour at each location. This 

assumption is not satisfied when the flattening factor 

becomes very large. 

 

 
Fig. 13. Relationship between flattening factor of 

elliptic kernel and boundary layer thickness at 

time step = 1000 (Rayleigh flow). 

 
3.4   Elliptic Kernel Model Applied to Flow 

Computation in Concentric Circular 

Annulus 

Finally, newly-proposed kernel model was applied to 

two-dimensional flow in a concentric circular 

annulus, which is a simple case of a non-parallel 

flow. Fig. 14 shows the computational domain. The 

fluid is inviscid and the slip condition is applied at 

both inner and outer wall surfaces. The dimensional 

quantities are normalized by the effective radius of 

the particles h and the maximum value of the initial 

velocity distribution. A free-vortex, or no-vorticity, 

velocity distribution, 

0 ,
C

u
r

                         (11) 

is used as the initial velocity profile. Here, the value 

of coefficient C is set to 26 to give the velocity at the 

inner wall unity. The normalized computational time 

step is ∆t = 0.25. In this computation, the velocity 

caused by the centripetal acceleration is added to the 
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velocity predictor in the density homogenizing 

process for faster convergence. 

 

 
Fig. 14. Computational domain for flow 

computations in concentric circular annulus 

using elliptic kernel functions. 

 

 
(a) Conventional circular kernel function 

 

 
(b) Elliptic kernel function of f = 0.6 

Fig. 15. Time variation of circumferential 

velocity profiles in testing the elliptic kernel 

function f = 0.6. Dotted line in the figure 

represents the velocity profile of a sold body 

rotation. 

 

Figure 15 shows the time variations of the profiles of 

circumferential direction velocity averaged 

depending on the radius from the center of the flow 

rotation. The case when an elliptic kernel of f =0.6 is 

used is compared with the conventional circular 

kernel case. Since the fluid is inviscid, ideally, the 

velocity profile should remain the same. In the 

circular kernel case, the circumferential velocities of 

the particles in the inner regions quickly decrease 

while those in the outer regions increase. Eventually, 

the velocity profile approaches that of a sold body 

rotation, which is shown by a dotted line in Fig. 15, 

exhibiting the strong effect of numerical viscosity. 

On the other hand, change in the velocity profile for 

the elliptic kernel of f =0.6 case is much slower, 

showing much lower numerical viscosity. The result 

clearly shows the advantage of using the elliptic 

kernel to avoid the numerical viscosity. 

4. CONCLUSIONS 

The cause of the numerical viscosity in an 

incompressible SPH method was discussed and new 

techniques to suppress the numerical viscosity were 

proposed. 

First, to suppress the numerical viscosity at the wall, 

a new model that only takes into account the wall-

normal components of the forces between fluid 

particles and wall particles was proposed. This new 

model was tested for the case of inviscid flow 

between parallel plates. The new wall model 

demonstrated that it could significantly suppress the 

numerical viscosity at the wall. 

Next, to suppress the numerical viscosity within the 

flow field, an elliptic kernel function was proposed 

and tested for the case of inviscid flow between two 

parallel plates, between two concentric cylinders, 

and the Rayleigh flow. As a result, the anisotropic 

elliptic kernel was found to work reasonably well in 

reducing the numerical viscosity. In the Rayleigh 

flow case, the net kinematic viscosity was almost 

identical to the theoretical value when an elliptic 

kernel with f = 0.6 was used, whereas the viscosity 

was approximately 1.5 times larger using the 

conventional circular kernel. 

In conclusion, the newly proposed techniques 

appeared to be promising methods for reducing the 

numerical viscosity in incompressible SPH 

computations. However, with regard to the elliptic 

kernel function, computations became unstable when 

the flattening factor of the elliptic kernel was too 

large. Furthermore, it is unclear whether moments 

that induce rotation of the particles during the density 

homogenization process can be ignored. And, we do 

not have a method to determine the appropriate 

directions of the major axes of elliptic kernels. These 

issues must be solved before the new techniques can 

be applied to more general unsteady flow 

simulations. 
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