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ABSTRACT 

Natural convective flow of a micropolar fluid is examined analytically in order to see the effect of heat and 

mass transfer between two concentric vertical cylinders of infinite length. The governing equations of model 

in non-dimensional form corresponding to the temperature, velocity and microrotational velocity, using the 

Boussinesq approximation and Eringen equation with suitable boundary conditions are expressed in terms of 

cylindrical coordinate system and then their exact solutions are obtained. The influence of the non-

dimensional physical parameters such as the material and vortex viscosity parameters on the velocity, 

microrotational velocity is evaluated by showing on the graphs while the values of skin friction in non-

dimensional form at the outer and inner surfaces of inner and outer cylinders have been presented in the 

tabular form. 

Keywords: Micropolar fluid; Natural convection; Temperature; Two concentric vertical cylinders. 

NOMENCLATURE 

𝑎 radius of the inner cylinder 

𝑏 radius of the outer cylinder 

𝐵 material parameter 

𝑓 body force vector 

𝑔 acceleration due to gravity 

𝑗 micro inertia density per unit mass 

𝑚 temperature ratio parameter 

𝑁𝑢 Nusselt number 

𝑞 heat flux 

𝑅 vertex viscosity ratio parameter 

𝑟′ transverse coordinate 

𝑟 dimensionless transverse coordinate 

𝑇′ temperature of the fluid 

𝑇 dimensionless temperature 

𝑢′ stream wise velocity 

𝑢 dimensionless stream wise velocity 

𝑉⃗ velocity vector 

𝛼, 𝛽, 𝜆′ spin vector

𝛽′ coefficient of thermal expansion 

ϒ  spin-gradient viscosity 

ĸ vortex viscosity coefficient 

𝜆 ratio of outer radius and inner radius 

µ shear viscosity coefficient of fluid 

𝜌 density of fluid 

𝜏 dimensionless Skin friction coefficient 

𝜏1 skin friction at the outer surface of 

inner cylinder 

𝜏𝜆 Skin friction at the inner surface of 

outer cylinder 

 𝜔⃗⃗  micro-rotation vector 

𝜔′ microrotational (Angular) velocity 

𝜔 dimensionless Microrotational velocity 

𝛷 mechanical energy/mass     

1. INTRODUCTION

The physical characteristics of many fluids flows 

can’t be successfully presented by the Navier–

Stokes equations for the Newtonian fluids because 

they have behaviors like non-Newtonian fluids. 

From which, micropolar fluid may be considered as 

a non-Newtonian fluid having of short rigid 

cylindrical element or dumb-bell molecules, 

polymer solutions, colloidal suspensions etc. The 

micro-structure of fluid particles in a viscous 

medium is displayed as being rigid and randomly 

spheroidal arranged where the distortions of these 

fluids are disregarded. Also, the theory of a 

micropolar fluid is described to find the kinematics 

of micro-rotation with velocity, angular velocity 

and some parameters. The mathematical modeling 
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of micropolar fluid has been introduced by Erigen 

(1966) which shows the impact of the couple stress 

tensor and the body couple. Some authors explained 

different physical properties and also given 

different governing equations for the non-

Newtonian fluids. Ariman et al. (1973) have 

presented the most important reviews about 

microcontinuum fluid mechanics   which is 

favorable conditions for many non-Newtonian 

fluids. Using micropolar fluid model, research 

workers can describe the physical characteristic of 

some non-Newtonian fluids such as animal blood 

and liquid crystals, clouds with smoke, certain 

polymer solutions, ferro liquids, complex biological 

structures, colloidal suspensions,  lubricating fluids 

etc. Gorla and Ameri (1985) have derived the 

solution of a micropolar fluid along a continuous 

and moving cylinder with the suitable boundary 

layer problem. Bhattacharyya and Pop (1996) 

have employed the model of a micropolar fluid 

described by Eringen to calibrate the natural 

convective flow in cylinders having the elliptic 

cross-section. Singh et al. (1997) have examined 

free convective flow of a fluid between two vertical 

concentric annuli, with radial magnetic field by 

obtaining the analytic solution for the problem. 

Using the Eringen models, Char and Lee (1998) 

have explained in details the free convective flow 

of a micropolar fluid between horizontal 

eccentric cylinders with maximum density. 

Mrabti et al. (2000) have analyzed the impacts of 

micro-structure on free convection of a 

micropolar fluids in a vertical cylinder when it is 

heated from below. Łukaszewicz (2003) has 

studied the asymptotic behavior of a micropolar 

fluid flow having some symmetries. 

Srinivasacharya et al. (2003) have described the 

Peristaltic pumping of an incompressible 

micropolar fluid with long wavelength in a 

circular tube. Using the rotary oscillations 

around a common diameter, Iyengar and Vani 

(2004) have conducted a systematic study of an 

incompressible micropolar fluid flow, within two 

concentric spheres. Aydin and Pop (2005) have 

examined the influence of the parameters such as 

the length of the isoflux discrete heater, material 

parameter, Prantl number as well as the Rayleigh 

number on the free convective flow of a 

micropolar fluid. The study of momentary natural 

convection of a micropolar fluid between 

concentric and eccentric spheres has been 

performed numerically by Chen (2005). Ishak et 

al. (2006) have obtained the solution of the problem 

of steady and laminar forced convection of a 

micropolar fluid along moving wedge and also on a 

flat plate. In particular, this author has introduced 

the physical properties of a micropolar fluid on the 

walls of the wedge having suitable boundary-layer. 

Muthu et al. (2008) have discussed the flow of a 

micropolar fluid in a catheterized artery having 

application to blood flow. Also, the influences of 

catheter size on the wall shear stress are given. 

Further, Alloui and Vasseur (2010) have 

demonstrated numerically using control volume 

approach and SIMPLER algorithm (Patankar, 

1980) free convection of a micropolar fluid, 

within a shallow rectangular cavity. This 

problem has been discussed in details through 

numerical solution corresponding to the material 

parameter, the thermal Rayleigh number and 

microrotation boundary condition. Ravi et al. 

(2011) have reported the impact of parameters 

related to natural convection of a micropolar fluid 

within two vertical walls in presence of the 

temperature dependent source/sink. Chen et al. 

(2012) have studied the unsteady flow of a 

compressible micropolar fluid numerically 

applying the spectral difference method and 

demonstrated the numerical results in the case of 

Couette flow. Bourantas and Loukopoulos (2014) 

have introduced the theory of the natural 

convective flow of a micropolar nanofluids in a 

square cavity. The influence of the transient 

buoyancy-opposed double diffusive free 

convection of a micropolar fluids within a square 

enclosure has been described by Jena et al. 

(2015). More recently, the impact of non-uniform 

heat source on free convective flow of a micropolar 

fluid have been considered by Muthtamilselvan et 

al. (2017). Sheremet et al. (2017) have described 

the impact of time-dependent free convective flow 

of a micropolar fluid in a wavy triangular cavity. 

Singh and Singh (2017 a, b) have studied the 

influences of non-dimensional physical parameters 

concerned with the models on the velocity and 

microrotational velocity with natural convection of 

a micropolar in two vertical wall and and polar fluid 

in the concentric cylinders respectively. Using the 

Faedo–Galerkin method, Drazic et al. (2017) 

have used the numerical solution to study the 

flow of a compressible and viscous micropolar 

fluid between two coaxial cylinders. 

In the present paper, we analyse the free convection 

of a micropolar fluid between two vertical 

concentric cylinders with the Dirichlet boundary 

conditions. We solve the governing simultaneous 

differential equations and obtain the solution for the 

angular velocity and velocity. At last, using the 

graphs and table, we have shown the impact of the 

temperature ratio (m), vertex viscosity ratio, radii 

ratio (gap between the two vertical concentric 

cylinders) and material parameters on the skin 

friction, velocity as well as microrotational velocity. 

2. MATHEMATICAL 

FORMULATIONS 

By using the Eringen theory, the governing 

simultaneous differential equations for the steady 

free convective flow of a micropolar fluid in the 

vector form are as follows: 

Conservation of mass 

. 0,V                                                               (1) 

Conservation of linear momentum 

 

 

0

     2 .  

p µ V

µ k V g



 

       

  

ĸ ĸ
,           (2) 

Conservation of angular momentum 
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 

   

0 2    

      

V   

   

     

   

ĸ ĸ
,                 (3) 

Conservation of thermal Energy 

0 .  ρ . V q     ,                                    (4) 

where  𝛾 = (µ + 0.5ĸ)𝑗 and  

 

   

2
2

2

1
. 2 : 4  

2

           .  :  : .

V µD D k V  

       

 
        

 

      

 

 (5) 
 

 
Fig. 1. Physical model. 

 
Here, we have taken the steady and laminar free 

convection of a micropolar fluid in two infinite 

vertical and concentric cylinders as explained in 

Fig. 1. The axes of cylinders are taken along the  z’-
axis in the vertical upward direction and its radical 

direction is the r’-axis. Let  𝑎 and 𝑏  are radii of 

inner and outer cylinders, and having asymmetric 

temperature T1 
′ and T2

′  respectively. Since the length 

of the cylinders is infinite, the flow is fully 

developed and is depending only on the co-

ordinate  r’. The governing differential equations for 

the free convective flow of a micropolar fluid are 

derived by applying the Boussinesq approximation 

and they are obtained as follows: 

 

 '0

1

                                  0,  

d du d
µ r

r dr dr r dr

g T T

 

 

   
      

   

  


  

 

 

 

ĸ ĸ
           (6) 

2

1
2 0,

d d du
r

r dr dr drr

 
 

  
 

  
    

      
    

ĸ      (7) 

1
0.

d dT
r

r dr dr 

 










                                               (8) 

The applicable boundary conditions for the 

considered physical model are: 

0,       0,u       1 ,T T         at ,r a   

0,u    2      0,       ,T T          at .r b            (9) 

In order to non-dimensionalise the model equations, 

we use the following non-dimensional variables: 

 
1

2
0 ,u u µ ga T T


  




     

2

,
a

B
j

    ,
r

r
a




 

 
1

2
0 ,µ ga T T  


   


 


       

 

 
0

'
1 0

,
T T

T
T T





 

 

 
2 0

1 0

,    ,      .
T T b k

m R
T T a µ


 

  
 

                     (10) 

After substituting Eq. (10) into Eqs. (6) - (9), the 

governing equations and boundary conditions of the 

present problem become in non-dimensional form 

became 

 
2

2

1
1 0, 

d u du d
R R T

r dr r drdr

    
        

   

   (11) 

 
2

2 2

1
1 0.5 2 0,

d d du
R BR

r dr drdr r

  


   
        

   

 (12) 

2

2

1
0,

d T dT

r drdr
                                                 (13) 

with the boundary conditions as: 

0,u        0,        1 , T       at   1,r   

0,u        0,   , T m .      at .r             (14) 

3. SOLUTION 

Governing non-dimensional differential Eqs. (11) to 

(13) along with its boundary conditions given in Eq. 

(14) are solved by applying the analytic method. 

First, Singh et al. (1997) have found the analytic 

result of thermal energy Eq. (13) with the boundary 

condition, which is as follows: 

1 1.T P logr                                                     (15) 

Putting above expression of temperature (T) in Eq. 

(11) and then we can rewrite this equation in the 

form: 

   11 1 .      
d du

R r R r P logr r
dr dr


 

     
 

  (16) 
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Integrating (16) w. r. t. r and then dividing by r, we 

obtain 

2 1
2 1 2

1
1   .

2 2

du r P C
P P logr RP

dr r


  
       

  
  (17) 

Using (17) into (12), we obtain 

 
2

2
42 2

2 1
1

3

1 1

1
                  .

2 2 2

d d
P

r drdr r

P r r C
P logr

P r

 


 
    

 

  
     

  

     (18) 

The general solution of (18) is obtained as 

   3 1 4 2 1 4 7 10

1 8 9

log

2
     .

C I P r C K P r P r r P r

C P P

r r

     




 

(19) 

In above equation, 𝐼1(𝑃4𝑟)  and 𝐾1(𝑃4𝑟) are 

modified Bessel functions of first order of first and 

second kind.  Putting Eq. (19) into Eq. (17) and 

integrating, we get: 

    2
20 3 0 4 20 2 0 4 21

2
22 19 1 16 4

log

    log log ,

u P C I P r P C K P r P r r

P r P C r P r C

  

   
 

(20) 

where 𝐼0(𝑃4𝑟)  and 𝐾0(𝑃4𝑟) are modified Bessel 

functions of zero order. Using the boundary 

conditions given in Eq. (14) into Eqs. (19) and (20), 

we obtain the arbitrary constant 𝐶1,  𝐶2, 𝐶3 and  𝐶4. 

The solutions for the velocity and microrotational 

velocity are given by 

   51 20 0 4 52 20 0 4

2 2
21 19 50 16 22 53      ( ) ,

u P P I P r P P K P r

P r P P P logr P r P

  

   
   (21) 

     

 

51 1 4 52 1 4 7

9 8 50
10

log

2
      .

P I P r P K P r P r r

P P P
P r

r

   


 

 (22) 

𝑃1, 𝑃2, 𝑃3,…….. 𝑃53, used in above equations are 

defined in appendix. Using Eq. (21), we have 

evaluated the skin-frictions for the natural 

convection of a micropolar fluid at the surface of 

the cylinders which are as follow: 

   1 51 12 1 4 52 12 1 4 54
1

,
r

du
P P I P P P K P P

dr




 
    
 

 (23) 

 

 

51 12 1 4

52 12 1 4 55

 

.

r

du
P P I P

dr

P P K P P




 





 
  
 

 

                        (24) 

4. RESULTS AND DISCUSSION 

In the above section, we have obtained analytical 

solution of the governing differential equations 

describing the free convection of a micropolar fluid 

between two vertical and concentric cylinders. In 

this section, we describe the influences of 

dimensionless physical parameters such as the 

temperature ratio (m), material number (B) and 

vertex viscosity ratio (R) on the velocity and 

angular velocity by using the graphs. It should be 

noted that the values of the temperature ratio 

parameter 𝑚 = 1 and 𝑚 = 0  are corresponding to 

the symmetric and asymmetric cases respectively. 

When the vertex viscosity ratio parameter  0 < 𝑅 =
ĸ

µ
< 1 , the shear viscosity coefficient(µ)  is greater 

than the vortex viscosity (micro-rotation viscosity) 

coefficient 𝑘 while converse trend occurs 

when  𝑅 =
ĸ

µ
> 1.  

Graphical representation in Figs. 2 and 3 shows the 

effect of the material and vertex viscosity ratio 

parameters on the velocity corresponding to 

temperature ratio parameter 𝑚 = 0 and 𝑚 = 1 

respectively. Comparison of these figures clearly 

indicates that the velocity of micropolar fluids is 

more in case of symmetric heating. When the vertex 

viscosity ratio increases, the velocity of the fluid 

decreases while the reverse phenomenon occurs 

when the material number increases for both cases 

of asymmetric and symmetric heating. The rate of 

decreasing velocity is greater for the vertex 

viscosity ratio 0 < 𝑅 < 1 compared to the vertex 

viscosity ratio 𝑅 > 1 with both cases of the 

asymmetric(𝑚 = 0)  and symmetric (𝑚 = 1) 

heating. 

 

 
Fig. 2. Variation of velocity for m=0. 

 

Figures 4 and 5 reveal the variation of the angular 

velocity with the material number and vertex 

viscosity ratio parameters, corresponding to 

temperature ratio 𝑚 = 0 and 𝑚 = 1 respectively. 

The angular velocity of a micropolar fluid is less in 

the case of asymmetric heating (𝑚 = 0) compare to 

symmetric heating (𝑚 = 1). When 𝑅 > 1, the 

impact of the vertex viscosity ratio parameter is to 

decrease the angular velocity in the asymmetric and 

symmetric heating cases while converse trend 

occurs when  0 < 𝑅 < 1. The velocity of a 

micropolar fluid enhances with the material 

parameter in both cases of the asymmetric and 

symmetric temperature ratio. The rate of decreasing 

of microrotational velocity is faster for the vertex 
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viscosity ratio 0 < 𝑅 < 1 compared to the vertex 

viscosity ratio 𝑅 > 1 with both case of the 

asymmetric and symmetric heating. 

 

 
Fig. 3. Velocity profiles for m=1. 

 

 
Fig. 4. Microrotational velocity for m = 0. 

 

 
Fig. 5. Variation of microrotational velocity for 

m =1. 

 
In Table 1, we have described the numerical values 

of the skin friction τ1 and τλ by varying the 

physical parameters such as the material, vertex 

viscosity ratio, temperature ratio and radii ratio 

parameters. The skin friction increases when the 

material and the radii ratio (gap between the 

cylinders, λ) parameters increase corresponding to 

temperature ratio parameters 𝑚 = 0 and 𝑚 = 1 

respectively. For both cases 𝑚 = 0 and 𝑚 = 1, the 

skin friction decreases when vertex viscosity ratio 

parameter increases. The decreasing rate of the skin 

friction is more for the vertex viscosity ratio 

parameter 0 < 𝑅 < 1 compared to the vertex 

viscosity ratio parameter 𝑅 > 1. 

CONCLUSION     

In this paper, by using the analytic method, we have 

obtained the solution for the given problem of 

natural convection of a micropolar fluid in vertical 

and concentric annuli. We have explained the 

physical behavior of some parameters such as the 

vertex viscosity ratio, material parameters, 

temperature ratio and radii ratio parameters on the 

temperature, the velocity, the microrotational 

velocity as well as the skin friction. The following 

conclusions are derived as: 

 An enhance in the vortex viscosity ratio is to 

decrease the velocity of fluids corresponding 

to both symmetric and asymmetric heating. 

The rate of decreasing velocity is less for the 

vortex viscosity ratio parameter 𝑅 > 1,  
compared to the vortex viscosity ratio 

parameter 0 < 𝑅 < 1. 

 When 0 < 𝑅 < 1, the microrotational velocity 

of fluids  increases with the vortex viscosity 

ratio parameter for the asymmetric and 

symmetric cases while converse trends occur 

when 𝑅 > 1.    

 The velocity and microrotational velocity of a 

micropolar fluid is improving with the material 

parameter for asymmetric and symmetric 

temperature ratio.  

 The effect of the material, temperature ratio 

and radii ratio parameters is to enhance the 

skin friction τ1 and τλ of a micropolar fluid. 

An enhance in the vertex viscosity ratio is to 

decrease the skin friction.  
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