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ABSTRACT 

The dispersion of hazardous gas in the environment presents dangerous risks for people living close to chemical 

plants or storages. Since heavy gases tend to stay at lower levels and disperse at a slower pace in the atmosphere, 

they are potentially more dangerous. In this paper, various mathematical models for turbulence (including k-ε, 

RNG k-ε, EARSM, LES, DES) and their associated parameters have been assessed, compared and validated 

against the experimental data in various scenarios to find the most suitable one for atmospheric dispersion of 

dense-gases. This topic has been investigated and validated by a computational fluid dynamics (CFD) 

simulation of the Kit-Fox experiment. The precision of the CAD models, practicality, computational resource 

requirements, and some other factors have been considered and addressed in this paper to achieve a 

comprehensive solution for atmospheric dispersion. The results here suggest that the proper selection of the 

turbulence model and the turbulent Schmidt number is crucial. Our results indicate that the most promising 

combination in the case of atmospheric dense-gas dispersion is the RNG k-ε model with the Schmidt number 

of 0.4, considering the demand for accuracy and computational resource. 

Keywords: Turbulence modeling; Computational Fluid Dynamics; EARSM; RNG k-ε model; Atmospheric 
dispersion. 

1. INTRODUCTION

The possible release, leakage and dispersion of 

hazardous gases into the atmosphere resulting from 

human errors, terrorist attacks, mechanical failures, 

etc. could potentially endanger the life and well-

being of the people living nearby. Common 

atmospheric gas dispersion models (e.g. HEGADAS, 

ALOHA®, CALPUFF, etc.) have been developed 

and evaluated using field and wind tunnel data 

(Hanna and Chang, 2001; Hanna and Britter, 2002; 

Hanna et al., 2008). In these models, the surface 

roughness is the only parameter that considers the 

presence of physical obstacles, and it is used to 

modify and correct the wind profile solely. However, 

in recent years, the use of the CFD approach in 

modeling gas dispersion scenarios has been more 

common as computers are becoming faster and more 

capable. Meanwhile, CFD codes provide more 

accurate results in comparison to traditional gas 

dispersion models (Tominaga & Stathopoulos 2007; 

Kashi et al. 2015a; Gavelli et al. 2008; Giannissi et 

al. 2015). 

General-purpose CFD packages such as ANSYS 

CFX® and ANSYS Fluent® have been available for 

many years for modeling various types of flows in 

three dimension (3D) (ANSYS Inc, 2016a), 

alongside open-source solutions like OpenFOAM®. 

These codes have been successfully applied and 

validated for problems associated with reaction 

engineering, solid mechanics, wind effects and gas 

flows (Gavelli, Bullister and Kytomaa, 2008). CFD 

predictions are usually validated with suitable 

experimental data. The CFD methods are more 

attractive in comparison to wind-tunnel experiments 

since they can deliver results faster, cheaper, and 

safer. An important parameter which can greatly 

affects the results of CFD simulations is the choice 

of the appropriate turbulence model and its 

associated parameters (Tominaga and Stathopoulos, 

2007; Karthik, 2011; Zhu et al., 2013). 

Numerical simulations of atmospheric gas dispersion 

with the ANSYS CFX® platform have been 

investigated for both isolated cubes obstacles and 

arrays of obstacles by Kashi et al. (2009). As a case 

in point, the Thorney Island and the Kit-Fox 

experiments have been used for validating their 

methodologies. The turbulence model used in the 

mentioned paper was the two-equation standard k-ε, 

which has been commonly used by many researchers 

(Hoi et al., 2006; Gavelli, Bullister and Kytomaa, 
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2008). The CFD method can be used for large-scale 

gas dispersion simulations on a city scale, which are 

analogous to the Kit-Fox experimental works that 

consider cubical obstacles like buildings and other 

barriers as the arrays of obstacles in a city (Kashi et 

al. 2015b). It has been stated in various research 

papers (Hu et al., 2011; Tominaga and Guo-cheng, 

2012) that gas dispersion simulations in a complex 

environment are similarly feasible and very effective 

with ANSYS CFX® codes. Furthermore, the 

relevant software is crucial to define the problem 

correctly and precisely at the beginning of the 

simulation along with the use of accurate CAD 

models, sufficient mesh quality, setting proper 

boundary layers, choosing the best turbulence model, 

and setting correct parameters for achieving more 

accurate results (Amorim et al. 2013; Katz & 

Sankaran 2011; Tominaga & Stathopoulos 2013; 

Kashi et al. 2015a; Hoi et al. 2006). 

In this paper, various relevant turbulence models and 

their associated parameters are investigated to find 

the most suitable one for atmospheric dispersion of 

dense-gases. Models such as k–ω and some others 

have not been considered as they have already been 

assessed for these conditions and scenarios (Yu and 

The, 2016).  

2. TURBULENCE MODELS 

Turbulence modeling is the creation of a 

mathematical model to estimate and predict the 

effects of turbulence phenomena. To clarify, 

turbulent flow has some characteristics on various 

length scales. Typically, this methodology is the 

time-average of the governing equations, allowing 

for the focus on the large-scale and non-fluctuating 

characteristics of the fluid flow. Nevertheless, the 

properties and impacts of some small scales and 

fluctuating parts must be taken into consideration 

(ANSYS Inc, 2016a). 

2.1   Standard k-ε 

The standard k-ε is the most commonly used and 

well-known turbulence model. This model has been 

used by many authors for the application of 

atmospheric dispersion. (Sklavounos & Rigas 2004; 

Tominaga & Guo-cheng 2012; Gavelli et al. 2008; 

Kashi et al. 2015a) It is a two-equation model from 

the Reynolds-averaged Navier-Stokes (RANS) 

group, where the first transported variable is 

turbulent kinetic energy, k, and the second 

transported variable is turbulent dissipation, ε. The ε 

equation governs the scale of the turbulence, and the 

k equation describes the energy in the turbulence.  

2.2   RNG k-ε Model 

In the RNG k- ε model, the k-ε equations are derived 

from the application of a statistical technique (Re-

Normalization Group Method) to the instantaneous 

Navier-Stokes equations. This model was developed 

by Yakhot et al. (1992) to re-normalize the original 

Navier-Stokes equations to account for the impacts 

of smaller scales of motion flows. 

The RNG k-ε model is based on the standard k-ε 

equations, but it also includes the following features:  

 The extra term in the ε equation to account for 

the interaction between turbulence dissipation 

and the mean shear. 

 A differential equation for the effective 

viscosity. 

 The occurrence of a swirling effect on the 

turbulence.  

 The formula for turbulent Prandtl number 

(Viscous diffusion rate/Thermal diffusion 

rate).   

Some improvements in the predictions for the high 

streamline curvature, transitional flows, and 

separated flows are suggested. Moreover, the time-

dependent flows with large-scale motions are better 

predicted. 

2.3 Explicit Algebraic Reynolds Stress 

Models (EARSM) 

The Explicit Algebraic Reynolds Stress Models 

(EARSM) represent the extended forms of the 

standard two-equation turbulence models (e.g. k-ε, 

k-ω, etc.). These models are derived from the 

Reynolds stress transport equations; they consider a 

nonlinear relation between the Reynolds stress 

terms,  𝑅𝑖𝑗,  and the mean strain-rate and vorticity 

tensors present in the flow field. These types of 

models are a simplified form of the Reynolds stress 

models (RSMs) and are mostly used in problems 

with secondary flows as well as flows with 

streamline curvature (i.e. swirling flow) (Wallin and 

Johansson 2000; ANSYS Inc, 2016b). 

The nonlinear equations suggested by Wallin et al. 

for the Reynolds stresses characterizes an extension 

over the linear Boussinesq hypothesis (Wallin & 

Johansson 2000). As a result of using this hypothesis, 

these models are known as nonlinear eddy viscosity 

models as opposed to linear eddy viscosity models 

(e.g. Standard k-ε) (Wallin and Johansson 2000).  

2.4   Large Eddy Simulation (LES) 

Usually, the size of the computational domain should 

be at least an order of magnitude greater than the 

scales describing the turbulence energy, while the 

mesh must be fine enough to resolve the smallest 

dynamically significant length scale (the 

Kolmogorov micro-scale) for precise simulation. 

The most precise method for the simulation of 

turbulent flows is direct numerical simulation (DNS) 

in which the full Navier–Stokes equations are 

numerically solved using very fine mesh. 

Consequently, DNS is a computationally more 

demanding method and currently, it can only be used 

for low Reynolds number flows over simple 

geometry. This is the base for the RANS method in 

which only the averaged quantities are implemented 

while the effect of all the scales of instantaneous 

turbulent motion is modeled by a turbulence model. 

However, sometimes the RANS method fails to 

predict some of the flow behavior such as the 

transient flow (Zhiyin, 2015). 
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As an alternative, large-eddy simulation (LES) was 

introduced in as early as 1963 by Smagorinsky. LES 

does not use conventional averaging like the RANS 

method with the added modeled transport equations 

being solved to get the so-called Reynolds stresses 

resulting from the averaging process. In LES, large 

eddies are computed directly and only sub-grid scale 

(SGS) motions are modeled, resulting in a substantial 

drop in computational cost compared to DNS. LES 

tends to be more precise than the RANS method 

since the large eddies hold most of the turbulent 

energy and are responsible for most of the 

momentum transfer and turbulent mixing. LES 

captures these eddies in full detail; however, they are 

modeled in the RANS method. Moreover, the small 

scales tend to be more isotropic and homogeneous 

than the large ones, and thus, modeling the SGS 

motions would be easier than modeling all scales 

within a single model as in the RANS method. Thus, 

LES is currently the most promising numerical tool 

for simulating realistic turbulent flows. 

2.5   Detached Eddy Simulation (DES) 

Detached eddy simulation (DES) is a variation of a 

RANS model where the model shifts to a sub-grid 

scale formulation in sections fine enough for the LES 

model. The regions near the solid boundaries and 

where the turbulent length scale are less than the 

maximum grid dimension is allocated the RANS 

method of solution. As the turbulent length scale 

exceeds the grid dimension, the regions are solved 

using the LES method. Consequently, the grid 

resolution is not as demanding as the pure LES, thus 

significantly reducing the computational demand. 

Although DES was initially formulated for the 

Spalart-Allmaras model, it can be applied to other 

RANS models by properly adjusting the length scale, 

which is explicitly or implicitly involved in the 

RANS model. Subsequently, while the Spalart-

Allmaras model that is based on DES acts as a LES 

with a wall model, the DES that is based on other 

models (like two-equation models) behave as a 

hybrid RANS-LES model. The grid generation is 

more complex than that of a simple RANS or LES 

case due to the RANS-LES switch. DES is a non-

zonal method and delivers a single smooth velocity 

field across the RANS and the LES regions of the 

solution (Center, 2012). 

3. VALIDATION OF THE CFD CODE  

To be able to validate the methodology and codes, it 

is necessary to compare the results against precise 

experimental data. For this purpose, the Kit-Fox 

experiment has been chosen, as it is one of the most 

respectful experimental works in the gas dispersion 

analysis field. (Hanna and Chang, 2001) 

3.1 Kit-Fox Experiments and its Test Site 

Details 

Dense-gas dispersion experiments, also known as the 

Kit-Fox experiments, were conducted in August of 

1995 at the “Frenchman Flat” area of the Nevada 

National Security Test Site, under the support of U.S. 

Environmental Protection Agency (EPA) and the 

U.S. Department of Energy. This American nuclear 

test site is located North-West of Las Vegas and has 

a 15 km2 dry lake bed. The “Frenchman Flat” is 

located within area 5 of the Nevada test site and can 

be observed in Figure 1. These experiments were 

meant to simulate gas dispersion scenarios in an 

industrial site scaled at 1/10 of the actual size.  The 

main objective of this research was to study the 

dense-gas dispersion over rough surfaces and under 

stable ambient conditions. 

The “HEGADAS” gas dispersion model was used to 

help design the placement of CO2 sensors and 

climatic sensors in the Kit-Fox experiment. The code 

results were also used to plan the CO2 release rates 

so that the anticipated dense gas effects could be 

sensed with the least amount of gas releases. The 

HEGADAS results for the concentrations, cloud 

height and cloud width were generated for a variety 

of scenarios, atmospheric inputs, and surface 

roughness’s (z0) to propose the calibration ranges for 

the sensors and their specific locations in the space. 

The lateral spacing of the sensors (near 6 meters on 

the closest arc and about 10 meters on the farthest 

arc) and their maximum heights (near 5 meters on the 

closest arc and about 10m on the farthest arc) on the 

9 towers were likely to capture the cloud, which were 

based on these HEGADAS results (Hanna and 

Chang, 2001). In Table 1, examples of additional 

information available for each trail can be observed. 

 

Table 1 Additional Information on Trial 3 

Release Number 7 

Trial ID KF0307 

Source Exit pressure (atm) 0.8928 

Source Temperature (K) 298.4 

Roughness Length z0 (m) 0.12 

Friction Velocity u* (m/s) 0.21 

Bowen Ratio Estimate -99.9 

Inverse Monin-Obukhov length 

(1/m) 
0.05882 

Total released (kg) 72.94 

Initial concentration (ppm) 995700 

Ambient Pressure (atm) 0.8928 

Relative Humidity (%) 5 

 
During this series of experiments, CO2 (the dense-

gas) was released for 2 to 5-minute periods 

(representing continuous plumes) and 20-second 

periods (representing short-duration transient puffs) 

under the Pasquill-Gifford stability classification of 

“F” (stable ambient conditions). The desert surface 

was artificially roughened by the blending of 

obstacles in order to simulate the roughness of a 

typical industrial area.  

According to Hanna and Chang (Hanna and Chang, 

2001), in the Kit-Fox experiments, a total of 52 gas 

release trails collected in 7 days were considered 

more accurate than the others. Therefore, we have 

chosen our simulations from these releases in order 

to have better and more precise simulations. These 

candidate trails are presented in Table 2. 

Figure 2 demonstrates the plot plan of the test site,  
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Fig. 1. Kit-Fox experiment location and CO2 Source, Acquired from Bing® Maps by Microsoft. 

 

 
Fig. 2. Plot plane of the Kit-Fox Test Site. 

 
 

where a local Cartesian coordinate system as defined 

by the Western Research Institute (WRI) is used. 

3.2   Boundary Conditions 

3.2.1 Wind Profile Model and Surface 

Roughness 

Due to the existence of the actual wind data, to 

achieve more accurate results, no correlation has 

been used to find the wind profile in this simulation. 

The provided meteorological data (from Kit-Fox 

datasets) were directly applied as the wind inlet 

profile at the boundaries. By using this method, one 

can carefully define the wind speed and its direction 

at any time and in any height.  

3.2.2   Gas Emission Source 

As suggested by Hanna and Chang, the 7th release of 

the 3rd trial of the Kit Fox field experiment was 

considered to be a more accurate experiment in 

comparison to the others (Hanna and Chang, 2001). 

During this part of the experiment, CO2 gas was 

released instantly into the atmosphere at the rate of 

3.65 kg/s and for the duration of 20 seconds. This 

was implemented in the CFX® code as a step 

function:  

𝑄𝑖 = 𝑚𝑖(𝑠𝑡𝑒𝑝[𝑡] − 𝑠𝑡𝑒𝑝[𝑡 − 20])   (1) 

The mass flow rate of the CO2 gas from the source 

location was specified. In order to have fully 

developed flows in the simulations, the initial time- 
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Fig. 3. Model Structure and Level of Details for the Kit-Fox experiment site. 

 

 

step of the gas release was considered to occur 50 

seconds after the start of the simulation. Since the gas 

source was at ground level, and during the 

experiment, the ground surface temperature was 

around 29°C; the initial gas temperature was set to 

29°C in the simulations. The temperature was used 

by the code to calculate the thermodynamic behavior 

of the gas. 

 

Table 2 Candidates of Gas Release Experiments 

Date of the 

Experiment 

Trail 

Number 

Number of 

Releases 

08/24/1995 2 2 

08/25/1995 3 7 

08/26/1995 4 2 

08/28/1995 5 8 

08/29/1995 6 9 

08/30/1995 7 12 

08/31/1995 8 12 

 
Furthermore, all the important initial conditions (IC) 

and boundary conditions (BC) were taken into 

account in the CFD simulations. To speed-up the 

simulations and reducing the computational time, a 

combination of 2D and 3D geometry was used for the 

validation. The details of the simulation settings are 

presented in Table 3. 

3.2.3   Mesh Verification 

The robustness of the mesh has been studied 

intensely for the same experiment in our previous 

publication (Kashi et al. 2015a). For discretization 

purpose, second-order scheme is used. When 

second-order accuracy is chosen, quantities at cell 

faces are computed using a multidimensional 

linear reconstruction approach. In this approach, 

higher-order accuracy is reached at cell faces 

through a Taylor series expansion of the cell-

centered solution about the cell centroid. Grid 

convergence study has been performed from an 

initial coarse mesh, followed by a more refined 

mesh through a 1.5 factor and a fine grid level with 

a factor of 2.0. Surface mesh quality and T-rex 

wall boundary initial spacing has been checked 

thoroughly for each level of the grid before 

choosing the best one.  

In Figure 3, the level of detail (LOD) and mesh 

quality of the area model is presented. 

4. RESULTS AND DISCUSSION 

To find the best turbulence model and parameters for 

the simulations, the simulation was run with various 

parameters and turbulence models which were 

compared to the experimental data from various 

sensors in the field (here, Trial 3 and the release 

number 7 of the Kit-Fox experiment). For this 

purpose, the Standard k-ε, EARSM, RGN k-ε, 

Detached Eddy Simulation (DES) and LES (Large 

Eddy Simulation) turbulence models were 

considered. 

As suggested by Tominaga and Stathopoulos, the 

Schmidt number can varies between 0.2 and 1.3 

(Tominaga and Stathopoulos, 2007). Nevertheless, it 

is worth noting that although the Schmidt number 

had an impact on the results, the impact on the sum 

of the squared residuals (SSR) between the Schmidt 

number of 0.4 and 0.7 for the RNG k-ε turbulence 

model was not as huge as was expected. 

Consequently, on the basis of the lowest SSR, the 

Schmidt number was considered to be 0.4 for all the 

scenarios as it was also suggested by some authors 

(Tominaga and Stathopoulos, 2007). 

The following sensors have been considered and 

compared to the experimental results: P1002, P1003, 

P1132, P2001, P2003, P2004, P2111 and P3001 in 

trial 3 and the release number 7 of the Kit-Fox 

experiment (Table 4). 

The k-ε model has been chosen as the starting base 

turbulence model; it is a commonly used model in 

these types of simulations to carry out the 

comparison against the experimental data.  

4.1   Impact of Some Parameters on the 

Results 

4.1.1   Impact of the Humidity 

According to the results of the experiments and 

simulations of Hongya Zhu et al. (2013), the 

parameter of humidity almost has no tangible impact 

on the methane flammable vapor cloud dispersion 

distance. (Zhu et al., 2013) Meanwhile, our own 

simulations demonstrate comparable results for the 

case of carbon dioxide (CO2) dispersion. The 

addition of humidity to the environment shows a 

negligible impact on the results in all our cases. 

Correspondingly, adding humidity (H2O vapor) in 

the environment did not add a significant  
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Table 3 Simulations configuration and Details 

Parameter Value 

CFD Code ANSYS CFX R18 

Number of Elements (nodes) 1.72 M (0.52 M) 

Mesh (Quality, Expansion rate, Skewness) 0.5, 5, 0.7 

Composition Air and CO2 at STP Conditions 

Morphology Continues Fluid Morphology 

Reference Pressure (absolute) 1 atm 

Buoyancy Turbulence 
Production and Dissipation (Turbulence Schmidt number 0.4 

is chosen) 

Domain Motion Stationary 

Heat Transfer Phenomena Not Considered (Homogeneous Model) 

Turbulence model k- ε, RNG k-ε, EARSM, DES, LES 

Wall Function Scalable Wall Function 

Wind (Inlets) in 2 boundaries 
Turbulence option is high (intensity 10%) in one and the 

turbulence option is medium in the other 

Other boundaries (3 others) 
Considered as opening as boundary type with the medium 

turbulence option of the intensity of 5% 

Ground surface (boundary) 
Considered as boundary type of the wall with the sand grain 

surface roughness of 0.01 [m] 

 

 

computational load on our simulations, the impact is 

in the order of less than a 1 percent increase on the 

computational time. 

 

Table 4 Tag Names and Locations of Nova 

Sensors in Downwind Arrays 

Sensor Details Location (Cartesian 

Coordinate) 

Tag Name Range (ppm) Y (m) X (m) Z (m) 

P1002 0-50k 0 25 0.6 

P1003 0-50k 0 25 1.2 

P1132 0-50k 12 25 0.6 

P2001 0-50k 0 50 0.5 

P2003 0-10k 0 50 2 

P2004 0-10k 0 50 4 

P2111 0-50k 7 50 0.6 

P3001 0-10k 0 100 0.6 

 

4.1.2   Impact of the Turbulent Schmidt 

Number 

According to Bergman et al., the turbulent Schmidt 

number is a dimensionless number defined as the 

ratio between the rates of turbulent transport of 

momentum and the turbulent mass transport rate 

(Bergman et al., 2011). It is analogous to the 

turbulent Prandtl number, which deals with turbulent 

heat transfer as opposed to the turbulent mass 

transfer rate. 

𝑆𝑐𝑡 =
𝑣𝑡

K
 (2) 

Equation 2 illustrates the turbulent Schmidt number 

as the ratio of eddy viscosity 𝑣𝑡  (m2/s) over eddy 

diffusivity K (m2/s). In CFD, when we are using 

Reynolds-averaged Navier–Stokes equations to 

model turbulent flows, the mass transfer usually is 

estimated by the turbulent scalar flux (assuming the 

gradient diffusion), which needs the definition of the 

turbulent Schmidt number prior to the calculation. 

As for the atmospheric dispersion, this number is 

usually suggested to range between 0.2-1.3 

(Tominaga and Stathopoulos, 2007). However, this 

is a rather wide range and more specific values are 

needed for atmospheric gas dispersion. Tominaga et 

al. suggested that the Schmidt number must be 

defined within this range by considering the 

dominant flow in each case (Tominaga and 

Stathopoulos, 2007). Other authors have suggested 

narrower ranges and in some cases, a specific value 

for the Schmidt number (Tominaga and Guo-cheng, 

2012; Giannissi, Venetsanos and Markatos, 2015; 

Yu and The, 2016). To demonstrate these variations, 

different Schmidt values used by different authors 

are listed in Table 5. 

 

Table 5 Various Turbulent Schmidt Number 

Used in Atmospheric Dispersion 

Turbulent Schmidt 

Number 
Author, Year 

0.2-0.7 (Yu and The, 2016) 

0.3-0.7 (Gousseau et al., 2011) 

0.40 (Nakibouglu et al., 2009) 

0.63 (Lien et al., 2006) 

0.70 

(Li and Stathopoulos, 1997; 

Vardoulakis and Cai, 2011; 

Mokhtarzadeh-dehghan, 

Akcayoglu and Robins, 2012) 

0.72 
(Giannissi, Venetsanos and 

Markatos, 2015) 

0.90 

(Delaunay, 1996; Kim and 

Baik, 2003; Santiago, Martilli 

and Martilli, 2007; Baik, Park 

and Kim, 2009) 

1.00 
(Antonioni et al. 2012; Kashi 

et al. 2015a) 

0.7-1.4 (Yang and Zhang, 2017) 

  

In this study, a sensitivity analysis has been done to 

find the most suitable Schmidt number. In order to 

do so, a gas dispersion case from the Kit-Fox 

experiences has been evaluated through the variation 

of the Schmidt number using the RNG k-ε turbulence 

model (the reason for selecting the RNG k-ε model 
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is explained later in this paper). Afterward, by 

considering the relative errors and using the SSR 

method (Sum of Squared Residuals), the most 

appealing Schmidt number has been selected for 

further analysis. The results can be found in Table 6 

(only data from one sensor is provided in Table 6, as 

the rest of the sensors showed quite similar trends, 

and it is only provided for comparison purposes 

here). The SSR or the summation of the squared 

residual is calculated from the following equation: 

𝑆𝑆𝑅

= ∑(Experimental data –  Model Prediction)2 

(3) 

 

Table 6 Comparison of Different Schmidt 

Number in Kit-Fox Experiment using RNG k-ε 

for P1132 Sensor data 

Schmidt Number SSR 

0.2 3.14E+08 

0.4 2.96E+08 

0.7 3.04E+08 

1.0 4.83E+08 

1.2 5.39E+08 

  
The difference between the SSR values becomes 

much less apparent when it is applied to the standard 

k-ε model. Overall, the most promising value for the 

Schmidt number here would be 0.4 as it has the 

lowest SSR, which is on par with other authors’ 

suggestions. Overall, the optimal values for the 

Schmidt number depend on the local flow 

characteristics. Consequently, it is recommended 

that the Schmidt number should be found by 

considering the dominant flow behavior in each case-

study (Tominaga and Stathopoulos, 2007). 

Consequently, the best Schmidt number for the case 

in hand would be the one with the lowest SSR value. 

In the case of not having the proper datasets for 

investigating the SSR values, the Schmidt number of 

0.4 could be used as a rule of thumb for similar 

environmental gas dispersion. 

4.1.3   CPU-Time and Hardware 

The computation requirement varies in different 

models (Standard k-ε < RNG k-ε < EARSM < DES  

<LES). The parallel computation was performed on 

two WS laptops (Intel® Core™ i7-4720HQ) through 

Intel® distributed MPI. The total memory on both 

WS were 64 Gb. As an example, the standard k-ε 

setup took around 8 hours to converge to 10-4 in 

RMS, whereas the LES setup took around 120 hours 

to converge to 10-4 in RMS. 

4.2   Results of the k-ε Model 

The simulation results of the k-ε model are presented 

in Figures 4 to 8. In Figure 4, the turbulence model 

grasps the peak point of the concentration rather well 

but fails to match the trend before and after the peak 

point. In Figure 5, it can be seen that the simulation 

better matches the experimental results, however, the 

max concentration has more overshoot. In Figures 6 

and 8, the turbulence model shows an acceptable 

match to the experimental data up until the point that 

they went to zero and fail to grasp the trend until the 

end of the time period. Figure 7 demonstrates the 

fluctuations in the results of the simulations in a 

rather strange manner. It is worth mentioning here 

that the model simulates the gas behavior better at 

higher heights (look at the results from the P1002 at 

0.6m and P1003 at 1.2m), and it seems that the model 

fails to grasp the gas fluctuations close to the ground 

at lower concentrations. This behavior needs more 

investigation through experimental works to find the 

best heights for the location of the sensors in these 

types of works.  Nevertheless, in general, the 

simulation results show an acceptable match to the 

experimental data. 

 

 
Fig. 4. Sensor P1002 - k-ε Model vs. 

Experimental Data. 

 

 
Fig. 5. Sensor P1003 - k-ε Model vs. 

Experimental Data. 
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Figure 10 also demonstrates a better outcome in 

comparison to the standard k-ε model. It is seen that 

on the P1132 sensor, it fails to match the 
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the simulation and goes to zero after 220 seconds. In 

Figure 11, the RNG k-ε turbulence model illustrates 

better results versus the standard k-ε model, despite 

the rather severe fluctuation of the concentrations. In 

general, the RNG k-ε model demonstrates significant 

lower deviation and error against the experimental 

data when compared to the simple k-ε model. It is 

worth noting that the impact of the RNG k-ε model 

on the computational time was just around a 15 to 

20% increase when compared to the standard k-ε 

model. Once again, it is worth mentioning the fact 

that the model shows better results here again at 

higher heights (0.6m vs 1.2m) similar to the k-ε case. 

 

 
Fig. 6. Sensor P1132- k-ε Model vs. Experimental 

Data. 

 

 
Fig. 7. Sensor P2003- k-ε Model vs. Experimental 

Data. 
 

4.4   Comparison of all the Models 

A comparison of the data from sensors P1002 and 

P1132 (Figures 4 and 6) demonstrates that the 

departure from the gas dispersion center-line would 

result in a worse match between the actual and 

simulated results. In other words, inside the wind 

direction, we would have a better prediction 

compared to the other regions. By examining the 

results from sensors P2003 and P2004 (Figure 11), 

we can see that the elevation level would not affect 

the data match in the far distances, whereas the 

results from the nearer sensors to the source, like 

P1002 and P1003 (Figure 4 and Figure 5), show that 

this effect is more pronounced in the nearfield 

regions with a lower elevation level. This suggests 

that the simulation is well suited in longitudinal 

directions, where the convective phenomenon is 

dominant but less favorable in the transversal 

directions (y, z) which are dominated by the 

conduction phenomenon. 

 

 
Fig. 8. Sensor P3001- k-ε Model vs. Experimental 

Data. 

 

The results of the simple k-ε model are shown as the 

baseline, as it is used commonly by engineers. As the 

results of the EARSM were relatively close to those 

of RNG k-ε, presenting the figures for its sensors 

data seems to be redundant. The method of 

assessment is the comparison between the overall 

concentrations recorded by the sensors (Sum of all 

the concentration recorded by each sensor in our 

specific time-period). In Table 7, the overall relative 

errors between the simulation and the experimental 

data are shown. This has been done by comparing the 

actual data with the simulation results using Equation 

3, where the objective function to be minimized is 

the overall sum of the squared residuals for each 

model and the experiment. 

 

 
Fig. 9. Sensor P1002 - RNG k-ε Model vs. 

Experimental Data. 
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Table 7 Overall concentration relative error of the simulation versus the experimental data. 

Turbulence Model P1002 P1003 P1132 P2003 P2004 P3001 

RNG k-ε 0.5938 0.4483 0.1137 0.3817 0.3667 0.3968 

Standard k-ε 0.6371 0.4369 0.0695 0.466 0.4572 0.4385 

EARSM 0.6452 0.4496 0.1263 0.4239 0.3846 0.3713 

DES 0.9090 0.8899 0.7800 0.9909 0.7065 0.9992 

 

 
Fig. 10. Sensor P1003 and P1132 - RNG k-ε Model vs. Experimental Data. 

 

 

 
Fig. 11. Sensor P2003 and P2004 - RNG k-ε Model vs. Experimental Data. 

 

 

In this comparison, it can be observed that the RNG 

k-ε model has the lowest overall concentration error 

when considering the errors from all the sensors. 

This is followed by the EARSM model, and the last 

one is the simple k-ε model. In general, the RNG k-ε 

model proved to be the best one in P1002, P2003, 

P2004, while the simple k-ε surprisingly showed a 

significantly lower error in P1132 in comparison to 

the others and slightly better than the others in 

P1003. The EARSM proved to be better only in the 

P3001. The reason for the dominance of RNG k-ε 

could be due to the extra term in the ε equation, 

which accounts for the interaction between 

turbulence dissipation and the means shear. It is 

important to mention that the computational 

demands and computational time of the EARSM 

were on par with the RNG k-ε model. 

Another interesting outcome here is that all the 

models show significantly better results when the 

sensor is located at higher levels (0.6m vs. 1.2m); it 

appears that all these turbulence models grasp the gas 

behavior to a greater degree further from the ground 

level. 

It is worth noting that the results from the Detached 

Eddy Simulation (DES) model were strongly 

inaccurate. Theoretically, these models were 

supposed to have better outcomes than the RANS 

models. The errors we observed here could have 

resulted from the escalation of numerical errors 

involving the solver’s methods. Further investigation 

of similar models is required. 

Simulations were also done using the LES (Large 

Eddy Simulation) turbulence model on a mesh with 

eight times more elements. Nonetheless, each 

simulation took weeks to converge, and our first few 

runs demonstrated unsatisfactory results with overall 

relative errors significantly higher than the rest. It 
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was decided that these types of simulations were not 

computationally feasible with our current available 

computational resources. Hence, spending time on 

debugging, analyzing and correcting the associated 

parameters seemed impossible. We expected the 

results from the LES to be more accurate than the 

rest, but our initial results were clearly not. 

5. CONCLUSION 

In this paper, the analysis of various turbulence 

models and their associated parameters were 

evaluated to find the most appropriate one for the 

atmospheric dispersion of dense-gases. This subject 

was addressed and validated through the simulation 

of Kit-Fox experimental works in ANSYS CFX® 

R18. The precision of the CAD models, practicality, 

computational resource requirements, and some 

other factors were all considered in this paper to 

achieve a comprehensive solution for heavy-gas 

dispersion in the atmosphere. It turned out that 

among the evaluated turbulence models, the 

outcomes of the RNG k-ε model with the Schmidt 

number of 0.4 proved to be the most accurate with 

relatively moderate computational resource demand. 

Furthermore, it was verified that all the turbulence 

models, which were tested during this study, 

demonstrated better results at distances further from 

the ground level. This was followed by the EARSM 

model, as it had the second-lowest overall sum of the 

squared residuals of the errors. By comparing the 

data, we concluded that the simulation was well 

suited in longitudinal directions, where the 

convective phenomenon was dominant but less 

favorable in the transversal directions (y, z) which 

were dominated by conduction phenomenon. Future 

works could address the impact of mesh quality on 

various turbulence models and maybe include the 

accurate data from more demanding models like the 

Large Eddy Simulation turbulence model. 
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