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ABSTRACT 

The heat transfer and flow characteristics of rarefied gas confined within a square cavity are investigated. The 

cavity upper-wall is subjected to a symmetrical sinusoidal temperature with respect to its midline. Two cases 

are considered, one of them is that the bottom and two sidewalls are kept adiabatic, while in the other, all the 

enclosure walls are considered diffusely reflecting. Kinetically, the gas is simulated with the direct simulation 

Monte Carlo method (DSMC) in the slip and transition regimes. The DSMC results are compared with the 

Navier-Stokes-Fourier equation, with second order boundary conditions of velocity slip and temperature jump, 

(NSF) in the slip regime. Main outcomes are presented as velocity streamlines overlaid on temperature contours 

and macroscopic parameters plots. The Knudsen number (Kn) increase shows other vortices, beside the two 

classical ones that appear in the hydrodynamic and slip regime.  The normal heat flux about the sinusoidally 

heated wall is strengthened by the flow in DSMC rather than that predicted by NSF method. Good agreement 

is observed between the NSF theory and DSMC method in the early slip regime, but when Kn=0.1 the NSF 

approach breaks down to show the secondary counter rotating eddies illustrated by the DSMC method. 

Keywords: DSMC; NSF; Heat transfer; Sinusoidal temperature. 

1. INTRODUCTION

A good understanding of fluid mechanics at the 

micro-scales is important to get a better insight of the 

microfluidic process, which can lead to the 

development of more efficient microsystems 

(Karniadakis et al., 2006; Baliti et al., 2017). The 

experiments in pressure microsensors have shown 

that the classical continuum theory of gas dynamics 

(i.e, the Euler and Navier-Stokes-Fourier equations) 

cannot explain the behavior of gas flow under these 

conditions. The thermal behavior of gas flow in 

microcavities, commonly used as a benchmark 

configuration, is usually affected by many non-

equilibrium phenomena, such thermal slip and heat 

transfer without temperature gradient (Hssikou et al. 

2016a).To understand the physics of such systems, 

kinetic or extended macroscopic description is 

needed (Baliti et al., 2018a). A revolution in 

understanding and utilizing micromechanical 

devices is starting since last decades. The utility of 

these devices will be enormous, and with time, they 

will fill the niches of our lives pervasively as 

electronics (Karniadakis et al., 2006; Gad-el-Hak, 

2001). Great attention has been directed in recent 

years to the microelectromechanical systems 

(MEMS), owing to their advantages over their macro 

homologues, such as the relatively lower expense for 

manufacture in large quantities, the small size and 

mass rendering them possible to fit in specific 

situations, and the quick reaction from their minimal 

inertia, etc. The manufacturer of a MEMS device 

needs to understand the relation between the 

processing and the properties of the material (Islam, 

2012). However, the prediction of the flow properties 

and heat transfer characteristics in the microdevices 

has not developed at the same rapid cadence as micro 

fabrication techniques. The Industrial motivation of 

paper is to understand the heat transfer 

characteristics in glass melting tanks, where a 

number of burners placed above the glass tank create 

periodic temperature profiles on the surface of the 

glass melt; see (Sarris et al., 1999; Jian et al., 2000). 

Currently, since MEMS can be manufactured in 

micron size, it becomes possible for the gaseous flow 

to possess a mean free path comparable to the 

characteristic length of the device 
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Fig. 1. Schematic illustration of the system geometry. 

 

 
even at standard conditions (Le, 2011). In 

accordance with the ratio of the mean free path over 

the length of the micro device, called the Knudsen 

number (Kn), one can differentiate between four 

main flow regimes, and looks on the appropriate 

method to analyze the flow of gases. Basing on this 

dimensionless quantity, the flow is considered in the 

continuum regime when Kn<0.001. The slip regime 

is reached when the Knudsen number is in the range 

of 0.001≤Kn<0.1. Beyond that, the transition flow 

regime begins (0.1≤Kn<10). When the Knudsen 

number is sufficiently higher (Kn≥10), the free 

molecular regime, the gas particles move more freely 

(Karniadakis et al. 2006; Gad-el-Hak, 2001; 

Struchtrup & Taheri, 2011). 

The dimensions of the MEMS devices determine the 

regime where the flow lie in. The micro systems 

cover the continuum, slip and early transitional flow 

regimes. Further miniaturization of MEMS device 

components and nanotechnology applications 

correspond to higher Knudsen numbers, making it 

necessary to study the mass, momentum and energy 

transport in the entire Knudsen regime (Karniadakis 

et al., 2006; Beskok, 2001). The continuum 

approach, given by the Navier-Stokes and Fourier 

equations (NSF), is only valid and perfectly 

describes the flow in the hydrodynamic regime. In 

the slip regime, the continuum assumption still valid 

but with specific boundary conditions of velocity slip 

and temperature jump at boundaries (Karniadakis et 

al., 2006; Gad-el-Hak, 2001). As the Knudsen 

number increases, rarefaction effects become more 

important, and ultimately the continuum approach 

breaks down altogether. In the transition flow 

regime, the mean free path for a gas becomes 

comparable to a characteristic length of the micro 

system. In this regime, the flow is described by the 

Boltzmann equation (Cercignani & Gabetta, 2007; 

Chapman & Cowling, 1970), but cannot be easily 

solved. Consequently, alternative solutions are 

needed, like the direct simulation Monte Carlo 

method (DSMC) developed by Bird (Bird, 1994, 

1976] which is valid for all ranges of Knudsen 

number, though it is computationally expensive.  

Other alternative approaches like molecular-based 

models (Shakhov, BGK…) or macroscopic 

equations of high moments (Grad 13 moments, 

R13…) are widely used. In the free-molecular flow 

regime, the nonlinear collision integral is negligible, 

and the Boltzmann equation is drastically simplified. 

Analytical solutions are possible in this case for 

simple geometries and numerical integration of the 

Boltzmann equation, which is straightforward for 

arbitrary geometries. It provided that the surface-

reflection characteristics are accurately modeled 

(Karniadakis et al. 2006; Gad-el-Hak, 2001). 

In the present study, we lean on the analysis of the 

flow and heat transfer rarefied gas confined within a 

square enclosure. The work investigates the non-

equilibrium gas flows encountered especially in the 

vacuum and micro-devices systems. The thermal 

behavior of such flows is strongly related to the flow 

rarefaction degree which defines the heat transfer 

mode. Unlike almost of previous study, which 

concerns the convection heat transfer process in 

continuum gas flows, in this paper we focus on the 

rarefaction effects on heat transfer gas flow in a 

periodically heated cavity. The non-equilibrium is 

conducted by a sinusoidal temperature profile 

applied along the top wall. Using both kinetic 

(DSMC) and macroscopic (NSF) approaches, two 

cases are investigated differing in their boundaries 

type. The first is related to the whole walls which are 

diffusely reflecting, while three walls, the bottom 

and sidewalls, are adiabatic in the second. 

2. PROBLEM STATEMENT 

The treated problem is an enclosure filled with a 

monatomic rarefied gas. The square cavity is taken 

for the first case (Case 1) to have the upper wall 

heated by a sinusoidal temperature T(x) (Equation 

1), while the three others are diffuse reflecting taken 

to the environmental temperature T0.  

The second case (Case 2) differs from the first by the 

three adiabatic walls, instead of the diffuse ones in 

the first (Fig.1). The sinusoidal temperature 

distribution T(x) which is applied on the top wall 

reads: 
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Each border of the cavity has a length size of 𝐿. The 

temperature reaches its maximum in the top wall 

centre with a difference of ∆𝑇  from the cold two 

sides imposed to a minimum temperature 𝑇0 . The 

argon gas used in the study is kept at the 

environmental temperature 𝑇0 = 273 . The size of 

the cavity is 𝐿 = 10−6m and the applied temperature 

gradient used to create the non-equilibrium inside the 

enclosure is ∆𝑇 = 273𝐾 . The initial density is 

changed inside the cavity as (Baliti et al., 2017): 

0
0

02 Kn L





                                                (2) 

where, 𝜃0 = 𝑅𝑇0  is the environmental temperature 

in the energy frame with 𝑅 is the gas constant, 𝐾𝑛 is 

the Knudsen number and 𝜇0 is the dynamic viscosity 

coefficient. 

3. SOLUTION METHODS 

3.1   DSMC  

The direct simulation Monte Carlo method 

(DSMC) is a molecular-based and statistical 

method used for the physical simulation of rarefied 

gases. This method, developed by G. BIRD, is 

initially used to study the relaxation problems of a 

homogeneous gas. Then, while improving its 

algorithm, the use of the method has been extended 

to systems that operate under low pressure despite 

of the applications in micro fluidics fields. The 

DSMC method was validated by comparing with 

experimental data of rarefied gas flows in the last 

century (Bird, 1998). It was used to simulate the 

gas-microflows or the gas flows under low 

pressure condition (Baliti et al., 2018b; Hssikou et 

al. 2016b). The fundamental approximation of this 

method lies in molecular chaos and a rarefied gas, 

where only the binary collisions are considered. 

So, if the computational time step is smaller than 

the physical collision time the free motion of the 

particles, followed by the interactions with the 

walls, is uncoupled with the intermolecular 

collisions. This stochastic method treats 

intermolecular collisions as instantaneous and 

probabilistic events. The power of the DSMC 

method lies in the modelling of the gas flow by a 

limited number of molecules, a few million 

molecules (Bird, 1994). The positions and 

velocities of all test particles are generated 

randomly in cells using the sequences of the 

pseudo-random numbers. They are stored in the 

computer and then updated after each time step. In 

each cell, a certain number of collision pairs are 

selected using the Bernoulli trials (BT) (Saadati et 

al. 2015; Goshayeshi et al. 2015; Roohi & 

Stefanov, 2016) scheme, which allows the use of a 

small average number of particles in each cell and 

avoids repeated collisions, and the calculation of 

these collisions. The maximum number of 

collisions NC in each cell is estimated according to 

(Bird, 1994; Roohi & Stefanov, 2016): 

   11
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where, N is the number of particles in cell, Feff is the 

number of real particles represented by 

a particle simulator, (σcr)max is the maximum value 

of the product of the collision cross section and the 

relative velocity of the particle partners (this quantity 

is updated throughout the simulation), ∆t is the time 

step, and 𝑉𝑐  is the volume of a cell. 

To reduce the number of variables to be memorized, 

it is often more convenient to choose flows with 

spatial symmetries. A steady-state of flow field is 

obtained with a sufficiently long simulation time 

(Liu et al. 2007).  

Based on the DSMC theory, the macroscopic 

velocity can be obtained by the statistic laws (Bird, 

1994): 

1
i i

i

v c
N

                                                          (4) 

where, 𝑐𝑖  is the particle velocity. The temperature 

can be obtained in the same way as: 

2 23

2
kT mv mv                                               (5) 

with 𝑘 the Boltzmann constant and 𝑚 is the particle 

mass. Finally, by ignoring the rotational 

contribution, monatomic gas, the components of heat 

flux vector can be calculated for an ideal gas as: 

21

2
i iq v v                                                       (6) 

where 𝜌 is the gas density. 

3.2   NSF 

From hydrodynamic theory of Navier-Stokes and 

Fourier, balance equations of mass, momentum and 

energy and relations of stress and heat flux can be 

written, respectively, as (Struchtrup,2005; Baliti at 

al. 2016): 
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The indices inside angular brackets denote the 

symmetric trace-free part of tensors. The NSF 

equations are solved numerically with second order 

of velocity slip and temperature jump boundary 
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conditions (Gad-el-Hak, 2001; Baliti at al. 2016) 

using finite difference scheme. The present DSMC 

simulations and NSF solutions are given to the 

Maxwell molecules model. 

The set of boundary conditions used in the NSF 

solution are: 

  
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where 
w  is the temperature of the wall. The 

parameter   is the Maxwell accommodation 

coefficient which the value is 1   for the full 

diffuse reflection and 0   for the specular one.  

The results will be presented in normalized form to 

the state reference of the equilibrium defined as: 
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The apostrophe refers to the non-dimensional 

parameters, and will be dropped in the rest of the 

paper. 

3.3   Validation and Results Accuracy  

The present DSMC simulation is adapted to compute 

the flow characteristics for a microcavity-flow 

uniformly heated at the bottom side. Well-

established results computed by Rana et al. (Rana et 

al., 2015) exist for the same problem which is used 

for the present simulation-validation exercise. Figure 

2 shows the normal heat flux component of the along 

the centreline (a) and bottom-wall of the cavity (b) 

for Kn=0.05. The agreement between our DSMC 

results and those of (Rana et al., 2015) is good. The 

close agreement gives credibility to the result of the 

simulation, and it stands validated. The results 

accuracy of the present study (case1) is tested 

through the mesh grid independence for both DSMC 

and NSF solutions for the number of cells/nodes 

N=10, 30, 50, 100 (see Table1.). The dimensionless 

relative error of the temperature is calculated in 

comparison to its averaged value along the bottom 

(cold) wall given by: 𝛳̅ = 1/𝑁 ∑ 𝛳𝑥,0
𝑁
𝑖=1 . The results 

confirm that the accuracy depends well on the 

domain discretisation size. While conserving the 

computational time, the choice of 100⨯100 

discretisation is proved by the current validation test 

which that the accuracy of results is enough satisfied. 

The time step t  is also a critical factor in DSMC 

method. The table 1. shows that the temperature 

relative error obtained for  0.1 ct t  , 0.3 ct , 0.5 ct

, 0.7 ct , 1 ct , with  ct is the collision mean time, 

remains close to the 0.03% value. The mass of an 

argon atom, used in the study, is 6.63⨯10-26 kg and 

its atomic diameter is 4.17 10-10 m (Moghadam et al., 

2014; Rabani et al. 2018). 

 

 

 

 
Fig.2. Comparison of the normal heat flux 

component qy along the cavity centreline (a) and 

the heated bottom-wall (b) obtained using the 

present DSMC and those of Rana et al. (Rana et 

al., 2015) for 0.05Kn . 

4. RESULTS 

In this study we focus on numerical investigation of 

rarefaction effects on gas confined within a two-

dimensional, rectangular enclosure with a sinusoidal 

temperature profile imposed at the upper-wall. The 

applied sinusoidal temperature is symmetric with 

respect to the midline of the enclosure. The gas flow 

inside the enclosure is studied using the direct 

simulation Monte Carlo method for 0.05Kn  , 

0.1Kn  , 0.3Kn  , 1Kn   and 5Kn  . 

The high gradient of temperature taken in hole of 

study is 1T  . The DSMC results are compared 

with the Navier-Stokes-Fourier equation, with 

second order of velocity slip and temperature jump 

solutions. 

4.1   DSMC Description 

4 .1.1   Case 1 

When the rarefied gas effect is considered, the flow  



J. Baliti et al. / JAFM, Vol. 12, No. 6, pp. 1757-1767, 2019.  

 

1761 

Table 1 Temperature relative error along the microcavity bottom-wall (case 1) obtained using the 

present DSMC and NSF solutions for 0.05Kn . 

Number of cells/nodes Time step 

10 30 50 100 0.1*tc 0.3tc 0.5*tc 0.7*tc 1*tc 

DSMC 0.102% 0.046% 0.032% 0.021% 0.0322% 0.0322% 0.0318% 0.0313% 
0.0311

% 

NSF 0.018% 0.012% 0.009% 0.007% --- 

 

 

will be induced by the sinusoidal temperature 

distribution. If the external force is ignored 

according to the classical non-slip continuum theory, 

the flow should be absent, and the heat transfer is 

pure heat conduction (Liu et al. 2007). Figure 3 

shows the velocity streamlines and the temperature 

contours for different values of the Knudsen number 

for results obtained using the DSMC method. Owing 

to the symmetry in the temperature field, the velocity 

streamlines are also symmetrical with respect to the 

midplane (  0.5x  ). Two remarkable vortices are 

observed near the heated surface, along the vertical 

axes, induced by the components of the velocity 

having a maximum value less than 0.015, equivalent 

to 5m/s. Theses eddies are being located near the two 

upper corners for Kn=0.05. The vortex center is 

located at x=0.267 and y=0.855. This primary eddy 

is flowing from the hot regions to cold ones. The 

temperature contours are thermally stratified due to 

the conduction which induces the heat transfer inside 

the cavity. Increasing the Knudsen number, the 

temperature jump becomes significant and the cavity 

inside becomes less heated, while the stratification is 

existent in all Knudsen number values. The growth 

of the Knudsen number to Kn=0.1 allows the 

creation of the secondary eddies next the lateral 

walls. These vortices are flowing counter wise from 

cold to hot regions. From Kn=1 to above, another 

vortices type is created near the two bottom corners. 

These last eddies are in the same rotation direction as 

the primary vortices.  

The primary vortex center position has no significant 

change due to the rarefaction. The secondary and 

third vortices are locating in position (x=0.077 and 

y=0.121) and (x=0.022 and y=0.022) respectively. 

With the Knudsen number increase, all gradients 

inside the cavity become less steep. Consequently, 

the secondary and third eddies becomes more 

pronounced. The formation of primary vortices is 

induced by the tangential temperature gradient in the 

gas near the vertical surface that forces a creep-

driven fluid into a circulatory motion (Baliti et al. 

2016; Rana et al., 2012). The secondary counter 

rotating recirculations in the two lateral sides are due 

to the competition between the viscous and 

transpirationnal part of the tangential velocity, where 

the dominance is in favor of the stress for high 

Knudsen numbers (Baliti et al. 2016; Rana et al. 

2012). The third vortices type near bottom corners is 

created by distortion of the primary eddies by 

secondary ones, creating from the two rotating 

vortices four ones flowing in the same direction. The 

secondary vortices become bigger at the expense of 

the primary distorted ones. 

4 .1.2   Case 2 

The main characteristics of heat conduction in the 

present enclosure with the upper wall subjected to a 

sinusoidal temperature distribution are shown in 

Figure 4. The flow and temperature fields are 

presented in terms of streamlines and isotherms of 

the second case, where the three walls are adiabatic, 

for five Knudsen number values 0.05 , 0.1 , 0.3 , 1 

and 5  and a temperature gradient of 1T  . These 

plots show that, due to the symmetric boundary 

condition at the upper wall together with the 

adiabatic conditions on the side and bottom walls, 

both the flow and temperature fields are symmetric 

about the midline of the enclosure. 

A pair of identical counter-rotating vortices is 

formed in the left and right halves of the enclosure. 

The gas moves horizontally from the hotter middle 

of the upper wall toward its colder edge; then it 

descends along the adiabatic cooler sidewall; and 

finally, it ascends near the symmetry plane (Sarris et 

al., 2002). These eddies are as the primary ones in 

the first case, filling the hole inside of the cavity. The 

vortex center is located at x=0.255 and y=0.8. The 

rarefaction has no effect on the vortices center, which 

remains in the same position, despite the Knudsen 

number increase. The temperature fronts penetrate 

from the upper wall deep inside the gas body as 

conduction is the main heat transfer mechanism in 

this case. As observed in the first case, the 

temperature in this case decreases with rarefaction 

increase. 

4 .1.3   One Dimensional Plot 

To make a great understanding of the rarefaction 

effects, the variations of the horizontal velocity, the 

vertical heat flux along the sinusoidally heated plate 

and the temperature distribution along the vertical 

centerline for both cases are illustrated in Fig.5. The 

velocity component shows a sinusoidal profile and 

becomes weakened by the rarefaction increase. The 

horizontal component of the velocity is quite 

pronounced in case 2 more than in case 1, which is 

due to the difference of boundary conditions between 

them. The y-heat flux presents a parabolic profile in 

the bulk which is affected in case 1 boundaries for 

low Knudsen numbers more than the other one. It is 

very marked in case 2 more than that  
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Fig.3. Streamlines and temperature contours for (a) 0.05Kn , (b) 0.1Kn , (c) 0.3Kn , (d) 

1Kn  and (e) 5Kn  using the DSMC method (case 1). 

 

calculated from with fully diffuse boundary 

conditions. To analyze the reason of the vertical heat 

flux, decrease by the rarefaction, the temperature is 

plotted for the two cases in Fig.5c, which shows that 

the rarefaction greatly decreases the temperature 

gradient near the surfaces (Liu et al. 2007).  

4.2   Comparison with NSF Model  

It is generally regarded that the NSF model, solved 

using various velocity slip and temperature-jump 

boundary conditions, can capture some flow features 

rather in the slip regime. However, in certain 

instances, the NSF model does not capture several 

well-known nonequilibrium phenomena such as the 

bimodal temperature profile in force-driven 

Poiseuille flow (Mansour et al. 1997) and non-

gradient heat flux in Couette flow (Gu & Emerson, 

2009). This study has been realized to test whether 

the NSF model, modified with second  
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Fig.4. Streamlines and temperature contours for (a)Kn=0.05, (b)Kn=0.1, (c)Kn=0.3, (d)Kn=1 and 

(e)Kn=5 using the DSMC method (case 2). 

 

 

order velocity slip and temperature jump boundary 

conditions, can capture critical flow features 

accurately in the slip regime for the heat transfer 

within the cavity with sinusoidal temperature at the 

topper wall for the two cases of different type of 

boundary conditions. 

4 .2.1   Case 1 

Figure 6 illustrates the velocity streamlines and 

temperature contours obtained by the NSF solutions 

for the Knudsen number Kn=0.05 and 0.1 with a 

temperature gradient T 1  , for the case 1. The 

plots show that there is only one vortices kind in the 

cavity which is the same as predicted by the DSMC 

method (Fig.3). The vortices center is displaced 

compared with the DSMC prediction to the top 

corners to the position x=0.244 and y=0.867. The 

temperature contour demonstrates that the 

conduction is the main mechanism for heat transfer 

inside the cavity. But the temperature jump seems 

very important especially from the heated wall.  
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Fig.5. (a) x- component of velocity,(b)y- component of heat flux about the heated plate and 

(c)temperature along the vertical centerline for both cases. 

 

 

 

Fig.6. Streamlines and temperature contours for (a) 0.05Kn  and (b) 0.1Kn , using th NSF 

solutions (case 1). 

 

4 .2.2   Case 2 

Streamlines overlaid on the temperature contours are 

plotted in fig.7, for Knudsen values 0.05 and 0.1 for 

the case with three adiabatic walls and a temperature 

gradient 1T  . The symmetricity of streamlines 

and temperature contours is observed. The classical 

vortices are predicted as in Fig.4. Their centers are 

shifted slightly to the top plate, in comparison to 

DSMC solutions, to reach the position x=0.255 and 

y=0.872. The conduction leads the hot temperature 

front to permeate from the upper wall center deep 

inside the gas body. 

4 .2.3   Macroscopic Parameters Plots. 

Figure 8 shows the horizontal velocity component, 

vertical heat flux along the sinusoidally heated plate 

and temperature profile along the vertical centerline 

for Kn=0.05 predicted by both used method for two 

cases. As the flow goes far from the thermodynamic 

equilibrium by the temperature gradient, the vertical 

heat flux cannot be predicted by the well-known 

second order approximation. Although horizontal 

velocity component profile along the heated plate is  
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Fig.7. Streamlines and temperature contours for (a) 0.05Kn  and (b) 0.1Kn , using th NSF 

solutions (case 2). 

 

 

 
 

 

 
Fig. 8. (a) x- component of velocity,(b)y- component of heat flux abut the heated plate and 

(c)temperature along the vertical centerline for both cases predicted by NSF and DSMC for Kn=0.05. 

 

 

predicted quite correctly with the velocity slip and 

temperature jump boundary condition, heat flux 

cannot be predicted in the non-equilibrium regions. 

Furthermore, y-heat flux contour abut the upper wall 

of the cavity is quite different from the predicted 

results of the continuum approach.  

According to the molecular relations, heat flux is 

obtained by the Eq. (6), while NSF equations yield 

the simple constitutive Fourier relation for heat flux 

(equation (10) ) which do not take into account the 

shear stress effect in heat transfer. The heat flux 

predicted by the continuum-based solution is lower 

than that obtained by DSMC. The reason is 

illustrated by Fig.8d which is showing that the 

temperature in NSF is greatly decreased near the 

surfaces compared to that in DSMC. As a 
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consequence, the heat flux is enhanced in DSMC, 

while it is weakened in NSF by the temperature by 

the fact that it does not take into account the flow 

effect.  

If we compare the temperature of the two cases 

(Fig.5b), we can observe the effect of thermalized 

walls in comparison with adiabatic ones. Where, the 

effect of cold walls increases the coolness inside the 

cavity especially with the Knudsen number increase. 

That is due to the wall force (Rabani et al., 2018) 

which is not treated here in comparison with the 

molecular dynamic simulation. This nonideal 

behavior of a gas, encountered more at the nanoscale 

size, affects the heat transfer process by means of 

skin friction that acts as a wall force field thermal 

resistance (Rabani et al., 2018).  To capture that 

effects in DSMC calculation of heat transfer, the 

equation (6) should be modified according to the Van 

der Waals equation of state (Wang et al., 2003). 

Using the dynamic molecular approach, Rabani et al. 

show that the wall force field forms a considerable 

part of the total thermal resistance (approximately 

20% of total thermal resistance for 540nm height 

channel) of the rarefied gas medium. 

5. CONCLUSION 

The heat transfer within a square cavity with heated 

upper wall by a sinusoidal temperature is 

investigated with the direct simulation Monte Carlo. 

The cavity is taken for two different boundary 

conditions, where in the first case all walls are 

diffuse reflecting, while in the other three plates are 

adiabatic. The results obtained are compared to the 

based continuum approach with second velocity slip 

and temperature jump boundary conditions. The 

essential of the results come out from the study show 

that in the first case when the Knudsen number is 

low, two vortices are filling the quasi-totality of the 

cavity. While, the increase of rarefaction shows two 

other counter rotating vortices (Kn=0.3), which 

become more extended when the gas become more 

rarefied (Kn=1, and above). The case 2 presents only 

two eddies in the whole of Knudsen numbers without 

any affection with rarefaction increase. Good 

agreement is obtained between the NSF and DSMC 

model for the horizontal velocity component, as 

expected in the slip regime near the sinusoidally 

heated wall. Normal heat flux to the heated wall is 

enhanced by the flow in DSMC rather than the lower 

predicted by NSF basing on the Fourier law. 
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