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ABSTRACT 

The standard LBM with the relaxation time is only able to simulate the flow features in continuum and slip 

regimes. In the present paper, a new relaxation time formulation considering the rarefaction effect on the 

viscosity for the lattice Boltzmann simulation of shear driven flows is presented in order to cover wide range 

of the flow regimes. The results show that in spite of the standard Lattice Boltzmann Method, LBM, the 

presented relaxation time equation is able to predict flow features in wide range of flow regimes including 

slip, transition and to some extend free molecular flow regimes. The velocity profiles, slip length and shear 

stress agree very well with DSMC (Direct Simulation Monte Carlo) and linear Boltzmann results. 

Keywords: Lattice Boltzmann method; Micro and nano- Couette; Transitional regime; Knudsen number; 

Relaxation time; Rarefaction. 

NOMENCLATURE 

Kn Knudsen number 

Cf skin friction coefficient 

Cf0 skin friction coefficient in no slip flows 

f particle distribution function 

fi
eq equilibrium distribution function 

h height 

Q flow rate 

R gas constant 

Tw wall temperature 

U velocity 

λ mean free path 

μeff effective viscosity 

σv tangential momentum accommodation 

τcont shear stress in continuum regime 


 shear stress in free molecular regime

τf relaxation time 

τeff effective relaxation time 

τw shear stress on the wall 

ls slip length 

μ0 dynamic viscosity  

ρ density 

 kinematic viscosity

1. INTRODUCTION

Given the extensive applications of MEMS and 

NEMS (Micro and Nano Electro Mechanical 

Systems) in industries, flow and heat transport in 

micro/nano-instruments have attracted much 

scientific attention in today’s world (Nguyen & 

Wereley, 2006). Flow behavior in micro/nano-

geometries is different from that in macro-

geometries. The very small dimensions of these 

instruments induce a quality, known as 

rarefaction, in the fluids they are interacting with. 

This quality is expressed by the dimensionless 

Knudsen number, which is the ratio of mean free 

path, λ, to characteristic length, l, (Kn=λ/l) (Gad-

el-Hak, 2001). Experimental investigation of 

dynamic and thermal properties of the flow in 

micro-channels leads to specific intervals for 

different flow regimes based on Knudsen number 

(Li et al. 2018a, Liu et al. 2018). For Kn<0.001, 

the fluid is continuous and Navier-Stokes 

equations are valid. But for Kn>10, 0.1<Kn <10 or 

0.001<Kn <0.1, free molecular, transient and slip 

flow regimes are assumed respectively. Often, 
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heat transfer and flow in slip regimes are 

considered as micro-flows (Xie et al.2018, Ho et 

al. 1998). These regimes can take place in any 

subtle flow. They are to be investigated by 

particle-based methods such as Molecular 

Dynamics, MD, (Bird, 1994) or Direct Simulation 

Monte Carlo, DSMC, (Oran et al. 1998) methods. 

The high computational cost and complex 

mathematical equations incorporated in MD and 

DSMC methods (Kandlikar et al. 2005) have 

made researchers to pursuit better methods, such 

as the Lattice Boltzmann Method, LBM, for 

simulating macro- and micro-flows (Chen et al. 

1998; Li et al. 2018b; Ma et al. 2018). 

Given their extensive applications in electronics, 

energy engineering, bio-technology, … micro- and 

nano-Couette flows are a couple of the most general 

subjects of study in many fields of science and 

engineering, with their modeling being very 

important in science and industrial applications. Air 

flow between the sheets of computer hard discs, 

high-rpm centrifugal pumps and some micro- and 

nano-pumps can be mentioned as a few examples of 

their applications (Karniadakis et al. 2005). The oil 

film in rotating equipment such as cylinders and 

pistons with micrometer gaps are examples of 

micro-Couette flow. Engineering applications for 

this type of flow include: Couette flow mixers, 

rotary separator filters, bearings, catalytic chemical 

reactors and liquid-liquid separators (Karniadakis et 

al. 2005). 

Modeling and analyzing gas flow in thin ducts 

such as micro- and nano-channels requires 

knowledge of nano-science. Experimental 

measurement is extremely hard at this scale and is 

associated with a considerable error. Measuring 

tools must be smaller than the geometries at this 

scale. Therefore, precision numerical modeling of 

these tools is of great importance. Precision 

numerical modeling can provide the capability for 

designing such equipment by identifying the flow 

field and its characteristics of performance. 

Considering the difficulty of preparing costly 

laboratory equipment, methods for analyzing flow 

at micro-scale seem to be crucial. An efficient and 

precise method for flow modeling is the lattice 

Boltzmann method. This method is based on 

tracking particles of the fluid using the Boltzmann 

equation. Lattice Boltzmann method incorporates 

lattice, equilibrium distribution functions and 

kinetic equation which is known as the lattice 

Boltzmann equation. Analysis of the flow field 

with complex boundaries, simple programming 

rules and easy conditions for parallel-processing 

are some advantages of using this method (Basha 

et al. 2018; Wu et al. 2018 ; Chen et al. 2010; Al-

Zoubi et al. 2008). In this method, virtual particles 

move on a regular lattice and collide, and then the 

probability for these particles to be present in 

different paths is used. 

Moreover the Lattice Boltzmann Equation (LBE) is 

a more fundamental equation compared to the 

Navier Stokes equations, which is valid for all 

ranges of flow regimes (Gad-el-Hak, 1999). 

Therefore, the LBM can be used to simulate fluid 

flows in all regimes upon appropriate adjustments 

(Sbragaglia, Succi 2005). 

There have been several studies on simulation of 

Couette flow in transitional flow regime by linear 

Boltzmann equation (Sone, 1990), DSMC (Fan et 

al. 2003), and Burnett equation (Xue et al. 2001; 

Bao et al. 2007). Moreover, different studies have 

addressed Couette flow in the slip flow regime via 

the lattice Boltzmann method (Nie et al. 2002; Tang 

et al. 2004; Shirani & Jafari 2007; Ghazanfarian & 

Abbassi, 2010; Shamshiri et al. 2012; Guo et al. 

2008; Yang et al. 2017), but there has been no 

effort made to simulate Couette flow in transitional 

and free molecular flow regimes by LBM.  

The standard lattice Boltzmann method, 

corresponded relaxation time of τf=Kn.H, is not 

able to model transitional and free molecular flow 

regimes. The reason is that this relaxation time, 

merely considers molecular collision while the 

collisions between walls and molecules become 

important as Knudsen number increases. On the 

other hand, using high-order lattice Boltzmann 

methods provides reasonable results only for fluid 

flows at moderate Knudsen numbers (Zhou et al. 

2006). 

In previous studies for pressure driven flows 

(Normohammadzadeh et al. 2010; Shokouhmand et 

al. 2011; Homayoon et al. 2011; Meghdadi Isfahani 

et al. 2016; Zhang et al. 2012; Liou et al. 2014; 

Younes & Omidvar, 2015), it was shown that, by 

improving relaxation time, the lattice Boltzmann 

method becomes capable of providing accurate 

results for pressure-driven flows in all flow 

regimes. 

In the present study, by relating the viscosity to the 

local Kn, a novel relaxation time formula is 

presented in such a way that wide range of Kn 

Couette flow regimes can be simulated more 

accurately. 

2. GOVERNING EQUATIONS 

Gas flow between two parallel plates separated by a 

distance h is assumed. Top plate moves to the right 

with the velocity u0 while the bottom plate is 

stationary. The momentum equation governing this 

flow is as follows (Karniadakis et al. 2005): 

2

2
0

d u

dy
  

(1) 

Solving the eq. 1 for continuum regime with no slip 

boundary condition yields: 

 0( ) /u y u h y                                                (2) 

By applying the velocity slip boundary conditions 

as follows: 
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where n denotes the normal vector and us and uw are 
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gas velocity on the wall and wall velocity, 

respectively, The dimensionless velocity 

distribution for the slip flow regime is obtained as 

follows (Karniadakis et al. 2005): 

Kn
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v
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




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2

21
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0

 

 

(4)                                          

where y is distance from the bottom wall, and σv is 

the tangential momentum accommodation 

coefficient, which is an empirical coefficient 

amounting to zero for specular reflection and 1 for 

diffuse reflection (Bahukudumbi et al. 2003). 

Flow rate is obtained by: 


h

udyQ
0  

(5) 

Using the velocity distribution (Eq.4) in Eq. 5, 

yields the following relation for for volumetric flow 

rate (Karniadakis et al. 2005):  

0

0.5
Q

u h
  (6) 

The analytical solution above shows that flow rate 

is constantly 0.5 for the incompressible micro-

Couette flow in slip regime (Karniadakis et al. 

2005). The ratio of the skin friction coefficient for 

shear-driven slip flows and no-slip flows (Cf0) is 

given by (Karniadakis et al. 2005): 

0

1

2
1 2

f

vf

v

c

c
Kn










 
(7) 

where Cf= τw/(1/2ρu0
2) , with τw the wall shear 

stress. 

Previous results from DSMC and linearized 

Boltzmann methods show that the velocity 

distribution in Couette flow in the transition and 

free molecular flow regimes remain approximately 

linear. Therefore, second and higher degree 

derivatives are always zero, making it inadequate to 

apply second or higher degree boundary conditions. 

For this reason, researchers proposed different 

values for C1 so it covers a wider range of flow 

regimes. For example, Marques et al. (2000) 

proposed C1=1.111 and showed that where plates 

move with the velocity of ±u0, the following 

velocity distribution provides appropriate results for 

Kn<0.25: 

0

1

2
( )

2
1 2 C

u Y
u Y

v Kn
v








 

             

                      (8) 

Bahukudumbi et al. (2003) proposed a modified 

slip coefficient for C1 as follows: 

31
1 0 1 2C tan ( )Kn

                                      (9) 

where β0=1.2977, β1=0.71851, β2=-1.17488 and 

β3=0.58642 are empirical constants that are 

obtained by comparing the velocity profile, 

obtained by the linearized Boltzmann method (Sone 

et al. 1990), with that obtained from Eq. 8. They 

showed that unlike the first-order model, using Eq. 

9 matches the velocity profile in the bulk flow 

region for a wide range of Knudsen numbers, while 

this model fails to predict the velocity distribution 

in the Knudsen layer and consequently the shear 

stress near the walls. This is expected, since the 

model is based on the Navier–Stokes equations, 

which is not valid for the transition and free 

molecular regimes. 

3. LATTICE BOLTZMANN METHOD 

Unlike other common numerical methods which are 

based on discretization of macroscopic continuum 

equations, the Boltzmann method is based on 

microscopic models and macroscopic kinetic 

equations. 

The 9-speed 2-dimensional lattice Boltzmann 

method (D2Q9) is used for this study (Fig 1). 

 

 
Fig. 1. D2Q9 lattice Boltzmann model. 

 
Using the BGK collision operator (Bhatangar et al. 

1954), the discretized Boltzmann equation is: 

1
( , ) ( , ) ( , ) ( , )

0.5

eq
i i i i i

f

f x c t t t f x t f x t f x t


        
 

(10) 

where fi is the particle distribution function, τf is the 

dimensionless relaxation time and fi
eq is the 

equilibrium distribution function: 
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where c=Δx/Δt represents the base velocity on the 

lattice. Δx and Δt are lattice spacing and time step, 

respectively. The discrete velocity vector Ci in D2Q9 

lattice is shown in Eq. 12. 
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   (12) 

In discrete momentum space, local mass density ρ 
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and local velocity u are calculated by Eqs. 13 and 

14. 

i
i

f 
 

(13) 

i i
i

u c f 
 

(14) 

Eq. 10 simulates collisions between particles in the 

flow. In this method, virtual fluid particles are 

assumed on lattice nodes with streaming and 

collision steps taking place on them. This equation 

includes two steps: collision (Eq. 15) and streaming 

(Eq. 16) as follows: 

* 1
( , ) ( , ) ( , ) ( , )

0.5

eq
i i i i

f

f x t f x t f x t f x t


   
 

  

(15) 

*( , ) ( , )i i if x c t t t f x t       

(16) 

3.1 Boundary Conditions for Lattice 

Boltzmann Method 

Periodic boundary conditions are assumed at inlet 

and outlet of the channel. In continuum regime, the 

bounce-back boundary condition is used to simulate 

no-slip condition on stationary walls, while, for the 

first time, a new boundary condition is proposed 

assuming no-slip conditions for moving walls. 

Moreover, the Diffuse Scattering Boundary 

Condition (DSBC) (Bhattacharya et al. 1989) is 

used to predict the slip velocity on solid walls. 

3.2   No-Slip Boundary Condition for 

Moving Walls 

Considering that velocity is known and constant on 

the top wall, a no slip boundary condition based on 

Zou and He method (Zou & He 1997) is developed 

to simulate moving wall at continuum flow regime. 

As shown in Fig 2, for the top wall, f4, f7 and f8 

distribution functions and ρ are unknown. Four 

equations are needed in order to calculate the 

unknowns, while three can be obtained from 

momentum equations:  

4 7 8 0 0 1 2 3 5 6( )

if

f f f f f f f f f





 

        

                       (17) 

1 3 5 6 7 8

8 7 0 0 1 3 5 6

: xx u f f f f f f

f f u f f f f





      

     
                                       (18) 

2 4 5 6 7 8

4 7 8 2 5 6

: yy u f f f f f f

f f f f f f

       

    

                                  (19) 

 

 
Fig. 2. Schematic of boundary conditions. 

 

Another equation is needed for calculating the 

unknowns. The fourth equation can be written by 

assuming that the bounceback condition holds in the 

direction normal to the boundary as proposed by 

Zou and He (Zou & He 1997). 

( ) ( )
2 42 4

eq eq
f f f f                                               (20) 

This is a system of four equations with four 

unknowns, and it can be solved as follows: 

4 2f f
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(21) 

3.3   New Relaxation Time Relation for wide 

Range of Knudsen Numbers 

The shear stress for Couette flows exhibits two 

distinct behaviors in the continuum and free-

molecular flow regimes (Bahukudumbi et al. 2003). 

In the continuum flow regime the shear stress for 

Couette flows is proportional to the velocity 

gradient as given by: 

0cont

du

dy
   (22) 

where the viscosity is 
0 w

2RT /    , while in the 

free molecular flow regime the shear stress is 

proportional to the relative velocity of plates 

(Kogan, 1969): 

2 /wU RT      (23) 

Bahukudumbi et al. (2003) presented an analytical 

expression for the shear stress using different 

molecular interaction models, i.e. 

2

2

2
xy

aKn bKn

aKn cKn b







 

 
 (24) 

where 
xy

  is the shear stress in the entire Knudsen 

regime normalized with the free molecular shear 

stress and the coefficients a=0.5297, b=0.6030, and 

c=1.6277 are obtained by a least squares fit to the 

linearized Boltzmann solution (Sone et al. 1990). 

Using the new velocity slip model of Eq. 9 and the 

shear stress model given by Eq. 24 a generalized 

diffusion coefficient named as “effective viscosity” 

is defined: 

1

20 (1 2 )
22

aKn b
C Kneff

aKn cKn b





 

 

 (25) 

where μ0 is the dynamic viscosity of the gas at 

continuum flow regime. It should be noted that 

viscosity at continuum flow regime differs from 

viscosity at transition and free molecular flow 

regimes. The dynamic viscosity at continuum flow 

regime is related to the diffusion of momentum due 

to the intermolecular collisions only, while for the 
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transition regime, because of the rarefaction, 

intermolecular collisions and molecule-wall 

collisions have the same order and in the free 

molecular regime, the molecule-wall collisions are 

the dominant phenomenon. Thus the effective 

diffusion coefficient,
eff

 , is presented in order to 

consider the intermolecular collisions and molecule-

wall collisions. 

For D2Q9 model, kinetic viscosity is related to 

relaxation time as follows: 

2 9 : 1 / 3
3

eff
f effRT D Q RT


              (26) 

where  , R and T are kinematic viscosity, gas 

constant and temperature in lattice unites. For D2Q9 

model RT=1/3 in lattice unites.  

Substituting Eq. 25 into Eq. 26, yields: 

 1

3 3 20 1 2
22

aKn beff C Kneff
aKn cKn b

 


 


  

 

  (27) 

For the standard LBM with τf=Kn H (H is the 

number of lattice across the characteristic length of 

the flow domain) viscosity is related to the 

relaxation time as follow: 

1 1
.0 3 3

f KnH                                           (28) 

Hence: 

 12

3 2
1 2

2

KnH aKn beff C Kneff aKn cKn b







  

 
 

(29) 

Eq. 29 shows the relation between effective 

relaxation time of lattice Boltzmann with Knudsen 

number. Applying this relation to the codes, the 

capability of lattice Boltzmann method in modeling 

micro- and nano-Couette flows in transient and free 

molecular regimes is enhanced. The standard lattice 

Boltzmann method uses the relaxation time τf=Kn 

H which is only applicable at small Knudsen 

numbers, while τeff is applicable for wide range of 

Knudsen numbers (except Kn=0) covering 

continuum, slip, transition and free molecular flow 

regimes because it is derived from effective 

viscosity which considers the molecule-wall 

collisions in addition to the intermolecular 

collisions. 

4. RESULTS 

In order to simulate flow in continuum and slip 

regimes, a Couette flow with fixed bottom plate and 

moving top plate (u0=0.1 m/s) is considered while 

for transient and free molecular regimes a Couette 

flow with two plates moving in opposite directions 

at the velocity U (Fig 3) is assumed. 

Three grid sizes are considered: 160×60, 320×120 

and 640×240. The results of using the 

aforementioned grids are compared in Figs 4 and 5 

for slip (Kn=0.05) and free molecular (Kn=10) 

regimes respectively. The 320×120 grid is found to 

be appropriate. 

 
Fig. 3. Schematic view of linear Couette flow and 

the corresponding velocity profile for rarefied 

gas flows. 

 

 

Fig. 4. Grid independency for Kn=0.05. 

 

 
Fig. 5. Grid independency for Kn=10. 

 

To validate the results, fig 6, compares the 

normalized volumetric flow rate along the micro-

channel obtained by the standard LBM (τf=KnH) 

and new model (Eq. 29) with those of the analytical 

approach of Eq. 6. All three methods show the 

constant value 0.5. 

Fig 7 shows the cf/cf0 ratio along the micro-channel 

obtained from standard LBM and new model, 

assuming σv=1 and Kn=0.05. Analytical results of 

Eq. 7 are also presented. It is evident from the 

figure that analytical and numerical solutions are in 

good agreement, showing the accuracy of the 
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results. Furthermore, it can be concluded that for 

low Kn in continuum and slip regimes, new model 

and standard LBM have the same results.  

Because Eq. 29 is not valid for Kn=0, Kn=0.001 

with no-slip boundary condition is considered to 

calculate Cf0 for continuum flow regime. 

Velocity distributions across the channel are plotted 

in Figs 8 and 9 for Kn=0.001 and Kn=0.01 

respectively using the new relation time (Eq. 29). 

The results pertaining to analytical solution of Eq.2 

and those of standard relaxation time τf=KnH are 

also presented. Comparison shows that the proposed 

relaxation time model is capable of modeling 

velocity distribution in continuum and slip regimes. 
 

X

Q
/U

0
H

0 50 100 150 200 250 300
0.4

0.45

0.5

0.55

0.6

Analytical solution

Tau=Kn.h

New model

 
Fig. 6. Normalized volumetric flow rate along the 

micro/nano channel Kn=0.05. 

 

X

C
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C
f0
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0.88
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0.92

0.94
Analytical Solution

Tau=Kn.h- top boundary

Tau=Kn.h- bottom boundary

New model- top boundary

New model- bottom boundary

 
Fig. 7. Normalized skin friction coefficient along 

the microchannel for Kn = 0.05. 
 

Fig 10 shows the velocity distributions obtained 

from the new model for Kn=0.001, 0.01, 0.1, 0.5. 

The corresponding results of standard LBM and 

analytical results of Eq. 8 are also included. The 

results show good agreement, however for Kn=0.5, 

a little discrepancy can be seen between the results 

of Eq. 8 and LBM results because Eq. 8 is accurate 

for Kn<0.25 It can be seen from the figure that the 

results of the proposed model are similar to those of 

the standard lattice Boltzmann in slip regime. It is 

evident that all velocity profiles are linear in the 

new model and slip velocity increases on the walls 

of the micro-channel as Knudsen number increases, 

leading to larger slip length. Intersection of all 

diagrams is located at the center of the micro-

channel due to the symmetry of slip velocity. 

 

 
Fig. 8. Velocity distribution obtained from new 

models, analytical results and Standard lattice 

Boltzmann (τf=KnH) for Kn=0.001. 

 

 
Fig. 9. Velocity distribution obtained from new 

models, analytical results and Standard lattice 

Boltzmann (τf=KnH) for Kn=0.01. 

 

 
Fig. 10. Velocity distribution obtained from new 

models, analytical results and Standard lattice 

Boltzmann (τf=KnH) for Kn=0.001, 0.01, 0.1, 0.5. 

 

In Figs. 11, 12 and 13 velocity profiles in the upper 

half of the channel obtained from the new 

relaxation time relation (Eq. 29) are compared with 

those of obtained by linear Boltzmann equation 
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(Sone et al. 1990), DSMC (Bahukudumbi et al. 

2003), analytical results of Navier Stokes equations 

using first order slip velocity (Ohwada et al. 1998) 

and the analytical solution of Eq.8, for K=0.1, K=1 

and K=10 respectively, where K=
2

 Kn.  

By increasing Knudsen number, the results of 

standard LBM (τ=KnH) deviate from the results of 

DSMC and linear Boltzmann methods while, the 

presented results by new model are accurately 

compatible with linearized Boltzmann and DSMC 

methods in the entire transition flow regime.  

 

 
Fig. 11. Velocity distributions obtained from new 

model, analytical results (Marques et al. 2000), 

Standard LBM, linear Boltzmann (Sone et al. 

1990) and DSMC (Bahukudumbi et al. 2003) for 

K=0.1. 

 

 
Fig. 12. Velocity distributions obtained from new 

model, analytical results (Marques et al. 2000), 

Standard LBM, linear Boltzmann (Sone et al. 

1990) and DSMC (Bahukudumbi et al. 2003) for 

K=1. 

 

It is concluded from Figs 12 and 13 that the results 

of standard LBM perfectly match those of the 

Navier Stokes equations with first order slip 

velocity (Ohwada et al. 1998) for all Knudsen 

numbers. In fact these methods are Equivalent. 

Fig. 14 shows the velocity distribution in the upper-

half of the channel for K= 0.1, 1 and 10. It is 

evident that the velocity profiles in the transition 

flow regime remain linear. The velocity decreases 

as Knudsen number increases which is also 

expected from the analytical solution according to 

Eq. 8. 

 

 
Fig. 13. Velocity distributions obtained from new 

model, analytical results (Marques et al. 2000), 

Standard LBM, linear Boltzmann (Sone et al. 

1990) and DSMC (Bahukudumbi et al. 2003) for 

K=10. 

 

 
Fig. 14. Velocity profiles for upper-half of the 

channel at K = 0.1, 1, and 10. 

 
Slip Velocity is usually characterized by a non-

dimensional parameter, known as the slip length 

(ls), which is the distance from the solid wall, where 

the extrapolated bulk flow velocity is equal to the 

wall velocity. A no-slip boundary condition is 

equivalent to ls = 0, where as a slip boundary 

condition results in a finite slip length, ls > 0. 

Bhattacharya & Lie (1989) and Morris et al. (1992) 

analyzed slip-length variation as a function of the 

Knudsen number using molecular dynamics and 

variable hard-sphere DSMC simulations. Following 

Bhattacharya & Lie (1989), the non-dimensional 

slip-length (ls) can be written as follows: 

 
2

s

D
u y U

l
u y

D
y

 
  

 




                                              (30) 

The velocity gradient ∂u/∂y is determined from the 

velocity profile outside the Knudsen layer, as 

illustrated in Fig 3. Slip velocity at the surface (u(y 

= D/2)) is obtained by extrapolating the bulk-flow 
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velocity profile to the wall. 

Fig. 15 shows normalized slip length obtained from 

the presented new model of Eq. 29 as well as the 

standard lattice Boltzmann method (τf=KnH) and 

DSMC (Bahukudumbi et al. 2003). 

 

 

Fig. 15. Normalized slip length as a function of 

Knudsen number. 

 
It is seen that the slip length calculated by using the 

proposed model is in a good agreement with those 

of DSMC in the wide range of Knudsen numbers 

while the standard relaxation time can only works 

well at Knudsen number less than 1; This fact 

indicates the inability of the standard model and at 

the same time it implies the suitable ability of the 

new presented correlation. It should be noted that 

this success is achieved with no changes in the 

boundary conditions. 

In Fig. 16 shear stress normalized by the 

corresponding continuum value is plotted as a 

function of Knudsen number. Because Eq. 29 is not 

valid for Kn=0 The continuum shear stress is 

calculated by τxy=μeff du/dy for Kn=0.001 with no-

slip boundary condition. It is evident from Fig 18 

that the results of the proposed model are in good 

agreement with those of DSMC (Bahukudumbi et 

al. 2003) and linear Boltzmann method (Sone et al. 

1990) which implies the suitable performance of the 

proposed model for shear stress of micro-Couette 

flow in wide range of Knudsen numbers. 
 

 
Fig. 16. Variation of normalized shear stress 

with modified Knudsen number K. 

5. CONCLUSION 

The standard LBM with the relaxation time τf=KnH 

is only able to simulate the flow features in 

continuum and slip regimes. In this paper a new 

relaxation time relation for lattice Boltzmann 

simulation of nano Couette flows is proposed. The 

new LBM is capable of simulating the flow for a 

wide range of Knudsen numbers including the 

transition and to some extend free molecular 

regimes. It is shown that the proposed model is able 

to predict the flow features in micro and nano scales 

for wide range of Kn, accurately. In slip flow 

regime the results of standard LBM and new model 

are identical. Non-dimensional velocity distribution, 

slip length and shear stress are in good agreement 

with available numerical data for wide range of 

Knudsen numbers. These results are obtained 

without incorporating any kind of adjustable slip 

models. 
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