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ABSTRACT 

In this paper, we have numerically examined models that are capable of describing free falling regimes of a 

rigid sphere in a thixotropic fluid as Laponite. By simultaneously solving the dynamical equations governing 

both sphere and fluid systems, different regimes referred to in the experimental methods, are obtained. Three 

common behavioral regimes are: i) quickly stopping object, ii) fall with decreasing velocity, and iii) falling 

with a constant velocity in a steady-state mode. The initial state of the fluids (which is a function of the aging 

time), the characteristic relaxation time of microstructure's building up under shear, the characteristic 

thickness of the yielded zone around the sphere, and critical yield stress value besides the diameter and 

density of the sphere are effective parameters that change the regime. 

 

Keywords: Free falling; Thixotropy; Aging time; Yield stress; Drag force; 4th Runge-kutta method.  

NOMENCLATURE 

a  coefficient in Herschel–Bulkley model 
b  coefficient in Herschel–Bulkley model 

dF  drag force 

yF  yield stress force 

0yF  initial yield stress force 

g  gravitational acceleration 

ck  coefficient of yielding volume surface 

L  characteristic thickness of shear 
m  mass 
n  parameters related to the fluid species 

R  radius  

S  yield volume surface 

T  stress tensor 

t  time 

aget  aging time     

V  velocity 
u  velocity vector 
  complex viscosity 

 

  parameter related to the fluid species 

  parameter related to the fluid species 

  shear rate      

c  critical shear rate  

ss  steady state shear rate 

  relaxation time 

  coefficient  

  microstructural parameter 

0  initial microstructural parameter 

ss  steady state microstructural parameter 

  viscosity 

0  limiting viscosity 

f  density of the fluid 

s  density of the sphere 

  shear stress      

ss  steady state shear stress  

y  yield stress 

0y  initial yield stress  

  stress growth exonent in the unit of time 
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1. INTRODUCTION 

The free falling of solid objects through non-

Newtonian fluids is a simple and suitable method 

for a fundamental understanding of the flow 

characteristics. It is also useful for optimizing 

industrial processes involving particle 

sedimentation. In thixotropic suspensions, the 

dependency of the rheological properties on time 

and shear rate causes a very complex settling 

problem. Thixotropic behavior in a fluid refers to 

the competition between breaking down the fluid 

microstructure under shear and forming the 

microstructure at the rest state (Møller et al., 2006; 

Coussot et al. 2002a). Laponite belongs to this 

category of fluids. In fact, in addition to thixotropy, 

it also exhibits shear thinning, yield stress, and 

viscoelastic behavior. 

Particles settling in Laponite has been reported to 

exhibit amazing motion regimes (Fazilati et al., 

2017; Ferroir et al., 2004; Bonn et al., 2002). In a 

simplistic look at the issue of free fall, especially in 

Newtonian fluids, two regimens are expected to 

emerge one including a steady state fall with a 

constant velocity and the other one a fall that 

quickly ends up to rest and causes the settling object 

almost suspended on the surface of the fluid. These 

two expected results come from a balance between 

the apparent weight and the drag force experienced 

by the settling object. For the first time, Ferroir et 

al. (2004) showed that, based on the initial state of 

Laponite which is a function of its aging time, a 

third regime also occurred which was hard to 

explain at first. They prepared a suspension of 

Laponite and left it at different times to age and 

then dropped a solid sphere such that it can settle 

under gravity in the fluid. In addition to the two 

regimes mentioned above, also, a continuously 

decreasing velocity regime was observed at 

intermediate aging times. In their opinion, 

thixotropy was the principal factor to control the 

motion. They argued that a bifurcation process 

similar to the viscosity bifurcation in an inclined 

plane experiment for thixotropic fluids might have 

taken place (Ferroir et al. 2004; Coussot et al. 

2002a & 2002b).  

Later, Tabuteau et al. (2007a) & (2007b), 
confirmed the three regimes mentioned above for 

both Carbopol and Laponite gel, depending on the 

characteristics of the solid sphere. The Carbopol gel 

they used exhibit yield stress properties but not 

thixotropic, unlike Laponite. They verified that only 

a very thin layer of the fluid around the solid object 

was subjected to shear stress, and the rest of the 

fluid was deformed elastically. Also, the thickness 

of the fluidized region in simple yield stress fluid 

could be 100 orders of magnitude larger than in 

thixotropic yield stress fluids. 

 In another interesting work, Hasani et al. (2011) 

and Fazilati et al. (2017), experimentally studied the 

free falling motion of a sphere in Laponite 

suspension and noticed a pseudo-oscillatory regime 

for certain range of aging time and diameter of the 

sphere. Due to the complexity of Laponite, the 

origin of this peculiar behavior is still unclear. 

As far as we are aware of, based on published data 

the free fall of a solid object in Laponite has only 

been investigated experimentally. In fact, the lack 

of a proper theoretical analysis to predict and 

formulate the various observed regimes is quite 

evident in this area. So, the aim of this article is to 

predict the behavioral regime of a solid sphere 

settling in a thixotropic yield stress fluid such as 

Laponite by numerically solving the dynamic 

equations governing the whole system comprising 

the fluid and the solid. 

2. MATERIALS AND METHODS 

The stress exerted on a thixotropic fluid while a 

solid particle is settling within it constantly changes 

the fluid’s microstructure and thereby the particle’s 

dynamics due to a change in the fluid’s viscosity 

and/or yield stress. So, it is obviously a challenging 

fluid mechanics problem, which is a formidable 

task. Some simplifications are therefore needed to 

make the analysis tractable. 

2.1 Mathematical Formulation of 

Laponite's Structure 

When a thixotropic fluid is subjected to shear 

stress and then left to rest, the internal bounds 

broken down by shear start rebuilding in time 

until an equilibrium is reached. In other words, 

the fluid microstructure rejuvenates under shear 

and ages at rest. The competition between 

rejuvenation and aging determines the viscosity of 

the fluid that is a function of time and imposed 

shear stress (Møller et al., 2006; Shahin et al., 

2012). If the applied stress is smaller than a 

critical value, viscosity increases in time and the 

shear rate reaches zero at rest. But, in large 

enough shear stress (greater than a critical value), 

viscosity decreases in time and therefore the fluid 

flows with much larger shear rate rather than 

predicted shear rate by simple yield stress models. 

Such phenomena, known as viscosity bifurcation, 

suggests that the material is simultaneously 

thixotropic and viscoplastic. Accordingly, 

Coussot et al. (2002b) modified Moore's model 

(which applies to thixotropic materials) such that 

it can describe the dynamical behavior of 

thixotropic materials exhibiting yield stress. The 

model is typical of generalized Newtonian fluid 

models (GNFs) with the only difference being 

that the viscosity is time-dependent in addition to 

being shear-dependent. A structural parameter, λ, 

determines the degree of restructuring of the 

microstructures within the fluid, which satisfies 

the following kinetic equation Coussot et al. 

(2002b): 

1d

dt





                                                          (1) 

where θ is the relaxation time parameter (which 

refers to the characteristic time for microstructure 

rebuild while at rest). In the model proposed by 

Coussot et al. (2002b) fluid’s viscosity is related 
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to the structural parameter in one of the two 

following forms with the first form being more 

common: 

(1 )n                                                        (2) 

e  
                                                             (3)

 

where α, β, and n are the parameters related to any 

specific fluid. In these equations,
 refers to the 

limiting viscosity at very high shear rates where the 

microstructure is totally destroyed and we have λ = 0 

(Møller et al., 2006; Coussot et al. 2002b). 

Generally, at high shear rates, the fluid reaches a 

steady state where 0/ dtd , and so the steady flow 

curve becomes (Møller et al., 2006): 

(1 / ( ) )n
ss ss ss                                   (4) 

If 0/ ssss dd    and 2n , then the sign of the 

viscosity around a critical shear rate changes. In the 

case of 2n , the critical shear rate is equal to 

 /c
  and for smaller shear rates than 

c , the 

viscosity is negative which means an instability 

appearing in the fluid (Møller et al., 2006).  

2.2 Mathematical Formulation of the Free 

Falling of a Solid Object 

The net forces applied to a settling object should be 

large enough to flow the fluid and move object 

inside it. Basically, in a yield stress fluid, the 

imposed shear stress caused by the solid object 

must overcome the critical yield stress of the fluid. 

The accurate yield stress concept and the amount 

that an object experience is a complex topic which 

still is not exactly defined (Møller et al., 2006; 

Barnes et al., 1985; Coussot, 2014; Bonn et al., 

2017). In accordance with a modified power-law 

model of Herschel–Bulkley fluids, the yield stress 

part, 
y , could be an implicit function of time as 

follows (Beaulne and Mitsoulis, 1999): 

(1 exp( )) n
y b                                       (5) 

where τ is the stress growth exponent in the unit of 

time. The other important force playing a key role is 

called the drag force, which is a function of the 

velocity of the object and the viscosity of the fluid. 

Generally, the drag force of a yield stress fluid is 

calculated in the following equation (Ferroir et al., 

2004): 

( . ).d

S

F T n udS                                                    (6) 

in which S is the surface of the yielding volume 

around the object; T is the stress tensor; n is the 

outer normal vector at any point on the surface S; 

and u is the velocity vector (Ferroir et al., 2004). 

However, calculating the drag force in thixotropic 

yield stress fluids appears to be much more 

complicated and it has not yet been properly 

modeled. In the literature, simplified empirical 

relationships have been proposed for this purpose 

(Gumulya et al., 2014; Wachs et al., 2016). For 

instance, Ferroir et al. (2004) modified the Stokes’ 

law for thixotropic fluids lacking yield stress as 

follows:  

6 (1 )n
dF RV                                         (7) 

where V and R are respectively the velocity and 

radius of the settling sphere. For thixotropic fluids 

showing yield stress, based on experimental data for 

Laponite gel (obtained under creeping-flow 

conditions) Tabuteau et al. (2007a) suggested the 

following equation for the drag force: 

( )( )n
d y ageF F t a b                                          (8) 

where a, b and n are fluid parameters and )( agey tF  

is a stress-induced yielding force modeled as: 

2( ) 4 ( )y age c y ageF t R k t                                   (9) 

where kc is the coefficient of yielding volume 

surface, σy being the fluid’s yield stress and 
aget is 

the aging time. That is to say that, the role of the 

thixotropy of Laponite gel appears in the yield 

stress part of the drag force through allowing it to 

be a function of the aging time (Tabuteau, Oppong, 

Bruyn and Coussot, 2007).  

2.3   Numerical Method 

The solid sphere and the fluid are two dependent 

systems that dynamically interact with each other. 

Therefore, the differential equations governing the 

spherical object and the fluid system are coupled 

and should be solved simultaneously. To that end, 

in the present work, we intend to use both 

experimentally proposed models by Tabuteau et al. 

(2007a) and Ferroir et al. (2004) and compared the 

result of the numerical solving with the 

experimental results for specified parameters in the 

referred papers (Ferroir et al., 2004; Tabuteau, 

Oppong, Bruyn and Coussot, 2007). In addition, we 

have also solved the equations governing the 

sphere-fluid coupled system in a general model with 

respect to both the net force applied to the sphere 

and the fluid's thixotropic behavior. 

Firstly, based on the Tabuteau et al. (2007a) model, 

the only differential equation governing the sphere 

becomes: 

3 ( )( )( )
n

c y ages f

s s

k t a bgdV

dt R

  

 


         (10) 

where
s is the density of the sphere (radius = R= 

Rmin), 
f  is the density of the fluid.  

Secondly, according to the proposed model by 

Ferroir et al. (2004), at each moment the sphere 

deals with fresh fluid. That is to say that, only a 

slight domain of depth, H, around the sphere is 

fluidized during settling. The system of coupled 

differential equations to be solved simultaneously 

are as follows: 
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2

2

0

( ) 9 (1 )

2

1 1 1
( ( ) ( ) )

s f

s s

gdV V

dt R

d t
V

dt H L H

   

 

 
 

 

 
 

    

               (11) 

where
0 shows the initial state of the fluid's 

microstructure and L refers to the characteristic 

length of the fluid around the sphere, which is 

affected by the fall. Thirdly, in a general model, we 

need to consider the dynamic of the sphere's 

velocity and the fluid's microstructure as two 

combined differential equations as follow:  

1

2

y d
F FdV mg

dt m m m

d V

dt R







  

 

                                     (12) 

which
yF , is the force generated by the yield stress 

properties of the fluid and changes exponentially as: 

2
04 exp( / 2 )y yF R V R                              (13) 

Choosing the right amount of the initial yield stress, 

0y , is a challenging matter. Here, by considering 

spheres of different radii that are released from the 

free surface of the fluid without an initial velocity, 

the value of 
0y is calculated from almost equality 

of the 
yF and the apparent weight, mg , for the 

smallest radius. Which means that even the smallest 

sphere, could overcome the yield stress or in 

another word, 
0y adopted as the critical yield 

stress,  that is a characteristic property of the fluid 

and constant for all larger radii and non-zero initial 

sphere's velocity: 

0 min

4
( )

3
y s fgR                                       (14) 

Since the drag force, 
dF , is a function of fluid's 

microstructure through the viscosity, therefore by 

considering Eqs. (2) and (3) two simple form of 

modeled drag force exerted on the sphere are: 

26 (1 )dF RV                                        (15)
 

6dF RV e 
                                              (16)

 

We eventually put 
yF and 

dF based on Eqs. (13), 

(15) and (16) on Eq.(12) and have numerically 

investigated time variations of both the sphere's 

velocity and the fluid's microstructure. 

Here in this work, the sphere-fluid equations system 

of Eqs.(10) and (11) and couples system of Eq. (12) 

using Eqs. (13),(14),(15) or(16) were solved in one 

dimension (vertically) for a fluid column of selected 

heights (based on the model) and neglected effect of 

walls. The initial velocity of the sphere is a function 

of its height that releases relative to the free surface 

of the fluid which is referred to in the next section 
with more detail. The initial state of the fluid 

microstructure is 10  . 

To solve the above system of differential equations, 

we rely on the 4th-order Runge-Kutta method and 

Fortran 90 programming language. 

3. RESULTS AND DISCUSSION 

3.1 H. Tabuteau et al. Model 

In this section, based on Eq. (10), we investigated a 

sphere's free-falling motion in a vessel of Laponite 

with a height of 45cm and 3/1012 mKgf  . A 

sphere of radius R = 1.99cm assuming to drop from 

a height of 1cm above the fluid; its initial velocity at 

the free surface of the fluid is 44 cm/s. Other chosen 

parameters are: a=0.93; b=1; n=0.5; kc=1.085; and 

Pay 45  for tage =4min which is extracted from 

Tabuteau, Oppong, Bruyn and Coussot (2007).  

We have examined the different characteristic 

length of the fluidized layer around the sphere for a 

constant 3/1589 mKgfs   . As can be 

seen in Fig. 1, where the sphere moves into the fluid 

of RL 3.0  : 

1- For the small thickness of L, there was no 

movement in the fluid.  

2- Increasing L, very quickly reduced the velocity 

and then a quick steady state was obtained. 

3- The larger L led to the larger steady-state's 

velocities but not at a sharp rate. Larger steady 

state's velocity means a shorter falling time of 

reaching to the bottom of the vessel.  

In Fig. 2, L = 1.009R for different value of  and  

it can be seen that: 

1- An increasing velocity motion was observed for 

a large enough sphere's density. 

2- For the smaller value of  , the velocity 

decreased till reached a steady state. More 

decreasing of  , only causes more abruptly 

and faster decreasing and lower value of steady-

state's velocity.  

3- For the very small value of  , the sphere stops 

immediately. 

A different value of L shows similar trend 

depending on the range of the density. As 

mentioned, an increasing velocity regime took place 

in so large amount of  where the drag force and 

the yield stress are negligible compared to the 

apparent weight. Also, if )( agey t  reaches zero, the 

velocity will be increased for any value of  . It 

should be noted that a slow-moving behavior which 

suspends the sphere in the fluid, can not be seen in 

this model. According to the height of the fluid, the 

sphere eventually reaches the end of the vessel, 

though at very low steady-state velocity. In 

summary, we obtained that numerical solution of 

Eq. (10) does not verify the experimental result of 
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Tabuteau et. al. (2007a), may be due to the failure 

to follow Laponite's flow-curve from Herschel–

Bulkley's model. 

 

 
Fig. 1. Changes in sphere's velocity with time for 

different L/R = 0.3, 0.5, 1.009, 1.225, 2.215 in 

Tabuteau et al. (2007a) model. Here  = 1589 

Kg/m3. The inset shows variation until the sphere 

reaches the end of the vessel. 

 

 

 
Fig. 2. Changes in the sphere's velocity with time 

for different  = 1057, 1153, 1389, 1589, 3250, 

5650, 6450 Kg/m3 in Tabuteau et al. (2007a) 

model. Here tage = 4min and the thickness of the 

fluidized layer around the sphere is 1.009R. 

 

 
3.2   T. Ferroir et al. Model 

Numerical solution of the coupled Eq. (11) for an 

iron spherical object of R=1.55mm and 
3/7780 mKgs  ; with an initial velocity of 1cm/s 

which dropped freely inside a column of Laponite 

gel with heights of 21cm and 3/1017 mKgf  ; 

suggested that the characteristic time of relaxation 

time, θ, plays a decisive role on the motion 

behavior. Fix characteristic parameters related to 

dynamical changes of λ assume as L =2R, H = 6R,  

λ0 =1, µ0 =1Pa.s, α=1, and β=1 but θ varies from 

0.1s to 50s. The result in Fig. 3 is shown that: 

1- For a small value of θ, about 0.1s, the sphere 

stopped as soon as it dropped.  

2- For a smaller value of θ than 10s, a decreasing 

velocity regime observed. 

3- If θ be as large as the 50s a steady state regime 

happened.  

Since the experimental results were shown that 

quickly stopping regime took place in a long 

amount of tage and here in short θ; and also in the 

opposite, the steady state regime took place in a 

short amount of tage, and here in long θ; thus the 

characteristic time of relaxation, θ, should be 

inversely related to the aging time (Ferroir et al., 

2004). Investigation of the effect of λ0 for 

constant θ also suggested that: 

1- In loose initial microstructure, a steady state 

regime observed.  

2- In strong enough λ0, the sphere's motion stopped 

from the beginning.  

3- A decreasing velocity regime observed for the 

intermediate λ0.  

Therefore, as a result, we argued that a longer aging 

time before settling, is equivalent to a larger 

initial state of λ0, and as well, a longer amount of 

θ after settling means a larger value of λ at any 

moment of the time. 

 

 
Fig. 3. Changes in velocity with depth for 

different θ = 0.1, 0.4, 0.7, 1, 1.3, 4.3, 7.3, 10.3, 

24.3  and 50s,  in T. Ferroir et al. model. 

 

3.3 A Coupled Fluid and Solid Object 

System  

In this section, we report the result and detail of 

solving the generally coupled Eq. (12) in two 

forms by using Eqs. (13), (14), (15) or (16). 

Constant parameters are:  
3/7000 mKgs  , 2

0 /117 mNy  , 1001.0  s , 

n =2; and the value of rest parameters all are unit. 

Calculations repeated for different radii of the 

sphere and two initial velocities: zero and 44cm/s 

respectively for a sphere released from the free 

surface of the fluid and from 1cm above it. Also, 

both models of viscosity formulation of the drag 

force examined as Eqs. (15) and (16). We defined 
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the height of the fluid's column large enough and 

a function of time and taken the time long enough 

so that the sphere could experience all the 

regimes.  

In Figs. 4 to 6 is shown three regimes for a radius 

variation: 

1- For a small radius about 2.5mm, the motion 

rapidly stopped. 

2- For radii larger than 2.5mm to 2.85mm, a 

decreasing velocity regime observed which the 

sphere stopped finally.  

3- More large radii motion reached to a steady 

state regime where the sphere moved with a 

constant velocity.  

Selecting different values for the initial velocity 

or changing the viscosity relationship according 

to Eq. (2) or (3), only affected the velocity value 

at any moment but it did not switch the regime. 

We noticed that in decreasing velocity regime 

before the sphere stops completely, the velocity 

grows up. It seems, that this suddenly rising 

mode of the velocity had no physical meaning 

and probably was related to some numerical 

instability of running the Fortran 90 code of RK4 

methods, and velocity finally reached to zero as it 

is shown in Fig. 7.  

Therefore, comparing with scientific literature, we 

can say that this general model is capable of 

qualitatively predicting the three experimentally 

reported regimes (Ferroir et al., 2004; Tabuteau, 

Oppong, Bruyn and Coussot, 2007). But due to the 

main role of the fluid's aging time affecting the 

settling (which is not defined in the system of 

equations), the velocity can not quantitatively be 

compared.  

In Fig. 8 it can be seen how the structural 

parameter, λ, changes with time. When the 

velocity decreased, λ increased and conversely. 

Also, when the velocity of the sphere reaches a 

steady state, the dynamical variation of λ is 

equaled zero and microstructure indicates a stable 

steady state. 

 

 

 
Fig. 4. Changes in depth of the sphere with time 

for different radii. Here V0 = 44 cm/s and the 

viscosity follows Eq. (3). 

 

 
Fig. 5. Changes in the velocity with time for 

different radii without initial velocity. Here the 

viscosity follows Eq. (2). 

 

 
Fig. 6. Changes in the velocity with time for 

different radii. Here V0 = 44cm/s and the 

viscosity follows Eq. (2) 

 

 
Fig. 7. Changes in the velocity with time for 

different radii without initial velocity. Here the 

viscosity follows Eq. (3). 

 

 
Fig. 8. Changes in the structural parameter, λ, 

with time for different radii. Here V0 = 44 cm/s  

and the viscosity follows Eq. (2). 
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4 FUTURE IDEA 

The irregular oscillating motion has been observed 

in Hasani et al. (2011) and Fazilati et al. (2017) 

experimental tests, is one of the most amazing 

regimes of the free falling sphere in Laponite gel. 

Here we played a bit with experimental data of 

Fazilati et al. (2017) and have obtained the flow 

curve of the fluid around the sphere due to its 

pseudo-oscillatory motion,  and then compared it 

with the flow curve of Laponite gel which Fazilati 

et al. (2017) derived from the rheological test. It 

was determined that in a certain range of shear rates 

(in the shear stress control rheological test) the 

viscosity of the fluid becomes negative (in 

equivalent to the slope of the flow curve), that it is 

to say an unknown instability took place in the fluid 

(Fielding, 2016; Maki and Renardy, 2012; Cheng, 

2003). As can be seen in Fig. 9, the flow curve 

caused by the settling of the sphere and the unstable 

branch of the flow curve caused by the rheology test 

of laponite, both occur in the same range of shear 

rates. Therefore, may it can be said that reaching to 

a certain range of shear rates are causing instability 

and the reason for the pseudo-oscillatory motion of 

the sphere is due to the occurrence of instability in 

the fluid. Considering the structural model of λ for 

thixotropic fluids (Eq. (4)) which predicts an 

unstable steady state, may lead us to model and 

analytically understand the cause of the fluctuation 

in the sphere's velocity (Moller, 2008). In the next 

works, we will try to explain and model the pseudo-

oscillation settling using a suitable numerical 

method which can predict the instability (Bönisch et 
al., 2007; Jenny et al., 2017 ). 

 

 
Fig. 9. Flow curve of Laponite gel: ( ) shear 

rate control from 10-3 s-1 to 104 s-1 in 71 steps of 

5s duration  and ( ) Shear stress control from 

0 to 40Pa in 80 steps of 5s duration (Fazilati et 

al., 2017), flow curve of fluid due to falling a 

sphere of R=1.01mm  in Laponite suspension: 

( ) with an aging time of 58min, and ( ) with 

an aging time of 42min. 
 

5 CONCLUSION 

In conclusion, when a spherical solid sphere falls 

under the gravity into the Laponite gel, based on 

experimental background, four regimes for velocity 

variation have been seen (Fazilati et al., 2017). Here 

we numerically investigated and modeled three 

common regimes. The initial state of the fluid's 

microstructure,
0 , aging time and the 

characteristic relaxation time of the fluid, θ, 

alongside the size and density of the sphere control 

behavioral regimes of free falling. We noticed that 

aging time and θ play an opposite impact on the 

sphere movement. The thickness of the fluid layer 

around the sphere which affected by the stress field 

induced by the object, L, also played a fundamental 

role in the fluid and object interaction and need 

further study to determine its exact amount. 

Therefore, choosing a perfect combination of these 

four major quantities: σy, 0 , θ, and L, is very 

influential on how the sphere moves and the 

velocity changes. 

In summary, for a thixotropic yield stress fluid we 

numerically observed these regimes as follow: 

1- In the same initial state fluids, the motion of a 

sphere with a small radius or density quickly 

stopped. Also for a constant sphere, a fluid 

with small characteristic relaxation time, θ, or 

fluid with a strong initial state of 

microstructure, made the sphere to stop fast as 

soon as it starts to move. 

2- The next regime has been observed for 

spheres with large density or large radius in 

the same fluid's initial state, and also for same 

spheres in a fluid with weak microstructure or 

long θ; which the object fell in a steady state 

for both velocity and fluid's microstructure. 

3- Intermediate size spheres in the same initial 

state fluids and also similar spheres in middle 

initial state fluid or mean θ, have shown a 

decreasing velocity regime that ultimately 

stopped. 

4- A pseudo-oscillating regime in particular mix-

up of the aging time and solid object's size 

only reported in experimental references and 

not explained yet. However, we guessed that 

it is reasonably due to some instability in the 

microstructure of the fluid. 

APPENDIX 1: LAPONITE, THE STRUCTURE, 

APPLICATIONS, AND RHEOLOGICAL  

BEHAVIOR 

Laponite is a synthetic mineral clay that composed 

from nano-disk particles with highly negatively 

charged face (diameter about 25nm) and a 

positively charged rim (thickness about 0.92nm). Its 

crystalline structure consists of layered silicate 

similar to other clay minerals housing a central 

magnesium core between two silica sheets (Tomás, 

H. et al., 2018; Cummins, . 2007). A schematic 

representation of Laponite nanocrystal geometry 

and chemical structure is shown in Fig. 10.  

When Laponite powder is dispersed in water, a 

colloidal suspension with different phases forms via 

swelling (Tomás, et al., 2018; Cummins, . 2007; 
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Ruzicka, et al., 2011; Bonn, et al., 1999). Long-

time Laponite phases discussed in literature 

incorporate liquid with clusters, Wigner glass, high-

density gel or ‘house of cards’ structure, low-

density gel and nematic phases (Laponite B). 

Growing a phase potentially depends on particles 

density, ionic strength, long or short range part of 

the electrostatic interactions and time of rest (aging 

time). In Fig. 11 the long-time Laponite phase 

diagram is reported in the (Cw, Cs) where Cw is 

clay concentration and Cs is salt concentration. 

 

 
Fig. 10. Schematic representation of Laponite 

nanocrystal geometry (disk-like) and chemical 

structure (Tomás, et al., 2018). 

 

 
Fig. 11. Long- time phase diagram of Laponite 

suspension (Ruzicka, et al., 2011) 

 

 

 
Fig. 12. Complex viscosity versus shear rate for a 

1.5 wt% (  ) and 3.7 wt% ( ) Laponite 

suspension (Abou, et al., 2003). 

 

 

According to Bonn et al. (2002) experimentally 

investigation of the role of aging and rejuvenation 

of Laponite, complex viscosity increases by 

increasing the aging time which refers to its 

thixotropic properties. Laponite gel is strongly 

thixotropic and the rate of restructuring depends on 

composition, electrolyte level, age of the dispersion, 

and temperature (Cummins, 2007; Ahlfeld, et al., 

2017). Laponite is extensively used as a rheological 

modifying or thixotropic agent in many liquid or 

suspension products found in agriculture, building, 

household, and personal care, surface coating, 

paper, and polymer film industries.  

According to the rheological measuring tests of 

Fazilatie et al. (2017) which are shown in Fig. 9,  
by imposing the shear stress, at critical stress, there 

is a plateau region where a range of shear rates are 

inaccessible and a jump from the low shear rate 

(high viscosity) branch to the high shear rate (low 

viscosity) branch is observed. By imposing the 

shear rate, a Vander Waals-like loop with a part 

with a negative slope is observed that to say an 

instability flow appears in the fluid. 

Abou et al. (2003) also measured the flow curve of 

a 1.5 wt% Laponite suspension, that is shown in 

Fig. 12. As can be seen, the viscosity decreases by 

increasing the shear rate, which is a sign of shear-

thinning behavior of Laponite gel and characterized 

by a power law of viscosity: 
1.06.0   . Due to 

strong shear-thinning properties of Laponite, it is 

well known as a rheological enhancer of polymeric 

solutions (Ahlfeld, et al. 2017). In addition, it is 

shown that Laponite is strongly viscoelastic, even at 

very low particle concentrations (Ahlfeld, et al. 

2017; Mourchid, et al., 1998).  

In another work, Fall and Bonn (2012) exhibited a 

very strong shear thickening behavior of Laponite 

by addition of polyethylene oxide (PEO). Because 

of the shear thickening property, it is used in a 

number of applications such as cosmetics and paints 

(Ahlfeld, et al. 2017).   

Commercially, Laponite RD and XLG are most 

common grades which Laponite RD is most 

frequently studied grade, is used in many household 

and industrial products including cleansers, surface 

coatings, and ceramic glazes. Laponite XLG is a 

high-purity grade of Laponite RD, processed to 

remove impurities such as heavy metals e.g. lead 

and arsenic. This grade is used in personal care and 

cosmetic products including shampoos and 

sunscreens (Cummins, H. Z. 2007). 
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