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ABSTRACT 

In this paper we analyze the interaction of water waves with a permeable barrier which is slightly perturbed 

from its vertical position within the framework of linearised water wave theory. The barrier is placed in water 

of finite depth. Two different kinds of barriers are examined, namely, (I) a partially immersed barrier and (II) 

a submerged bottom standing barrier. The governing boundary value problem involving the velocity potential 

function is split into two boundary value problems involving the zeroth order as well as the first order velocity 

potential functions by using a simplified perturbation technique. The zeroth order reflection and transmission 

coefficients which are due to a vertical permeable barrier are evaluated by solving a Fredholm integral equation 

of second kind numerically by using a one term Galerkin approximation. Green’s theorem is applied to evaluate 

the first order reflection and transmission coefficients. The first order transmission coefficient vanishes 

irrespective of the shape of the barrier. The numerical values for the first order reflection coefficient are 

determined by choosing some appropriate shape functions. The numerical results for the zeroth order reflection 

coefficient which stand for the case of a vertical barrier are validated against the known results for both the 

permeable and impermeable barriers. The first order reflection curves are also compared by making the porosity 
constant to be zero with those available in the literature for an impermeable nearly vertical barrier. 

Keywords: Water waves; Permeable barrier; Perturbation technique; Galerkin approximation. 

 

 

1. INTRODUCTION 

The theoretical study of problems of scattering of 

surface water waves by barriers involves several 

important and interesting concepts of mathematical 

analysis which have been developed over the last few 

decades. These problems draw attention be-cause of 

its diverse applications in coastal engineering such as 

construction of breakwaters. Breakwaters play an 

important role to protect the coasts of the sea and 

harbors from the waves. The problem of scattering of 

water waves by various kinds of barriers has been 

studied well in literature by employing the 

assumption of linear theory of water waves (cf. Islam 

et al., 2018). Many researchers developed different 

mathematical methods in search for solutions to such 

scattering problems. However, it has been found that 

explicit solutions are possible to determine when a 

train of normally incident waves interact with thin 

vertical barriers present in deep water. Dean (1945) 

used complex variable technique to investigate the 

problem of water wave scattering by a submerged 

vertical barrier. Ursell (1947) considered the 

problem of scattering of normally incident water 

waves by a partially immersed barrier and utilized 

the Havelock’s expansion of water wave potential to 

obtain the solution in closed form. Williams (1966) 

applied a simple reduction method to obtain the 

reflection and the transmission coefficients for the 

problem involving a surface piercing barrier. Evans 

(1970) studied the submerged plate problem and 

employed the complex variable technique to obtain 

the solution explicitly. Porter (1972) obtained the 

analytical solution for completely submerged 

vertical wall with a gap using complex variable 

method as well as an integral equation procedure 

based on the Green’s integral theorem. Chakrabarti 

and Vijaya Bharathi (1992) used a modified Green’s 

function technique to solve the water wave scattering 

problem by barriers (namely partially immersed 

barrier, submerged bottom standing barrier) by 

reducing it to uncoupled integral equations. They 

obtained the solution in the closed form by applying 

integral transform technique. 

For a non-vertical barrier the governing boundary 

value problem does not possess any explicit solution. 

Parsons and Martin (1992, 1994) formulated the 

problem of scattering by flat or curved plate in terms 

of a first kind hypersingular integral equation for the 
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discontinuity in the potential across the plate. McIver 

and Urka (1995) used two methods, one of them is 

based on the matched series expansions and the other 

involves a variational approximation procedure to 

obtain the numerical results for the reflection 

coefficient for a circular arc shaped plate submerged 

into the deep water. Parsons and McIver (1999) 

studied the problem of scattering of water waves by 

an inclined surface piercing plate by applying the 

method of matched asymptotic expansion. Zaghian 

et al. (2017) carried out an experimental study using 

the Particle Image Velocimetry (PIV) technique to 

investigate the interaction of solitary waves with an 

inclined plate. 

All the works cited above are related with rigid or 

impermeable barriers. Failure of several rigid 

structures as wave barriers leads to the use of porous 

structures in coastal environment. Porous structures 

such as porous plates, rubble-mounds and concrete 

armors are often used in coastal engineering for 

dissipating wave energy from open sea. The topic of 

wave scattering by porous structures gained the 

importance since the analytical development of wave 

motion through porous media by Sollitt and Cross 

(1972) who derived a theoretical model based on the 

modification of Darcy’s law to obtain the reflection 

and the transmission coefficients of normally 

incident ocean waves passing across a permeable 

structure. Macaskill (1979) employed Green’s 

integral theorem to study the wave scattering 

problem related to a permeable thin barrier by 

converting it to integrodifferential equations. 

Chwang (1983) developed porous wavewmaker 

theory to analyze surface waves on water of finite 

depth, produced by horizontal oscillations of a 

porous vertical plate. Dalrymple et al. (1991) 

obtained eigenfunction solution to analyze the effect 

of wave past a porous structure of finite thickness. 

Yu (1995) employed an approximate method to solve 

the problem of scattering of surface water waves by 

a semi-infinite porous breakwater. McIver (1999) 

used WeinerHopf technique to obtain the asymptotic 

results for the problem of scattering by thin porous 

breakwater. Chwang and Chan (1998) published a 

review on the interaction between porous media and 

wave motion. Lee and Chwang (2000) used the 

method of eigenfunction expansion for the problem 

of scattering and radiation of small amplitude water 

waves by thin vertical porous barrier in the water of 

finite depth in two dimensions. Boundary value 

problems were converted to a dual series relation and 

applying least square method solutions were 

obtained. Huang et al. (2003) developed a numerical 

model to examine the effect of structural 

permeability on the interaction of solitary waves and 

porous sub-merged structure. Tsai and Young (2011) 

investigated the water wave diffraction by a semi-

infinite thin porous breakwater using a combination 

of the method of fundamental solutions and the 

domain decomposition method. Gayen and Mondal 

(2014, 2015) employed the technique of 

hypersingular integral equation to study the 

reflective properties of water waves past an inclined 

porous plate and a pair of vertical porous plates 

respectively. 

In this paper we consider a slightly curved permeable 

barrier. In the water wave literature this type of 

barriers is referred to as ‘nearly vertical’ barriers. 

Scattering of surface water waves by partially 

immersed nearly vertical barrier was first 

investigated by Shaw (1985) by using a perturbation 

technique that involved the solution of a singular 

integral equation. Later, Mandal and Chakrabarti 

(1989) employed a perturbation technique directly to 

the governing partial differential equation, together 

with the Green’s integral theorem to deter-mine the 

first order correction to the reflection and 

transmission coefficients in deep water. Mandal and 

Banerjea (1992) employed a method based on 

Havelock’s expansion of water wave potential to 

solve the boundary value problem for the first or-der 

correction to the velocity potential in the problem of 

diffraction of water waves by a partially immersed 

nearly vertical barrier. Chakrabarti and Sahoo (1996) 

employed the method of perturbation analysis with 

the application of Green’s integral theorem to obtain 

the first order correction of the reflection and 

transmission coefficients for nearly vertical porous 

wall in deep water. Kaligatla and Manam (2014) 

extended the above work to the case when the surface 

of water is covered by a thin sheet of ice. They 

employed the perturbation expansion to the 

governing boundary value problem. The boundary 

value problem for the zeroth order potential function 

was solved explicitly by making use of the 

orthogonal mode-coupling relation. The first order 

reflection coefficient was determined analytically by 

two different methods, one was based on Green’s 

second identity and the other was based on the first 

kind integral equation. Banerjea et al. (2017) 

considered the problem of scattering of flexural 

gravity waves by a rigid thin plate consists of two 

nearly vertical plates submerged in deep water. 

The novelty of the present research lies in the 

geometry of the plates and the method of solution 

used here to tackle this problem. Apart from the 

papers of Chakrabarti and Sahoo (1996) and 

Kaligatla and Manam (2014) there does not exist any 

paper which discusses the influence of nearly vertical 

porous barriers on the wave propagation. Both of 

these papers deal with a vertical wall which ex-tend 

from free surface till the bottom of water. The 

objective of the present paper is to analyze the 

reflective properties of nearly vertical porous partial 

barriers present in finite depth water. The waves are 

incident on the barriers obliquely. We consider two 

types of nearly vertical barriers namely (I) partially 

immersed barrier, (II) submerged bottom standing 

barrier. 

We apply Galerkin approximation to solve our 

present problem. The Galerkin approximation 

method is a useful method to obtain an approximate 

solution of integral equations. In this method, the 

unknown function is expanded in terms of a finite 

series involving real valued independent functions. 

The advantage of this method is that the set of 

functions need not to be an orthogonal set or not 

necessary to be complete. The Galerkin method 

converges faster than the collocation method (cf. 

Kanoria and Mandal, 2002). However, more 
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computational time is needed for the Galerkin 

method compared to the collocation method because 

we have to compute a double integral at every stage 

in the former while a single integral in the latter. 

The plan of the paper is as follows. The mathematical 

formulation of the problem is described in Section 2. 

In Section 3, a simplified perturbation expansion is 

employed in terms of a small parameter ε, for the 

velocity potential function together with the 

reflection and the transmission coefficients. Here ε is 

a dimensionless small parameter giving a measure of 

maximum deviation of the curved barrier from the 

vertical. The perturbation expansions of the velocity 

potential function and the reflection and the 

transmission coefficients are substituted into the 

governing partial differential equation, the boundary 

conditions, the edge condition as well as into the 

radiation condition. Equating the coefficients of the 

similar powers of the parameter ε, two independent 

boundary value problems (BVP) for the zeroth order 

and the first order potential functions are obtained. 

Martha and Bora (2007) and Panda (2016) used 

similar kind of perturbation involving a small 

parameter ε to investigate the oblique water wave 

diffraction by an ocean bed having small undulation. 

There the parameter ε is a measure of smallness of 

the bottom undulation. In Section 4.1, we solve the 

BVP for the zeroth order potential function (ϕ0). It 

may be noted that this BVP actually stands for wave 

scattering by a vertical porous barrier. In order to 

solve this BVP we employ Havelock’s expansion for 

ϕ0 and Havelock’s inversion theorem followed by the 

utilisation of porous plate condition. This produces a 

Fredholm integral equation of second kind in the 

potential difference across the barrier. A one term 

Galerkin approximation is employed to solve the 

integral equation. This requires representation of the 

unknown function to be presented as a product of an 

unknown constant and a known function to be 

chosen properly. We choose these functions to be the 

solutions of the scattering problems involving a thin 

vertical impermeable barrier present in deep water. 

Once the solution to the integral equation is 

determined, this is used to compute the zeroth order 

reflection coefficient. Although many scattering 

problems involving rigid vertical barriers are solved 

by employing Galerkin approximation (cf. Mandal 

and Dolai, 1994; Porter and Evans, 1995; 

Shivakumara et al., 2012), this approach is some-

what new to solve any porous barrier problem. In 

Section 4.2, we determine the first order reflection 

and transmission coefficients by the application of 

Green’s integral theorem. It is analytically shown 

that the first order transmission coefficient vanishes 

identically. The first order reflection coefficient is 

determined in terms of an integral involving the 

shape function. In Section 5, the numerical results 

are analyzed with the help of a number of graphs. 

Finally, conclusions are made in Section 6. 

2. MATHEMATICAL FORMULATION 

Cartesian coordinates are chosen in which the 

positive y-axis is directed vertically downwards 

inside the fluid region and the xz plane lies along the 

mean free surface. The fluid occupies the region 0 < 

y < h, −∞ < x, z < ∞, where h is the uniform depth of 

water. The fluid is assumed to be inviscid, 

incompressible, homogeneous and the fluid motion 

is irrotational as well as time harmonic under the 

action of gravity only. The geometry of the problem 

is depicted in Fig. 1. If we denote the vertical barrier 

by L, then the position of the nearly vertical barrier 

can be represented as 

: ε ( ),   S x c y y L                   (1) 

 

(a) Partially immersed barrier 

 

 
(b) Submerged bottom standing barrier 

Fig. 1. Schematic diagram of nearly vertical 

barrier. 

 

where c(y) is a bounded continuous function and 

vanishes at the ends of the barrier. ε is a 

dimensionless small parameter representing a 

measure of maximum deviation from the vertical 

barrier L. Assuming the linearised water wave 

theory, let a train of incident surface waves be 

described by the potential function Re{ϕinc(x, 

y)eiνz−iσt } where 

i0

0

cosh ( )
( , ) .

cosh

inc xk h y
x y e

k h




  

Here σ is the angular frequency, µ = k0 cosα, ν = k0 

sinα; k0 being the unique positive real root of the 

equation k tanhkh = K with 2K g  . α is the 
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angle of incidence of the waves, g is the acceleration 

due to gravity and t denotes the time. 

Let the resulting motion in the fluid be described by 

the velocity potential Re{ϕ(x,y)eiνz−iσt }. Then ϕ(x,y) 

satisfies the modified Helmholtz equation (cf. 

Mandal and Chakrabarti, 2000) 

2 2( ν ) 0       in the fluid region,                        (2) 

along with the free surface boundary condition 

0     on  0,K y
y





  


                 (3) 

the bottom boundary condition 

0     on  ,y h
y


 


                 (4) 

the boundary condition on the permeable barrier 

 0 (ε ( ) , ) (ε ( ) , )   on .ik G c y y c y y S
n


      
 

(5) 

Here n is the outward normal direction and G(Gr + 

iGi) is the porous parameter defined by Chwang 

(1983). 

The velocity potential ϕ satisfies the edge condition 

as given by 

1/2    is bounded as 0r r                  (6) 

where r is the distance of any fluid particle from 

either of the sharp edges of the nearly vertical barrier. 

Let a train of regular, small-amplitude progressive 

waves propagate towards the barrier from the 

direction of x = −∞. When it falls on the barrier, some 

part of it is transmitted above, below and through the 

pores of the barrier and rest of it is reflected back. If 

R and T denote the reflection coefficient and the 

transmission coefficient respectively, then the 

radiation conditions at infinity can be written as 

 
( , )                             as  ,

( , )
( , ) ( , )       as  .

inc

inc inc

T x y x
x y

x y R x y x




 

 


   

(7) 

Assuming that the parameter ε to be very small, and 

neglecting the O(ε2) terms, the boundary condition 

on the barrier S can be expressed, in approximate 

form, on x = 0±,y ∈ L, as 

0

(0 , ) ε { ( ) }

[ (0 , ) (0 , ) ε ( ) (0 , )

                         ε ( ) (0 , )]    for .

d
y c y

x dy y

ik G y y c y y
x

c y y y L
x

 


 





  



 
 

 


  








     (8) 

3. PERTURBATION FORMULATION 

Due to involvement of the small parameter ε in the 

boundary condition (8) we take the perturbation 

expansions for ϕ, R and T in terms of the parameter 

ε, as given by 

2
0 1

2
0 1

2
0 1

ε (ε ),

ε (ε ),    

ε (ε ).

O

R R R O

T T T O

     



   


   

                 (9) 

After substituting these expansions into the 

governing Eq. (2), the boundary conditions (3) and 

(4), together with the edge condition (6) and the 

conditions at the infinity (7), two boundary value 

problems for the functions ϕ0 and ϕ1 are derived as 

given below. 

3.1  Boundary Value Problem for the Zeroth 

Order Potential Function ϕ0 

The function ϕ0 (x,y) satisfies 

2 2
0( ν ) 0     in   ,  0 ,x y h        (10) 

0
0 0     on  0,K y

y





  


               (11) 

0 0     on  ,y h
y


 


               (12) 

    0
0 0 0(0 , ) [ (0 , ) (0 , )] on y ik G y y y L

x


   

   


(13) 

1/2
0    is bounded as 0.r r                (14) 

The conditions at the infinity are given by 

 
0

0

0

( , )                             as  ,
( , )

( , ) ( , )       as  .

inc

inc inc

T x y x
x y

x y R x y x




 

 


   

(15) 

3.2  Boundary value problem for the first 

order potential function ϕ1 

The function ϕ1 (x,y) satisfies 

2 2
1( ν ) 0     in   ,  0 ,x y h        (16) 

1
1 0     on  0,K y

y





  


               (17) 

1 0     on  ,y h
y


 


               (18) 

0

0 1 1

(0 , ) { ( ) (0 , )}

[ (0 , ) (0 , )  on  ,

d
y c y y

x dy y

ik G y y y L



 

 

 




 

   

            (19) 

1/2
1   is bounded as 0.r r                (20) 

The conditions at the infinity are given by 

1
1

1

( , )              as  ,
( , )

( , )          as  .

inc

inc

T x y x
x y

R x y x






 


  

       (21) 

Note that, if we put G = 0 in the Eq. (19), then the 
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condition on an impermeable barrier is retrieved (cf. 

Mandal and Chakrabarti, 1989). 

4. METHOD OF SOLUTION 

4.1   Method of Solution for the Zeroth Order 

Potential Function ϕ0 

We employ the method of Havelock’s expansion to 

obtain the solution for the zeroth order potential 

function ϕ0 (x,y). Thus, we express ϕ0 (x,y) satisfying 

the Eq. (10) and the conditions (11), (12) and (15), as 

given by 

0

1
0

0

1

( , )

cos ( )    >0,

( , )
( , ) ( , )

cos ( )      <0, 

n

n

inc

s x
n n

n

inc inc

s x
n n

n

T x y

A k h y e x

x y
x y R x y

B k h y e x




 













 



 


 






        (22) 

where 
2 2 2

n ns k v  and kn(n = 1,2,...)’s are positive 

real roots of K + k tankh = 0. Let f (y) and g(y) denote 

the fluid velocity and potential difference across the 

barrier respectively. Thus 

0( ) (0, )     0f y y y h
x


  


              (23) 

and 

0 0( ) (0 , ) (0 , )     0 .g y y y y h                (24) 

The normal velocity of the fluid passing through the 

pores of the barrier is linearly proportional to the 

potential difference between the two sides of the 

barrier (cf. Chwang, 1983) and since the pressure is 

continuous across the line below the barrier the 

functions f (y) and g(y) are connected as 

0( ) i ( )      on  f y k Gg y y L                 (25) 

and 

 ( ) 0     on  0, .g y y L h L                  (26) 

Using (22) the expressions for f(y) and g(y) are 

obtained as 

0
0

0

1

0
0

0

1

cosh ( )
(0 , ) i

cosh

           cos ( ),

( )
cosh ( )

(0 , ) i (1 )
cosh

cos ( ),      0

n n n
n

n n n
n

k h y
y T

x k h

S A k h y

f y
k h y

y R
x k h

s B k h y y h
























  


 
  




   






  

(27) 

0
0 0

0

1

cosh ( )
( ) ( 1)

cosh

   ( )cos ( ),   0 .n n n
n

k h y
g y T R

k h

A B k h y y h





  

    

    (28) 

Employing the Havelock’s inversion formula the 

constants R0 and T0, the functions An and Bn and the 

relation between them are determined in terms of the 

function f(y) as, 

0 0
0 0

0 0

00

4i cosh
1

(2 sinh 2 )

                       ( )cosh ( ) ,
h

k k h
T R

k h k h

f y k h y dy


   





           (29) 

0

4

(2 sin 2 )

                       ( )cos ( ) .

n
n n

n n n

h

n

k
A B

s k h k h

f y k h y dy

   




             (30) 

In our present analysis, Eqs. (29) and (30) which 

represent the constants R0 and T0 and the functions 

An and Bn in terms of the function f(y) do not play 

much significant role. But from these equations it is 

possible to obtain relations between the reflection 

coefficient R0 and the transmission coefficient T0, 

and between the functions An and Bn which we will 

use for further analysis. 

Next, employing Havelock’s inversion formula on 

(28), we obtain 

0 0
0 0

0 0

00

4 cosh
1

2 sinh 2

                       ( )cosh ( )
h

k k h
T R

k h k h

g y k h y dy

  




           (31) 

00

4

2 sin 2

                       ( )cos ( ) ,

n
n n

n n

h

k
A B

k h k h

g y k h y dy

 




             (32) 

Now, using the relations between the constants R0 

and T0 and the functions An and Bn obtained from 

(29) and (30) together with the Eq. (26) we get these 

constants and functions in terms of the potential 

difference g(y) as 

0 0
0 0

0 0

0

2 cosh
1

2 sinh 2

                       ( )cosh ( ) ,

L

k k h
R T

k h k h

g y k h y dy

  



            (33) 

2

2 sin 2

                       ( )cos ( ) .

n
n n

n n

n

L

k
A B

k h k h

g y k h y dy

   



               (34) 

Substituting the expression of Bn from (34) into the 

Eq. (27) and then using the relation (25) an integral 

equation in g(y) is obtained as 
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2
0 0

0 0

0 0

0

cosh i
( ) ( , ) ( )

2 sinh 2 2

i (1 ) cosh ( )
                  ,   

2 cosh

L

k h k G
g u M y u du g y

k h k h

R k h y
y L

k h



 


 




 (35) 

where the kernel M(y,u) is given by 

0 0
2ξ 0

0

1

ξ

2 sinh 2
( , ) lim

cosh

2 sin 2

               cos ( )cos ( ) ;n

n n

n nn

k
n n

k h k h
M y u

k h

s k

k h k h

k h u k h y e














 

               (36) 

the exponential term being introduced to ensure the 

convergence of the series. The above Eq. (35) is a 

non-homogeneous second kind integral equation 

for the potential difference across the barrier 

together with an unknown constant R0. This 

equation contains two unknowns namely the 

potential difference function g(y) and the zeroth 

order reflection coefficient R0. To reduce the 

number of unknowns, we introduce a new function 

(y) as given by 

     
(37) 

By virtue of the above function, we rewrite the 

integral Eq. (35) as 

        (38) 

In order to solve the above integral equation, we 

employ a single term Galerkin approximation (cf. 

Roy et al., 2016). This requires (y) to be ex-pressed 

as a product of an unknown constant and a known 

function. Thus we express (y) as 

               (39) 

The choice of the function g0(y) depends on the 

configuration of the barrier and a0 is the unknown 

constant to be determined. Substituting the 

expression for (y) from the relation (39), into the 

integral Eq. (38), we find 
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It may be noticed that the solution of the integral Eq. 

(38) can be derived only when the un-known 

constant a0 is determined. To obtain the value of a0, 

we multiply the Eq. (40) by g0(y) on both sides and 

integrate over L. This gives 
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where 
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(42) 

We substitute the expression of a0 from the above 

Eq. (41) into the Eq. (39) to obtain the expression of 

(y) and then using the relations (37) and (33) we 

obtain the expression of R0. in terms of the function 

(y) as follows 

          (43) 

Now, we introduce a constant A as given by 

               (44) 

Using the relation (44) the expressions for the 

constants R0 and T0 are determined in terms of A. 

These are found as 

0 0 0

cosα i
,        1 .

cosα i cosα i

A
R T R

A A
   

 
 (45) 

Substituting the expressions for (y) and a0 from 

(39) and (41) into the Eq. (44), the constant A is 

found as 
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To evaluate the value of A for any kind of barrier, we 

first need to choose an appropriate function g0(y). 

Then the expression of A given in (46) is substituted 

into (45) to obtain the values of R0 and T0 

respectively. 

4.2  Method of Solution for the First Order 

Potential Function ϕ1 

In this section we determine the expressions for the 

first order corrections for the reflection and the 

transmission coefficients. 

To obtain the expression for the first order reflection 

coefficient R1, Green’s integral theorem is applied to 

the functions ϕ0 and ϕ1 in the region bounded by the 

lines y = 0 (0 < x ≤ X), x = X (0 ≤ y ≤ h), y = h (−X ≤ 

x ≤ X), x = −X (0 ≤ y ≤ h), y = 0 (−X ≤ x < 0), x = 0− 

(y ∈ L), x = 0+ (y ∈ L)(with X > 0), and a circle of 

small radius δ with center at (0,a). Denoting by l the 

contour which bounds the region, we find that 
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where n is the outward normal to the line element dl. 

The free surface condition and the bottom condition 

satisfied by ϕ0 and ϕ1 ensure that there is no 

contribution to the integral on the left side of the Eq. 

(47) from the lines y = 0 (0 < x ≤ X and − X ≤ x < 0) 

and y = h (−X ≤ x ≤ X). As both ϕ0 and ϕ1 describe 

outgoing waves as x → ∞, there is no contribution to 

the integral from the line x = X(0 ≤ y ≤ h) as X → ∞. 

The contribution from the circle with center at (0,a) 

for partially immersed barrier or (0,b) for bottom 

standing barrier becomes negligible as its radius δ → 

0. The only contribution arises from the line integral 

around the lines x = 0 (y ∈ L) and x = −X(0 ≤ y ≤ h) 

as X → ∞. Thus we obtain 
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Using the expression of ϕ0 (0±,y) as given in Eq.(22), 

finally R1 is determined as 
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Again to derive the expression for the first order 

correction of the transmission coefficient T1, Green’s 

integral theorem is applied on the functions ψ0(x,y) 

and ϕ1 (x,y) in the same region mentioned above, 

where ψ0(x,y) is the velocity potential function for 

the problem of scattering of water waves by a thin 

vertical barrier when a train of surface waves travel 

from the positive infinity. Thus 

0 0
1 2

0

0
0

0
0

2 sinh 2i
cosα

2 cosh

       (0 , ) ( ) (0 , )

       (0 , ) ( ) (0 , ) .

L

k h k h
T

k h

d
y c y y

dy y

d
y c y y dy

dy y







 

 

 
 
  

  
  

 

 
  

 

       (50) 

By employing a similar argument employed above, 

we find T1 as 
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For determination of the above expression we use the 

relation ψ0(0±,y) = ϕ0(0∓,y). Using integration by 

parts, the Eq. (51) simplifies to 
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The right hand side of the Eq. (52) vanishes 

identically. Thus 

1 0.T                   (53) 

5. NUMERICAL RESULTS AND 

DISCUSSIONS 

Since T1 vanishes identically and T0 is connected 

with R0 by the relation T0 = 1 − R0, in this section we 

only discuss the numerical results for the zeroth 

order reflection coefficient and for the first order 

reflection coefficient. A graph for total reflection for 

a permeable nearly vertical surface piercing barrier 

with varying porosity is presented at the end of this 

section. 

5.1   The Zeroth Order Reflection Coefficient 

To obtain the numerical results for the zeroth order 

reflection coefficient, first we choose a proper form 

of the function g0(y). 

Partially Immersed Barrier 

Here we choose the function g0(y) as the explicit 

solution for the difference of the velocity potential 

across the barrier for the problem of scattering of 

water waves by a surface piercing barrier in deep 

water as given by Ursell (1947) which is of the form 

0
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We substitute the above expression for g0(y) into the 

Eqs. (41) and (46) to obtain the constants a0 and A 

numerically. Then substituting the value of A in (45) 

the numerical values of the zeroth order reflection 

and transmission coefficients are obtained. 

In order to verify the correctness of the numerical 

results based on the present analysis, we com-pare 

our results for a surface piercing barrier with those in 

Porter and Evans (1995). They solved the problem of 

scattering of water waves by four configurations of 

thin vertical barrier using multi-term Galerkin 

approximation. In Fig. 2, the numerical values of |R0| 

are plotted against the dimension-less wavenumber 

k0a for G = 0 and α = 0 and for three different values 

for a/h (= 0.1,0.5,0.9). The present results (denoted 

by solid lines) show good agreement with those of 

Porter and Evans (1995) (denoted by ‘∗’). This gives 

a partial check on the correctness of the numerical 

results derived in this paper. 
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Fig. 2. |R0| vs. dimensionless wavenumber k0a for 

a surface piercing barrier with a/h = 0.1,0.5,0.9, 

α = 0 and G = 0. 

 

In Fig. 3, we compare the results of our paper with 

those in Lee and Chwang (2000) for a partially 

immersed permeable barrier present in water of 

uniform finite depth h. The figure is plotted for 

constant values of a/h (= 0.5) and α(= 0). The graphs 

are drawn against the dimensionless wave number 

k0a for several values of G(= 0,0.25,0.5,1). The solid 

lines and the stars represent the values for the present 

results and the results obtained by Lee and Chwang 

(2000) respectively. The stars almost coincide with 

the solid lines, proving that our results obtained by 

single term Galerkin approximation are matching 

with those in Lee and Chwang (2000) who obtained 

the reflection curves using an eigenfunction 

matching method. Figure 3 depicts that as the value 

of G is increased, the curves for |R0| subside, since 

the energy is dissipated through the pores of the 

barrier. 
 

 
Fig. 3. |R0| vs. dimensionless wavenumber k0a for 

a surface piercing barrier with G = 0,0.25,0.5,1, 

a/h = 0.5 and α = 0. 

 

In Fig. 4, the absolute value of the zeroth order 

reflection coefficient against the angle of incidence 

is depicted for a/h = 0.5 and k0a = 1.0. The general 

shape of the curves for |R0| for different values of G(= 

0,0.5,1) is of similar nature, but compressed 

downwards. This figure depicts that with the increase 

in the incidence angle of the waves the value of |R0| 

decreases. The maximum value for |R0| is attained for 

the normal incidence of waves. It is also clear from 

this figure that the amount of the reflection reduces 

with the increasing values of G. This happens due to 

the fact that the increase in the permeability of the 

barrier causes more energy dissipation by it and as a 

result amount of reflection decreases. 

 

 
Fig. 4. |R0| vs. angle of incidence α for a surface 

piercing barrier with k0a = 1.0, G = 0,0.5,1 and 

a/h = 0.5. 

 
Submerged Bottom Standing Barrier 

In this case g0(y)  is chosen as the explicit solution 

for the problem of water wave scattering by a sub-

merged bottom standing barrier in deep water in the 

case of the normal incidence, and is given by Ursell 

(1947) as, 
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We substitute the above expression for g0(y) into the 

relations (41) and (46) to compute a0 and A 

respectively. 

In Fig. 5, the variation of |R0| against the 

dimensionless wavenumber k0b for the different 

values of b/h(= 0.1,0.2,0.4) and for the fixed values 

of α (= 0) and G (= 0) is displayed. The figure reveals 

that our results (represented by solid lines) exactly 

coincide with the corresponding results in Porter and 

Evans (1995) (represented by ‘∗’) whose analysis 

was based on a multi-term Galerkin approximation. 

In Fig. 6, we analyze the effect of the permeability of 

the barrier on the reflection coefficient |R0| 

 

 
Fig. 5. |R0| vs. dimensionless wavenumber k0b for 

a bottom standing barrier with b/h = 0.1,0.2,0.4, 

α = 0 and G = 0. 
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for a vertical bottom standing barrier. The graphs for 

|R0| are plotted against the dimensionless wave 

number k0h for different values of G(= 0,0.5,1) with 

b/h = 0.25 and α = 0. The stars in this figure represent 

the results of Lee and Chwang (2000) for |R0|. It can 

be observed that the graphs for |R0|show good 

agreement with the results of Lee and Chwang 

(2000). As observed in Figs. 3 and 4, here also the 

reflection reduces with the increase in the value of 

porosity. 

 

 
Fig. 6. |R0| vs. dimensionless wavenumber k0h for 

a bottom standing barrier with G = 0,0.25,1, b/h 

= 0.5 and α = 0. 

 
In Fig. 7, the reflection coefficient |R0| versus the 

angle of incidence α is plotted for different values of 

G with fixed values of b/h (= 0.1) and k0b (= 0.1). It 

is clear from these graphs that the values of |R0| 

decrease with the increase in angle of incidence as in 

the case of partially immersed barrier. The common 

feature of less reflection for higher values of the 

porosity is also visible. 

 

 
Fig. 7. |R0| vs. angle of incidence α for a bot-tom 

standing barrier with different values of G and 

b/h = 0.1 and k0b = 0.1. 
 

5.2   The First Order Reflection Coefficient 

It may be noted from the Eq. (53) that the first order 

transmission coefficient vanishes identically for any 

kind of the barrier. To obtain the numerical results 

for the first order reflection coefficient an 

appropriate shape function is required to be chosen. 

In this section we discuss the numerical results for 

the first order reflection coefficient R1. For 

computing R1, we need to choose appropriate shape 

functions for the two configurations viz. partially 

immersed and completely submerged barriers. Also, 

from the Eq. (49), it is evident that to compute R1 , 

we need to evaluate an infinite series. We have 

chosen the truncation size N of this infinite series to 

be equal to 50, because after N = 50, the values of | 

R1| converge up to fourth decimal places. 

Partially Immersed Barrier 

In order to compute the numerical results for the first 

order reflection coefficient for a partially immersed 

barrier, we choose the shape function c(y) as given 

below: 

λ( )( ) (1 e ),         0 .a yc y y y a                   (56) 

The above form of c(y) ensures that it vanishes at the 

end points of the barrier and λ is a constant. Now, the 

expression for c(y) is substituted in the Eq. (48) to 

evaluate the first order reflection coefficient R1. 

In Fig. 8, the variation of the first order reflection 

coefficient |R1| with the different values of a/h(= 

0.1,0.5,0.9) is described. The curves of |R1| are 

plotted against the dimensionless wavenumber Ka 

for G = 0, α = 0 and λh = 1, where h is the uniform 

depth of the water. If a barrier is situated in the water 

region whose uniform depth is ten times the length 

of the barrier, then the barrier can be effectively 

regarded as being submerged in deep water. Thus, 

we take a/h = 0.1 to compare our results with those 

in Mandal and Chakrabarti (1989) in which the 

barriers were placed in deep water. Substituting c(y) 

as given in (56) in Eq. (3.14) appearing in Mandal 

and Chakrabarti (1989), we take the data for |R1| and 

represent these by ‘∗’s. We also compute |R1| from 

our present analysis and represent it by a continuous 

line in Fig. 8. This figure evidences that the stars 

almost coincide with the continuous line, proving the 

excellent matching of our results with those in 

Mandal and Chakrabarti (1989). It is also evident 

from this figure that as the value of a/h increases, the 

barrier curbs the water wave propagation as a result 

of which the total amount of reflection increases. 
 

 
Fig. 8. |R1| vs. dimensionless wavenumber Ka for 

a surface piercing barrier with a/h = 0.1,0.5,0.9, 

G = 0, α = 0 and λh = 1. 
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In Fig. 9, the effect of the porosity of the barrier on 

the first order reflection coefficient |R1| is portrayed 

for different values of G(= 0,0.25,0.5,1) when a/h = 

0.4, α = 0 and λh = 1. The curves show that the values 

of the first order reflection co-efficient decrease with 

the increase in G as in the case of zeroth order 

reflection coefficient. 

 

 
Fig. 9. |R1| vs. dimensionless wavenumber Ka for 

a surface piercing barrier with G = 0,0.25,.5,1, 

a/h = 0.4, α = 0 and λh = 1. 

 

In Fig. 10 the graph for the first order reflection 

coefficient |R1| is plotted as a function of the angle 

of incidence α and with Kh = 0.1, a/h = 0.1, λh = 1, 

G = 0.25. It is noticed from this figure that the value 

of |R1| decreases with the increase in the angle of 

incidence α. 

 

 
Fig. 10. |R1| vs. angle of incidence for a surface 

piercing barrier with G = 0.25, a/h = 0.1, Kh = 

0.1 and λh = 1. 

 

Submerged Bottom Standing Barrier 

We choose the shape function corresponding to the 

submerged bottom standing barrier, satisfying c(b) = 

0 and c(h) = 0 as 

λ( )( ) ( ) (1 e ),         .y bc y h y b y h         (57) 

Substituting the above form of c(y) into the Eq. (48), 

we compute the value of R1 numerically. 

Figure 11 describes the variation of the first or-der 

reflection coefficient |R1| for different values of the 

depth of the submergence of the barrier for normal 

incidence in the water of uniform depth h. The 

graphs for |R1| are depicted against the dimensionless 

wavenumber Kb varying the dimension-less depth of 

submergence b/h(= 0.1,0.2,0.4) and keeping G (= 0.1 

+ i), α (= 0) and λh (= 1) fixed. From this figure, it is 

clearly noticed that the nature of the curves for |R1| is 

the same as that for the zeroth order reflection 

coefficient |R0| in Fig. 5. 

 

 
Fig. 11. |R1| vs. dimensionless wavenumber Kb 

for a bottom standing barrier with b/h = 

0.1,0.2,0.4, G = 0.1 + i, α = 0 and λh = 1. 

 
Figure 12 shows the results for |R1| against the 

dimensionless wavenumber Kb for various values of 

G(= 0,0.25,0.5) with b/h = 0.2, α = 0 and λh = 1. This 

figure reveals that as the porosity of the barrier 

increases, the value of |R1| decreases. This 

phenomenon was also observed earlier in the case of 
partially immersed barrier in Fig. 9. 

 

 
Fig. 12. |R1| vs. dimensionless wavenumber Kb 

for a bottom standing barrier with G = 

0,0.25,0.5, b/h = 0.2, α = 0 and λh = 1. 

 
In Fig. 13, the graph for the first order reflection 

coefficient |R1| versus the angle of incidence α is 

plotted for the fixed values of Kh = 0.1, b/h = 0.9, G 

= 0.25 and λh = 1. It is evident from this figure that 

the amount of reflection decreases as angle of 
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incidence increases as in the case of partially 

immersed barrier. 

Finally in Fig. 14, we plot the graphs for |R0 + εR1| 

for a nearly vertical permeable surface piercing 

barrier against dimensionless wavenumber Ka for 

various values of the porous effect parameter G(= 0, 

0.5, 1.0). The graphs are drawn considering a/h = 0.3, 

α = π/6, λh = 1 for ε = 0.001. The amount of total 

reflection is observed to be decreased as the 

permeability of the barrier increases. This 

phenomenon is already noticed in cases of the zeroth 

and first order reflection coefficients. An in-crease in 

the permeability of the barriers results in dissipation 

of more wave energy. As the amount of dissipation 

of wave energy increases, the amount of the 

reflection decreases. 

 

 
Fig. 13. |R1| vs. angle of incidence α for bottom 

standing barrier with G = 0.25, Kh = 0.1, b/h = 

0.9 and λh = 1. 

 

 

 
Fig. 14. |R0 + εR1| vs. dimensionless wavenumber 

Ka for a surface piercing barrier with G = 

0,0.5,1, a/h = 0.3, α = π/6, λh = 1 for ε = 0.001. 
 

6. CONCLUSION 

The problem of scattering of obliquely incident water 

waves by permeable barriers present in the water of 

finite depth has been solved in this paper within the 

framework of the linearised theory of water waves. 

The barriers are curved having a very small 

curvature. The governing boundary value problem is 

solved by employing a perturbation technique. In 

order to obtain the numerical estimates of the zeroth 

order reflection and transmission coefficients (R0 and 

T0), a single term Galerkin approximation is applied 

to the solution of the second kind Fredholm integral 

equation for the difference in the velocity potential 

across the barrier. The accuracy of the numerical 

results for R0 obtained here has been validated 

against those obtained by Porter and Evans (1995) 

for vertical rigid barriers for obliquely incident 

waves and Lee and Chwang (2000) for vertical 

permeable barriers for normally incident waves. 

Green’s integral theorem has been employed to 

obtain the expressions for the first or-der reflection 

and transmission coefficients (R1 and T1). As in the 

case of impermeable nearly vertical barriers, it has 

been proved analytically that T1 also vanishes when 

the barrier is permeable. Appropriate shape functions 

are chosen to compute the numerical estimates for R1 

for surface piercing as well as submerged bottom 

standing barriers. The results for R1 corresponding to 

a surface piercing barrier have been compared with 

those in Mandal and Chakrabarti (1989). Some new 

results are obtained here for surface piercing and 

submerged bottom standing porous barriers by 

varying the permeability of the barriers. The 

permeability reduces the amplitude of the zeroth 

order as well as the first order reflection coefficient. 

The method employed in the present analysis is 

straight forward and provides an alternative 

technique to tackle vertical as well as nearly vertical 

porous plate problems. This method may be 

employed to study the reflective properties of a 

nearly vertical porous submerged plate and a porous 
wall with gap. 

ACKNOWLEDGMENT 

The authors are thankful to the reviewers for their 

comments and suggestions to revise the paper in the 
present form. 

REFERENCES 

Banerjea, S., P. Maiti and D. Mondal (2017). 

Scattering of fexural gravity waves by a two-

dimensional thin plate. Journal of Applied Fluid 

Mechanics 10(1), 199-208. 

Chakrabarti, A. and L. Vijaya Bharathi (1992). A 

new approach to the problem of scattering of 

water waves by vertical barriers. ZAMM- 
Journal of Applied Mathematics and Mechanics 

72(9), 415-423. 

Chakrabarti, A. and T. Sahoo (1996). Reflection of 

water waves by a nearly vertical porous wall. 

Journal of the Australian Mathematical Society 

37(3), 417-429. 

Chwang, A. T. (1983). A porous-wavemaker theory. 

Journal of Fluid Mechanics 132, 395-406. 

Chwang, A. T. and A. T. Chan (1998). Interaction 

between porous media and wave motion. 

Annual Review of Fluid Mechanics 30(1), 53-

84. 

Dalrymple, R. A., M. A. Losada and P. Martin 



R. Gayen and S. Gupta / JAFM, Vol. 13, No. 1, pp. 357-369, 2020.  

 

368 

(1991). Reflection and transmission from 

porous structures under oblique wave attack. 

Journal of Fluid Mechanics 224, 625-644. 

Dean, W. R. (1945). On the reflexion of surface 

waves by a submerged plane barrier. 

Mathematical Proceedings of the Cambridge 

Philosophical Society 41(03), 231-238. 

Evans, D. V. (1970). Diffraction of water waves by 

a submerged vertical plate. Journal of Fluid 

Mechanics 40(03), 433-451. 

Gayen, R. and A. Mondal (2014). A hypersingular 

integral equation approach to the porous plate 

problem. Applied Ocean Research 46, 70-78. 

Gayen, R. and A. Mondal (2015). Scattering of water 

waves by a pair of vertical porous plates. 

Geophysical & Astrophysical Fluid Dynamics 

109(5), 480–496. 

Huang, C. J., H. H. Chang and H. H. Hwung (2003). 

Structural permeability effects on the 

interaction of a solitary wave and a sub-merged 

breakwater. Coastal Engineering 49(1-2), 1-24. 

Islam, N., R. Gayen and B. N. Mandal (2018). Wave 

motion due to a ring source in two superposed 

fluids covered by a thin elastic plate. Journal of 

Applied Fluid Mechanics 11(4), 1047-1057. 

Kaligatla, R. B. and S. R. Manam (2014). Flexural 

gravity wave scattering by a nearly vertical 

porous wall. Journal of Engineering 

Mathematics 88(1), 49-66. 

Kanoria, M. and B. N. Mandal (2002). Water wave 

scattering by a submerged circular-arc-shaped 

plate. Fluid Dynamics Research 31(5), 317-

331. 

Lee, M. M. and A. T. Chwang (2000). Scattering and 

radiation of water waves by permeable barriers. 

Physics of Fluids 12(1), 54-65. 

Macaskill, C. (1979). Reflexion of water waves by a 

permeable barrier. Journal of Fluid Mechanics 

95(1), 141-157. 

Mandal, B. N. and A. Chakrabarti (1989). A note on 

diffraction of water waves by a nearly vertical 

barrier. IMA Journal of Applied Mathematics 

43(2), 157–165. 

Mandal, B. N. and A. Chakrabarti (2000). Water 

wave scattering by barriers. Wit 

Pr/Computational Mechanics. 

Mandal, B. N. and D. P. Dolai (1994). Oblique water 

wave diffraction by thin vertical barriers in 

water of uniform finite depth. Applied Ocean 

Research 16(4), 195-203. 

Mandal, B. N. and S. Banerjea (1992). Solution of a 

boundary value problem associated with 

diffraction of water by a partially immersed 

nearly vertical barrier. ZAMM- Journal of 

Applied Mathematics and Mechanics 72(10), 

517-519. 

Martha, S. C. and S. N. Bora (2007). Reflection and 

transmission coefficients for water wave 

scattering by a sea-bed with small undulation. 

ZAMM- Journal of Applied Mathematics and 

Mechanics 87(4), 314-321. 

McIver, M. and U. Urka (1995). Wave scattering by 

circular are shaped plates. Journal of 

Engineering Mathematics 29(6), 575-589. 

McIver, P. (1999). Water-wave diffraction by thin 

porous breakwater. Journal of Waterway, Port, 

Coastal, and Ocean Engineering 125(2), 66-70. 

Panda, S. (2016). A study on inviscid flow with a free 

surface over an undulating bottom. Journal of 

Applied Fluid Mechanics 9(3), 1089-1096. 

Parsons, N. F. and P. A. Martin (1992). Scattering of 

water waves by submerged plates using 

hypersingular integral equations. Applied 

Ocean Research 14(5), 313-321. 

Parsons, N. F. and P. A. Martin (1994). Scattering of 

water waves by submerged curved plates and by 

surface-piercing flat plates. Applied Ocean 

Research 16(3), 129-139. 

Parsons, N. F. and P. McIver (1999). Scattering of 

water waves by an inclined surface-piercing 

plate. The Quarterly Journal of Mechanics and 

Applied Mathematics 52(4), 513-524. 

Porter, D. (1972). The transmission of surface waves 

through a gap in a vertical barrier. 

Mathematical Proceedings of the Cambridge 

Philosophical Society 71(02), 411-421. 

Porter, R. and D. V. Evans (1995). Complementary 

approximations to wave scattering by vertical 

barriers. Journal of Fluid Mechanics 294, 155-

180. 

Roy, R., U. Basu, and B. N. Mandal (2016). Oblique 

water wave scattering by two un-equal vertical 

barriers. Journal of Engineering Mathematics 

97(1), 119-133. 

Shaw, D. C. (1985). Perturbational results for 

diffraction of water-waves by nearly-vertical 

barriers. IMA Journal of Applied Mathematics 

34(1), 99-117. 

Shivakumara, I. S., S. Sureshkumar and N. Devaraju 

(2012). Effect of non-uniform temperature 

gradients on the onset of convection in a couple-

stress fluid-saturated porous medium. Journal 

of Applied Fluid Mechanics 5(1), 49-55. 

Sollitt, C. K. and R. H. Cross (1972). Wave 

transmission through permeable breakwaters. 

Coastal Engineering Proceedings 1(13). 

Tsai, C. H. and D. L. Young (2011). The method of 

fundamental solutions for water-wave 

diffraction by thin porous breakwater. Journal 

of Mechanics 27(1), 149-155. 

Ursell, F. (1947). The effect of a fixed vertical barrier 

on surface waves in deep water. Mathematical 

Proceedings of the Cambridge Philosophical 

Society 43(03), 374-382. 

Williams, W. E. (1966). Note on the scattering of 

water waves by a vertical barrier. Mathematical 



R. Gayen and S. Gupta / JAFM, Vol. 13, No. 1, pp. 357-369, 2020.  

 

369 

Proceedings of the Cambridge Philosophical 

Society 62(03), 507-509. 

Yu, X. (1995). Diffraction of water waves by porous 

breakwaters. Journal of Waterway, Port, 

Coastal, and Ocean Engineering 121(6), 275-

282. 

Zaghian, R., M. R. Tavakoli, M. Karbasipour and M. 

N. Ahmadabadi (2017). Experimental study of 

flow structures of a solitary wave propagating 

over a submerged thin plate in different angles 

using PIV technique. International Journal of 

Heat and Fluid Flow 66, 18-26. 

 

 

 


