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ABSTRACT 

In hydrodynamics the applications range of incompressible flows is very wide. In this study, a robust, high 

order modeling approach is introduced, based on the MLPG meshfree method -based radial basis functions 

(RBF- MLPG) method, for solving the incompressible flow field. In other words a MLPG meshfree method 

based on an interpolation function is presented to solve the 2‐ D unsteady incompressible fully developed fluid 

flows. This meshfree method is based on the quartic (4th order) spline. The method is then compared against 

the Finite Element Method on a test case of unidirectional fully developed incompressible fluid. The 

performance of this weight function proved that the quartic (4th order) spline gains the highest accuracy, 

convergence and efficiency. Finally, it can be concluded that the presented method is formidable for simulating 
fluid dynamics.   

Keywords: MQ-RBF; Shape and Weight Functions; Unsteady flow; MLPG meshfree method; 2D Fluid Flow.  

NOMENCLATURE

C  shape parameter 

cd  characteristic length 

n  number of nodes 

Qr  radius of the quartic spline weight 

function  

t  time 

sr  radius of the support domain  

( , )hu x y  Radial Basis Function interpolation 

ZV  velocity  

W  quartic (4𝑡ℎ order) spline 

 

Q  size of quadrature domain 

s  support domain 

t  time step 

  dynamic viscosity  

Q  boundary of the quartic ( 4𝑡ℎ  order) 

spline  

Q  quartic (4𝑡ℎ order) spline domain 

s  Support interpolation  

  density of the fluid 

(x)  Radial Basis Function  

α  temporal weighting factor 

P/ z   pressure gradient 

 
 

1. INTRODUCTION 

Fluid mechanics plays an important role in 

scientific research in civil and mechanic 

engineering. Scientists have been doing research 

on new techniques to solve differential equations. 

Same as the other disciplines, Computational Fluid 

Dynamics is developed by numerical analysis. 

Numerical analysis means to find the quantitative 

results of the problem by the mathematical method. 

Numerical methods are widely used in fluid 

dynamics. In the recent years, many numerical 

methods have been proposed and developed for 

analyses of fluid mechanics. Computational 

methods have used in fluid mechanics subjects for 

analyses of engineering problems (Chen et al., 
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2015; Harichandan and Roy, 2012; Shirani et al., 

2011; Bunsri et al., 2008). Also, Seyedashraf and 

Akhtari (2017) presented a new numerical scheme 

based on the Finite Element Method with a total-

variation-diminishing. In addition, Xiaoming et al. 

(2019) combined the finite element method hybrid 

approach with RBFs to solve three-dimensional 

electromagnetics problems.  Development of 

computational methods in engineering problems is 

very important. At present, research on meshfree 

methods has become one of the hottest research 

fields in engineering problems. meshfree methods 

like RKPM meshfree method (Tang et al., 2018), 

EFG meshfree method (Cheng et al., 2017), MLPG 

meshfree method (Saeedpanah, 2017), NEM 

meshfree method (Zhang et al., 2013), DLSM 

meshfree method (Afshar and Shobeyri 2010). 

Using least-square meshfree method, DLSM 

meshfree method was proposed for solving fluid 

mechanics problems by Afshar and Shobeyri 

(2010).  

One of the strongest of these methods is MLPG 

meshfree method which has been examined via many 

engineering problems. Atluri and Zhu expressed the 

MLPG meshfree method in 1998 and Atluri and 

Shen (2002) extended this method widely.  

The RBF method was introduced as an interpolation 

scheme in the 1970s and later used to numerically 

approximate solutions to PDEs in the 1990s. The 

potential applications of RBFs grewas a result of 

using RBFs instead of polynomials. RBFs have been 

applied in the last decade to a wide range of PDEs 

that arise in, for example, fluid mechanics, wave 

motions, groundwater flow, astrophysics, 

geosciences, mathematical biology, elasticity, and 

flame propagation (Bayona et al., 2019; Flyer and 

Fornberg, 2011). 

The MQ-RBF produces a discretization for scattered 

nodes. It is a straightforward approach for spatial 

node refinement and it provides adjustable control 

over the order of accuracy. The MQ-RBF is at least 

competitive, and sometimes superior, to FDM and 

the FEM in some key applications in the fluid 

dynamics. Yet, there are still relatively few 

computational scientists who have had first-hand 

experience with either RBF or RBF-meshfree 

discretizations for large-scale PDE applications. A 

contributing factor might be that articles in the area 

still often focus on small-scale PDE (or ODE) test 

problems.   

The Radial Basis Function (RBF) is a considerable 

feature which aid to solve flow domain. Recently, 

radial basis functions have been used in 

computational intelligence systems. For example, 

Seyedashraf et al. (2018) presented a new 

methodology based on the computational 

intelligence system for modeling the dam-break 

flow. Also, Wu et al. (2019) used a radial basis 

function to model wave shoaling. In addition, Zheng 

et al. (2017) proposed a radial basis function 

meshfree method.  

In the present article, MLPG meshfree method has 

been extended for fluid flow analysis of two 

dimensional. In other word, a robust high-order 

MLPG meshfree based RBF method (RBF- MLPG) 

was developed to solve the 2‐ D unsteady 

incompressible fully developed fluid flows. In 

addition, a MLPG meshfree method with MQ-RBF 

interpolation is presented for solving two-

dimensional unsteady incompressible fully 

developed fluid flow. Furthermore, this work 

presents a numerical scheme based on a quartic (4th 

order) spline as the weight function over a quadrature 

domain. Subsequently, the accuracy, convergence 

and efficiency of the weight function are 

investigated. Employed as weight function, shape 

functions have the biggest contribution in the 

solution in terms of accuracy, convergence and 

efficiency. Therefore, in this research two important 

novelties are introduced. A robust high-order MLPG 

meshfree based RBF method (RBF- MLPG) was 

developed to solve the 2‐ D unsteady incompressible 

fully developed fluid flows. In addition, a MLPG 

meshfree method with quartic (4th order) spline as 

the weight function is presented for solving two-

dimensional unsteady incompressible fully 

developed fluid flow.  

2. MQ-RBF INTERPOLATION 

The RBF method is generalizable to higher 

dimensions. It also has the advantage of being mesh 

independent, allowing the rendition of very 

complicated domains and boundaries and an 

improved accuracy with a node refinement (Flyer et 

al., 2016; Bayona et al., 2017; Bayona and Kindelan, 

2013).  

Hardy (1971) introduced the RBF methodology. 

For multiquadric RBFs in Micchelli (1986), 

rapidly accelerated the development of RBFs for 

solving PDEs. Extensive analysis of RBFs on 

infinite lattices was also carried out in the 1990s. 

Kansa (1990a, b) introduced the idea of 

analytically differentiating (spatial) RBF 

interpolants and thereby obtained a novel 

numerical approach for solving both steady-state 

and time dependent PDEs.   

Using RBF expression, u(x), is defined as:  

1

(x,x ) (x) (x ) R (x)a(x )
n

h T
Q i i Q Q

i

u R a



 
         

(1) 

where 𝑅𝑖(𝑥) is the RBF, n is the number of nodes, 

and 𝑎̅𝑖(𝑋𝑄) are the parameters for 𝑅𝑖(𝑥). Vectors are 

as follows:  

 1 2 3, , , ,
T

na a a a a
                                                      

(2) 

 
 1 2 3R (x), (x), (x), , (x)

TT
nR R R R

                 
(3) 

The parameters for 𝑎̅𝑖(𝑋𝑄)   can be obtained as 

follows: 

1

( ) (x ) ( ),

1,2,3, ...,

n

k k k i Q i k k
i

u u x , y a R x , y

k n



 





            

(4) 
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which can be written as:  

QR a Us
                  

(5) 

where U𝑠 = [𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛] and R𝑄 is as follows: 

1 1 2 1 1

2 2 2 2 2T
Q Q

1 2

( ) ( ) ( )

( ) ( ) ( )
R R

( ) ( ) ( )

n

n

n n n n

R r R r R r

R r R r R r

R r R r R r

 
 
  
 
 
 

                          (6) 

Consequently, the interpolation is as follows:  

-1
Q(x) R (x)R U Φ(x)Uh T

s su  
                

(7) 

where shape functions is defined as: 

 

 

1
1 2

1 2

(x) ( ), ( ),..., ( ),..., ( )

(x), (x),..., (x), ..., (x)

k n Q

k n

R x R x R x R x R

   

 


    

(8) 

in which 

1

(x) (x)
n

a
k i ik

i

R S



                                                          

(9) 

and 𝑆𝑖𝑘
𝑎  is (i,k) element of R𝑄

−1 . A multi Quadrics 

Radial Basis Function is expressed as: (Hardy, 1990; 

Frank, 1982; Kansa, 1990a, b; Liu and Gu, 2001):  

 
22( , ) ( ) 0 (MQ)q

i i c c cR x y r d   
         

(10) 

where q and 𝛼𝑐 are shape parameters. Figures 1 to 6 

show shape functions.  

 

 
Fig. 1. Domain (231 nodes). 

 

 
Fig. 2. RBF interpolation. 

 
Fig. 3. Derivatives of RBF interpolation (x 

direction). 

 

 
Fig. 4. Derivatives of RBF interpolation (y 

direction). 

 

 

 
Fig. 5. RBF interpolation (25 nodes), a) Domain, 

b) RBF interpolation, c) Derivatives of RBF 

interpolation (x direction), d) Derivatives of RBF 

interpolation (y direction). 
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Fig. 6 RBF interpolation (9 nodes), a) Domain, b) 

RBF interpolation, c) Derivatives of RBF 

interpolation (x direction), d) Derivatives of RBF 

interpolation (y direction). 
 

3. GOVERNING EQUATIONS 

Figure 7 shows a Cross-section of a unidirectional 

fully developed incompressible fluid. The axis of 

channel is described by z coordinate as shown in Fig. 

7. Therefore the Governing equations can be written 

as:  

2 2

2 2
z z zV V dP V

dz tx y
 
   

   
    

                             

(11) 

The Initial condition is: 

ini
0, Initial velocity ( ), in z zat t V V  

           
(12) 

The boundary conditions which are of essential type 

are as below:  

1

2

3

4

0   

0

0   

0

A

A

A

A

z z

z z

z z

z z

V V

V V

V V

V V

 

 

 

 
                                                              

(13)  

 

 
Fig. 7. Model for test case. 

 

4. DISCRETIZATION 

As shown in Fig. 8 in this meshfree method, the LWF 

is applied over a Weight Function. 

A GWF of Eq. (11) can be obtained as:  

   

2 2

2 2
0

Q

z z zV V dP V
W d

dz tx y
 



    
      

     


(14) 

 

 
Fig. 8. Domain and boundaries. 

 
Using the divergence theorem, the LWF is obtained 

as:  
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0

Q

Q

Q Q

z z

z z
x y

z

w V w V
d

x x y y

V V
w n w n d

x y

V
w d w M d

t











 

     
   

     

   
    

   


    







                      

(15) 

Applying the initial boundary condition, Eq. (15), is 

obtained:  

Q

Qi

Qu

Q

Q Qt

z z

z z
x y

z z
x y

z

w V w V
d

x x y y

V V
w n w n d

x y

V V
w n w n d

x y

V
w d

t

w M d w q d



















 

     
   

     

   
    

   

   
    

   


 



   









 

                

(16) 

Quartic (4th order) spline is applied as the weight 

function in this study as below:  

  

2 3 41 6 8 3 1ˆ(x x ) ( )
0 1

I

d d d d
W W d

d

    
   



(17) 

where 𝑑̅ = 𝑑𝑖/𝑟𝑤 is normalized distance. 

Therefore in this research the quartic (4th  order) 

spline is applied as shown in Fig. 9:  

 

 
Fig. 9. Quartic (4th order) spline domain. 

 

Table 1 Used parameter values in MLPG and 

FEM solutions 

 

The LWF, Eq. (16), resulted a relationship regarding 

to 𝑉̂𝑧𝑖 . Substitution of Eq. (7) into the Eq. (16) leads 

to the following:  

    K fzV 

                   

(18) 

where 

,

, ,
,

0

0Q

J y

I J I y I z
J z

K d


 
 

   
     

   


      

(19)) 

Q
I If M d


 

                                                           

(20) 

5. COMPARISON WITH FEM 

The flow field parameters of the fluid in SI units are 

as following:  

Figure 10 shows the numerical results of the the 

unsteady incompressible fully developed fluid flow 

with advancing in time.   

The comparison of velocity by the results of FEM 

with the present work under the same conditions at 

the location (x=0.025 m, y=0.025 m) of the duct 

cross section is presented in Table 2. Consequently 

the MLPG solution results are presented and 

compared with the results of the FEM solution in Fig. 

10.  

Figure 11 also presents the percent of deviation 

between MLPG and FEM methods in this research 

work.  

 

 
Fig. 10. Comparison of MLPG results with FEM. 

 

 

 
Fig. 11. Deviation between MLPG and FEM 

methods. 
 

As can be seen from Fig. 11, the maximum deviation 

is about 8.09% which was occurred at the initial 

times and by passing the time the deviation between 

both methods goes to zero. The mean deviation is 

also about 1.32% for 1 s.  
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Table 2 Comparison of velocity by the results of 

FEM with the present work 

 
 

6. CONCLUSION 

This article presents a meshfree method for the 

unsteady incompressible fully developed fluid flow. 

The trial function construction process is the most 

important part of the meshfree method 

implementation. In this article the RBFs are used for 

the process of the trial functions construction. A local 

weighted residual is extended by using a quartic (4th 

order) spline as the interpolation function. In fact, 

this work most notably introduces two important 

innovations. A robust high-order MLPG meshfree 

based RBF method (RBF- MLPG) was developed to 

solve the 2‐ D unsteady incompressible fully 

developed fluid flows. In addition, a MLPG 

meshfree method with quartic (4th order) spline as 

the weight function is presented for solving two-

dimensional unsteady incompressible fully 

developed fluid flow. Finally, the numerical 

performance of the meshfree method is proved 

through comparison with the FEM outputs. This 

comparison shows that this meshfree method is very 

effective in producing good results.  
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