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ABSTRACT 

The motion of air bubbles in a yield stress fluid is analyzed numerically using a 2D approach and the finite 

volume technique. The multiphase flow is simulated using the volume of fluid method (VoF), which solves the 

conservation equations of mass and momentum coupled to a transport equation for the volume fraction of the 

fluids. The effects of yield stress, bubble size, number and position of bubbles rising in a viscoplastic fluid 

confined between vertical parallel plates are analyzed and discussed. The results indicate that the yield stress 

has great impact on the rising velocity. In the case of multiple bubbles flowing vertically, it is observed that the 

displacement of one bubble influences the rising velocity of the others, causing them to approach each other. 

As the distance between the bubbles increases the interference is reduced and the bubbles begin to flow as 

single ones. When two bubbles are horizontally positioned, they can approach or move away from each other, 

depending on the initial distance between them. Furthermore, the bubbles shape is analyzed as a function of the 

governing parameters. It is observed that for lower Reynolds number the bubbles present a circular shape, but 

as inertia increases the bubble becomes ellipsoidal. 
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1. INTRODUCTION 

Gas bubble displacement in viscoplastic fluids is 

present in a large number of industrial applications 

such as food processing, cosmetic industry, drilling 

and cementing of oil wells. In some applications 

bubbles are desired, like in the fabrication of aerated 

chocolate, while in others the displacement can be 

extremely dangerous, as during gas invasion in oil 

wells cementing process. Gaining a better 

understanding of the bubble displacement in this type 

of complex fluid is very important to the process 

analysis and optimization. This work presents a 

numerical analysis of the flow dynamics of gravity-

driven air bubbles rise in viscoplastic fluids. The 

main characteristic of a viscoplastic fluid is the 

presence of a yield stress, below which the fluid is 

extremely structured, presenting a solid-like 

behavior. Many times, elasticity is important at this 

range of stress, and can play an important role on the 

flow pattern. A discussion of the yield stress and the 

role of elasticity in viscoplastic fluids is presented in 

Barnes (1999a), Barnes (1999b), dos Santos et al. 

(2014), Sikorski et al. (2009). There is a large 

number of studies in the literature comprising the 

behavior of bubbles in Newtonian fluids (Raymond 

and Rosant (2000); Bozzano and Dente (2001); 

Smolianski et al. (2008); Sanada et al. (2008)). The 

numerical and experimental work of Magnaudet and 

Eames (2000) and the book written by Clift et al. 

(1978) approach very well the fundamental 

principles and governing equations of bubbles 

flowing in Newtonian fluids. Flow of bubbles 

through Newtonian and non-Newtonian fluids are 

also reviewed in Chhabra (2007) and Kulkarni and 

Joshi (2005). These works show that bubble shape 

and displacement are a result of the contribution of 

buoyancy, viscous forces, inertia and surface-

tension. The presence of shear thinning, yield stress 

and elasticity play also an important role (Dubash 

and Frigaard (2004); Dubash and Frigaard (2007); 

Zhang et al. (2010); Fraggedakis et al. (2016); 

Funfschilling and Li (2001); Sikorski et al. (2009); 

Lopez et al. (2017); Lind and Phillips (2010); 

Premlata et al. (2017); Amirnia et al. (2013); 

Smolianski et al. (2008); Tripathi et al. (2015); 

Tsamopoulos et al. (2008); Xu et al.(2017)). Despite 

all these and other relevant works, the displacement 

phenomena is not completely understood. Moreover, 

most of the results are per-formed for one single 

bubble. Islam et al. (2015) analyzed numerically the 

behavior of a pair of bubbles rising side by side in a 
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viscoplastic fluid. It could be noticed that a few 

attempts have been made to investigate this type of 

interaction. It is found on the referenced study that 

there is a repulsive effect between the rising pair of 

bubbles which increases with decreasing initial 

distance between the bubbles. 

It is known that a gas bubble will flow in viscoplastic 

fluids only if the buoyant force is sufficient to 

overcome the opposing shear force due to the yield 

stress. Mougin et al. (2012) analyzed experimentally 

the shape and trajectory of air bubbles in a yield 

stress fluid, and observed the influence of internal 

stresses on bubble displacement. The authors show 

that the passage of a bubble through the tank disturbs 

the initial stress state and creates a mechanical 

history that changes the next trajectories. 

Some authors evaluate the bubble shape along its 

path through the fluid, and some divergences are 

observed on the results obtained. In the experimental 

work by Sikorski et al. (2009), the authors analyze 

the effect of yield stress and bubble volume on the 

bubbles shape, and observe that all moving bubbles 

present a rounded head and a cusped tail. The 

bubbles shape are similar in appearance to the ones 

observed in other experimental works (Dubash and 

Frigaard (2004); Dubash and Frigaard (2007) and 

Mougin et al. (2012)). On the other side, when 

observing the results of the numerical studies made 

by Tsamopoulos et al. (2008) and Dimakopoulos et 

al. (2013), it is noticed that the bubbles present an 

ellipsoidal shape instead. Indeed, this comparison 

leads to questioning whether this difference is due to 

fluid elasticity, thixotropy or wall effects. Since the 

studies mentioned above could not reproduce 

consistent results to explain the different bubbles 

shape, the present study can be used to complement 

the theories about this issue. 

The present work aims to present numerical results 

of the flow of air bubbles rising in yield stress flu-ids 

due to buoyancy, and to investigate the effects of 

some parameters in bubble shape and displacement. 

We investigate the rising of single and multiple 

bubbles inside a channel filled with a yield stress 

fluid. We first introduce the mathematical modelling 

of the problem under analysis, where the 

conservation and constitutive equations are detailed, 

together with the appropriate boundary conditions. 

In the numerical solution section, we present the 

numerical approach and the mesh tests. Finally, we 

show and discuss the results, and come up with some 

final remarks. 

2. MODELING 

The solution of the buoyancy driven flow of air 

bubbles rising through a yield stress fluid is 

performed using a bi-dimensional approach. The 

flow under analysis is laminar and transient, the air 

bubble follows the ideal gas law, the yield stress fluid 

is in-compressible, and the fluids are considered 

immiscible, so that the diffusivity Di j is equal to zero. 

The geometry is shown in Fig. 1. 

 

 
Fig. 1. The geometry. 

 
To model the multiphase flow, we use the Volume of 

Fluid method (VoF) (Fluent Users Guide, 2017). The 

VoF solves a set of mass conservation equations to 

obtain the volume fraction of each phase j, αj = ∀j/∀ 

( j = 1,2...n), where n is the number of phases, and ∀j 

is the volume occupied by phase j in the cell control 

volume ∀. The volume fraction is obtained solving 

n−1 mass conservation equations for each phase, 

plus a restriction equation  ∑  𝑛
𝑗=1  α𝑗 =  1. 

In this work only two phases are considered, namely 

the air and the fluid, so n = 2. When the volume 

fraction αj = 1, the cell contains only the phase j, if 

αj = 0 the cell does not contain the phase j, and if 0 < 

αj < 1 the interface between phases is positioned in 

the cell. The velocity and pressure are equal for both 

phases, and the properties are deter-mined as the 

average of the properties of the phases. 

Therefore, the properties φ are obtained by: 

ϕ = α1 ϕ 1 + (1 −α1) ϕ 2                                     (1) 

The mass and momentum conservation equations are 

given by: 

𝜕ρ

𝜕𝑡
+ ∇ . (𝜌𝒗) = 0                                                           (2) 

ρ[
𝜕𝒗

𝜕𝑡
 + (𝐯. ∇)𝐯] = −∇𝑝 + ∇ . τ + ρ𝐠                 (3) 

where, ρ is the mixture density, p is the pressure, g is 

gravity, and τ is the deviatoric stress. The 

Generalized Newtonian Fluid constitutive equation 

is used to model the non-Newtonian fluid behavior. 

Therefore, the extra-stress tensor is given by: 

τ = 2η(�̇�)D                                                                        (4) 

where D ≡ 1/2 [∇v +∇vT] is the rate-of-strain tensor, 

and (�̇�≡ √2trD 2 is the intensity of the rate-of-strain 

tensor. The viscosity function is given by a 

regularized version of the Herschel-Bulkley model 

for viscoplastic fluids, given by the following 

equations: 

η(γ̇) =  
τ𝑦

γ̇
 + K (γ̇)n−1                        if     γ̇≥ γ̇cr          (5) 

η(γ̇) = 
τ𝑦

γ̇𝑐𝑟
 [2 −  

γ̇ 

 γ̇𝑐𝑟
 ] +  
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                   K  γ̇𝑐𝑟
𝑛−1 

[(2 − 𝑛) + (𝑛 − 1)
γ̇∗

 γ̇𝑐𝑟
∗ ]       (6)  

In the equations above, τy is the yield stress, K is the 

consistency index, γ̇cr is the critical intensity of the 

rate-of-strain, and n is the power-law index. 

The initial and boundary conditions are: 

 • At t = 0, the domain is filled with the vis-

coplastic fluid α1 = 1 except at the air bubble (α2 

= 1), with diameter equal to D, which is 

positioned at the center of the domain at 0.01 m 

height from the bottom wall. The velocity is 

zero throughout the domain, v = 0. 

 • At the top boundary, pressure is equal to the 

atmospheric pressure. 

 • At the bottom (y = 0), left (x = 0) and right 

 (x = L) walls, no slip and impermeability 

conditions are applied, v = 0. 

2.1   Dimensionless Equations 

The governing equations are scaled using the 

following dimensionless variables: 

x∗ = 
𝑥

𝐷
          y∗ = 

𝑦

𝐷
       v∗ = 

v

𝑉𝑇
        p∗ = 

𝑝

𝜌g𝐷
                       (7) 

t∗ = 
𝑡

𝐷/𝑉𝑇
     γ̇∗ = 

γ̇ 

 γ̇𝑐𝑟
     𝜂∗ =

𝜂

𝜂𝐶
     ρ∗ =

ρ

ρ𝐶
     

where ρf is the density of the yield stress fluid and VT 

is the bubble terminal velocity. The resulting non-

dimensional equations are given by: 

 
𝜕𝛼𝑗

𝜕𝑡 ∗
 + v∗ · ∇αj = 0                                                               (8) 

 
𝜕𝜌 ∗

𝜕𝑡 ∗
 + ∇ · (ρ∗v∗) = 0                                                                      (9) 

𝜕𝑣 ∗

𝜕𝑡 ∗
 + (v∗ · ∇∗) v∗ = −∇∗ p∗+ 

1

𝑅𝑒
 ∇∗ · [Bn + (1 − Bn) γ̇ 

∗n]  

(10) 

𝜕𝑣 ∗

𝜕𝑡 ∗
 + (v∗ · ∇∗) v∗ = −∇∗ p∗+ 

1

𝑅𝑒
 ∇∗ · [𝐵𝑛 

γ̇∗

 γ̇𝑐𝑟
∗  [2 −

γ̇∗

 γ̇𝑐𝑟
∗ ] + (1 − 𝐵𝑛) γ̇𝑐𝑟

∗ (𝑛−1)
γ̇∗]   [(2 − 𝑛) + (𝑛 −

1)
γ̇∗

 γ̇𝑐𝑟
∗ ]                                                                     (11) 

where Eq. (10) stands when the stress is above the 

yield stress, and Eq. (11) is used otherwise. 

The non-dimensional governing parameters are 

depicted below: 

Re ≡  
ρ𝑓   𝑉𝑇 𝐷

η𝑐
          Bn = 

𝜏𝑦

ηc γ̇𝑐
                                            (12) 

where Re is the Reynolds number, and Bn is the 

Bingham number. The characteristic viscosity, ηc, is 

the viscosity of the yield stress fluid obtained at the 

characteristic rate-of-deformation, defined as γ̇c ≡ VT 

/D. 

3. NUMERICAL SOLUTION 

The governing conservation equations of mass and 

momentum are solved using the finite volume 

method, with the Fluent® software (Ansys Inc.). To 

model the multiphase flow we use the Volume of 

Fluid (VOF) method. Aniszewski et al. (2014) 

discuss about the applicability of VOF method to 

solve multiphase flows. Other methods such as 

Direct Numerical Simulation (DNS) (Tryggvason et 

al. (2006)), or the level set method (Strubelj and 

Tiselj (2007), Balcazar et al. (2014)) are also usually 

employed in such problems with good results. The 

pressure-velocity coupling equation was solved 

using the pressure implicit with the splitting of 

operators (PISO) algorithm. The geometric 

reconstruction approach was adopted to track the 

interface be-tween the two phases using a linear 

approximation. The discretization schemes for the 

mass and momentum equation were the PRESTO 

and QUICK schemes, respectively, chosen 

accordingly the characteristics of the problem 

(Fluent Users Guide, 2017). 

The numerical solution was modelled to simulate a 

common geometry found in the oil industry. Then, 

we consider an annular space between a 12 ” oil well 

and a 9 5/8” casing, and neglect the curvature since 

(Do −Di)/Do is small and equal to 0.245. Therefore, 

the geometry analyzed is given by 2 parallel plates 

and the bubble is represented by a circle initially 

positioned in the middle of the two plates, as show in 

Fig. 1. A structured mesh is used, with 51209 

elements (1250 divisions in the vertical direction and 

42 divisions in the horizontal direction). The 

structured meshes used in the numerical solution 

were generated in ICEM CFD® software (Ansys 

Inc.). Mesh tests were performed for a case with a 

single bubble. Three different meshes were analyzed: 

Mesh 1 with 690 divisions at the axial direction and 

70 divisions at the horizontal direction (690x70) and 

47610 elements; Mesh 2, with 1250x42 divisions and 

51209 elements; and Mesh 3, with 2091x70 divisions 

and 1444210 elements. The channel aspect ratio was 

held fixed: H/L = 30.3, the initial bubble diameter is 

equal to D/L = 0.12, Re = 0.12, and Bn = 0.42. The 

results are shown in Fig. 2. It can be noted that the 

single bubble rising velocities obtained with Mesh 2 

are very close as those obtained with Mesh 3, the 

error in the bubble terminal velocity is below 1%. 

Therefore, Mesh 2 was adopted throughout this study 

to take into account both the computational accuracy 

and the simulation time consumption. It is worth 

mentioning that with the mesh used, the number of 

cells in each bubble varies from 5 to 213. The smaller 

bubbles (D/L=0.06 and 0.09) presented the lower 

number of cells, 5 and 9, respectively. Above D/L = 

0.12 the number of cells in each bubble is always 

above 20. Another important parameter in the 

solution is the regularization parameter for the 

modified Herschel Bulkley equation, namely the 

critical shear rate γ̇cr, defined in Eq. 6. It is well 

known in the literature that the regularized 

viscoplastic models give good results if the 

regularization parameter is defined so that the 

viscosity at very low shear rates are larger than 

1000ηc (e.g. Burgos and Alexandrou (1999), 

Mitsoulis et al. (2006), Naccache and Barbosa 

(2007)). To satisfy this condition, the values of γ̇cr /γ̇c 

used in the present work are always below 10−3 . A 

test was performed for the case with τy = 2 Pa and 

D/L = 0.12, using a lower value of γ̇cr /γ̇c (≈ 10−5), 

to verify if the results were independent of the 

regularization parameter. The difference between the 
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terminal bubble velocity was below 3%. 

 

 
Fig. 2. Bubble rising velocity as a function of 

time for meshes 1 (690x70), 2 (1250x42), and 3 

(20191x70). 
 

4. RESULTS AND DISCUSSION 

The effects of bubble diameter, yield stress, and 

Reynolds number on the bubble displacement 

through the channel are evaluated for single and 
multiple bubbles. 

4.1   Single Bubble 

We investigated the case of single bubbles flowing 

in a yield stress material modeled by the regularized 

Herschel-Bulkey equation (Eq. 6). The fluid density 

is held fixed and equal to 1910 kg/m3, theconsistency 

index K = 1 Pa.sn, and the power-law index n = 0.7 

are also held fixed, while the yield stress τy was set 

equal to 1, 2 and 4 Pa. The interfacial tension 

between the fluid and the air bubble was kept equal 

to 0.07 N/m. The properties used are based in the 

values of a cement paste used in oil wells. 

The terminal velocity as a function of the bubble 

radius is shown in Fig. 3 for τy = 1,2 and 4. As 

expected, smallest bubbles tend to have more 

difficulty to rise, so the bubble terminal velocity in-

creases with the bubble size due to buyoancy forces. 

It can also be seen that below a certain critical 

diameter, D/L ≈ 0.05, buoyancy forces can’t surpass 

the yielding limit due to yield stress, so the bubble 

doesn’t move. The results also shown that the 

velocity of the bubbles decreases with the yield 

stress, because the viscosity levels are higher. This 

effect is also addressed in Fig. 4, where it is shown 

the decrease of bubble terminal velocity with the 

increase of yield stress for D/L = 0.12. In this case, it 

is noted that for yield stress above around 6 Pa, 

buoyancy can’t overcome the yield stress and the 

bubble remains stagnant. This can be also observed 

on Fig. 5, where it is noted that the Reynolds number 

decreases with the Bingham number up to a certain 

value of Bn above which the force balance be-tween 

yield stress and buoyancy leads the bubble to remain 

stagnant. These results are in qualitative agreement 

with the ones obtained in Dimakopoulos et al. (2013) 

and Lopez et al. (2017). Fig. 3 also shows a decrease 

in the slope in the terminal velocity behavior, 

possible due to wall effects, as the bubble 

dimensionless diameter is around 0.25, with this 

value increasing as yield stress increases. To verify 

if wall effects are relevant, cases were simulated with 

a larger distance between plates (L = 0.066 m), twice 

the original size. The comparison is shown in Fig. 6, 

where it can be noted that there is some wall effect 

when D/L increases, especially above the value of 

D/L close to that inflection point at the velocity 

curve, where the velocity decreases up to 25% due to 

the influence of wall. 

 

 
Fig. 3. Bubble terminal velocity as a function of 

D/L for τy = 1,2 and 4 Pa. 

 

 
Fig. 4. Effect of yield stress on bubble terminal 

velocity for D/L = 0.12. 

 

 
Fig. 5. Reynolds number as a function of 

Bingham number. 

 
The wall effect can be also noted with the aid of the 

velocity and rate-of-deformation fields, which are 

shown in Figs. 7 and 8 for bubble radius equal to 

0.002 (D/L = 0.12), 0.003 (D/L = 0.18) and 0.004 
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(D/L = 0.24) m and τy = 2 Pa. It can be observed 

that the wall has no effect on the fields for the 

bubble with D/L = 0.12, but as the bubble radius 

increases the effect is significant both in the 

velocity and strain rate fields, since for both fields 

the region affected by the presence of the bubble 

reaches the walls. 

 

 
Fig. 6. Wall effect on bubble velocity for τy = 2 

Pa. 

 

Fig. 9 shows the bubble shape as a function of the 

Reynolds number, which is calculated using the 

terminal velocity obtained numerically. As it can be 

seen, the bubble has a spherical shape at lower 

Reynolds numbers, when inertia is negligible, and 

as it increases the bubble acquires an ellipsoidal 

shape due to inertia effects. When the bubble is 

sufficiently small the surface tension forces tend to 

maintain the spherical shape. As the bubble grows, 

inertia forces grow and exceed the surface tension, 

which becomes negligible. These results are in 

contrast with the ones observed in the experimental 

study made by Sikorski et al. (2009) and Lopez et 

al. (2017), where it was observed bubble shapes 

with a rounded head and a cusped tail. How-ever, 

this difference can be due to elasticity that is 

present in the fluid used in the experiments. In this 

work, we don’t consider elasticity in fluid behavior. 

Indeed, the bubble shapes found in this work are in 

agreement with the experimental ones found in 

Lopez et al. (2017) for the less concentrated 

Carbopol dispersions, which have almost no 

elasticity. On the other hand, the shapes are very 

different from the experimental bubble shapes 

obtained for higher concentrated dispersions, 

which present a stronger elastic behavior below 

yield stress. It is also worth comparing the bubble 

shapes with the ones shown in the Re × Eo map for 

Newtonian fluids (Grace (1973)), where Eo = 

ρgD2/σ is the Etvos number and σ is the interfacial 

tension. In the results shown in Fig. 9, Eo varies 

from 1 (Re = 0.007) to 45 (Re = 2.41), where the 

bubble shape goes from spherical to elipsoidal and 

elipsoidal cap for that range of Reynolds number. 

As discussed in Lopez et al. (2017), the critical Bn 

above which the bubble remains stagnant is difficult 

to be determined, either due to numerical or 

experimental difficulties related to the size of mesh 

and model approximations and experimental 

limitations. In this work, we couldn’t obtain the 

value of the critical Bingham, but we estimated it 

being around 0.80. This result was compared to the 

ones obtained in the experimental work of Sikorski 

et al. (2009). Similar to the Bingham number, they 

defined a yield number Y = 2πτyW 2/ρg∀, where W is 

the bubble width and ∀ is the bubble volume. The 

critical yield number obtained in Sikorski et al. 

(2009) was equal to 0.5, while in the present work 

the estimated value for the critical yield number is 

around 1. It is also worth mentioned the theoretical 

value obtained in Dubash and Frigaard (2004), equal 

to 0.87. 

4.2   Multiple Bubbles Arranged Vertically 

We now present the results for multiple vertical in-

line bubbles rising through a yield stress fluid. Figs. 

10–16 show the bubbles Reynolds numbers as they 

move up between the plates, for D/L equal to 0.12, 2 

and 3 bubbles, yield stress equal to 2 and 4 Pa, and 

different initial distances db between bubbles (db/L = 

0.3, 0.6, 0.9 and 1.2). 

Figure 10 shows the results for the displacement of 

one bubble (D=L = 0:12) through the fluid with τy 

= 2 Pa, where it can be observed that the Reynolds 

number is almost constant (≈ 0:06) throughout the 

channel. Figs 11 – 14 show the flow of two bubbles 

of the same radius (D=L = 0:12), with a space 

between them of db=L = 0:3; 0:6; 0:9 and 1.2 

respectively, in a fluid with yield stress equal to 2 

Pa. 

Analyzing these plots it can be observed that the 

second bubble rises with a larger Reynolds 

number (or velocity) than the first bubble, because 

the first bubble shear the fluid decreasing its 

viscosity. Then, the second bubble flows through 

a less viscous fluid, reaching larger velocities. At 

a certain point the bubbles colapse and a velocity 

peak is observed. Later on, the velocity decreases 

to a value mildly higher than that of the original 

bubbles, since the new bubble is bigger, which 

leads to higher buoyancy forces. This behavior is 

observed for the cases where the distance between 

bubbles is equal to db/L = 0.3, 0.6 and 0.9. It can 

also be observed that as the bubble spacing 

increases, the velocity peak is lower and occurs 

later. Moreover, the results obtained for db/L = 1.2, 

shown in Fig. 14, show that as the distance 

between bubbles in-creases, the first bubble no 

longer affect the flow of the second bubble and 

vice-versa. It can be noticed that the bubbles flow 

with the same velocity, equal to the single bubble 

case, and don’t collapse anymore. This happens 

because the fluid structure breakage region below 

the first bubble is limited and doesn’t reach the 

second bubble. 

Fig. 15 shows the Reynolds number for the flow of 

two bubbles with D/L = 0.12 and distance be-tween 

them equal to db/L = 0.6, through the fluid with yield 

stress equal to 4 Pa. It can be observed that despite 

the fact that the velocity peak is lower than the one 

obtained for the case with the lower yield stress, as 

expected since in this case the fluid is more viscous, 

the position where the bubbles collapse remains the 

same. 
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Fig. 7. Rate-of-deformation field for τy = 2 Pa and D/L = 0.12, 0.18, and 0.24. 

 

 

 
Fig. 8. Velocity magnitude field for τy = 2 Pa and D/L = 0.12, 0.18, and 0.24. 

 

 
Fig. 9. Bubble shape as a function of Reynolds number for τy = 2 Pa and D/L = 0.12. 

 

 
Fig. 10. Reynolds number versus vertical 

position for 1 bubble displacement at different 

times, D/L = 0.12 and τy= 2 Pa. 

 

 
Fig. 11. Reynolds number versus vertical 

position for 2 bubbles displacement at different 

times, D/L = 0.12, τy = 2 Pa, and distance 

between bubbles equal to db/L = 0.3. 

 
 

 

 
Fig. 12. Reynolds number versus vertical 

position for 2 bubbles displacement at different 

times, D/L = 0.12, τy = 2 Pa, and distance 

between bubbles equal to db/L = 0.6. 

 
Fig. 13. Reynolds number versus vertical 

position for 2 bubbles displacement at different 

times, D/L = 0.12, τy = 2 Pa, and distance 

between bubbles equal to dh/L = 0.9
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The displacement of three bubbles is show in Fig. 16, 

for db/L = 0.3. It is noted that the first bubble has a 

velocity much lower than the next ones. Then, the 

second bubble reaches the first one and collapse with 

it. After that, this new bubble flows with a higher 

velocity, moving apart from the third one. Therefore, 

just after the collapse of the two first bubbles, the 

velocity of the second bubble is slightly lower, but as 

they move apart the fluid between then build-up and 

its viscosity increases, which leads to a decrease of 

the velocity of the second bubble. It can be noted that 

from t5 = 1 s to t6 = 4.3 s the velocity of the two 

bubbles remains almost the same, indicating that 

close to this point they are already in a distance 

where the second bubble is not affected by the first 

one. 

 

 
Fig. 14. Reynolds number versus vertical 

position for 2 bubbles displacement at different 

times, D/L = 0.12, τy = 2 Pa, and distance 

between bubbles equal to dh/L = 1.2. 

 
 

 
Fig. 15. Reynolds number versus vertical 

position for 2 bubbles displacement at different 

times, D/L = 0.12, τy = 4 Pa, and distance 

between bubbles equal to dh/L = 0.6. 

 

 
Fig. 16. Reynolds number versus vertical 

position for 3 bubbles displacement at different 

times, bubbles radius equal to 2 mm, τy = 2 Pa, 

and distance between bubbles equal to dh/L = 0.3. 

 
 

The velocity and strain rate fields for two and three 

bubbles displacement are shown in Figs. 18 – 20. 

Fig. 18 shows the velocity and strain rate fields for 

the displacement of two bubbles with dimensionless 

diameter D/L = 0.12 and db/L = 0.9. The fluid has the 

yield stress equal to τy = 2 Pa. It can be seen that at 

the beginning (t = 1 s) the fields dont interfere much 

on each other. As the bubbles rise, they get closer 

because the velocity of the second bubble increases. 

It clear that the velocity and strain rate fields ahead 

the second bubble are higher than ahead the first one. 

This is caused by the flow of the first bubble, which 

shear the fluid as it passes through, breaking the fluid 

structure and lowering the viscosity and the drag 

force around the second bubble. It is also important 

to mention that there is a small difference between 

the bubbles shape due to the approximation that is 

made when the spherical bubbles are generated. 

Since the mesh elements are rectangular, the initial 

bubble shapes are not exactly the same causing a 

small difference in the velocity and strain rate fields 

around them. To mitigate this problem it would be 

necessary to refine the mesh even more but since the 

differences are very mild, and don’t affect 

significantly the terminal velocities, the 

computational cost increase would not worth it. The 

velocity and strain rate fields for the displacement of 

three bubbles with D/L = 0.12, and db/L = 0.9 are 

shown in Figs. 19 and 20, for the fluid with the yield 

stress equal to τy = 2 Pa. Higher velocities and strain 

rates occur around the second and third bubbles, the 

last one moves faster until it collapses with the 

second bubble. After that, the new collapsed bubble 

flows with higher velocity due to its larger size, and 

moves toward the first one. It is interesting to note 

that this behavior is different from the one analyzed 

in Fig. 16, where db/L is lower, and the second bubble 

reached the first one before. The comparison of these 

two results show that the distance between the 
bubbles plays an important role on the bubbles flow.  

4.3   Pair of bubbles Arranged Horizontally 

Three simulations were carried out considering two 

bubbles rising side by side. Fig. 21 shows the effect 

of the horizontal distance between the bubbles on 

their displacement. In each case the two bubbles have 

the diameter equal to 2 mm D/L = 0.12), and the fluid 

has the yield stress equal to τy = 2 Pa. The 

dimensionless distance between bubbles is equal to 

dh/L = 0.09, 0.21, 0.33. 

According to Fig. 21, it can be noticed that when the 

bubbles are positioned closest to each other (lowest 

dh/L) they move away from each other until a certain 

distance, from where its distance is kept constant. It 

is believed that this behavior is due to a strong 

repulsion effect resulting from the large amount of 

vortices generated between the bubbles. These 

results are in agreement with the numerical study by 

Islam et al. (2015). On the other hand, for the largest 

distance between bubbles (dh/L = 0.33, Fig. 21c), the 

opposite trend is observed. In this case, the bubbles 

come closer to each other until a certain distance 

where they keep the same distance as the other cases. 

It is believed that for this bubbles interval, the 

repulsive force is not present anymore and the strain 

rate field generates velocities toward the channel 

center, making the bubbles get closer to each other. 

It is suspected that this behavior could be due to wall  
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Fig. 17. Rate-of-deformation field for 2 bubbles displacement at different times, D/L = 0.12, τy = 2 Pa, 

and dh/L = 0.9. 

 
 

 
Fig. 18. Velocity magnitude field for 2 bubbles displacement at different times, D/L = 0.12, τy = 2 Pa, 

and dh/L = 0.9. 

 

 
Fig. 19. Rate-of-deformation field for 3 bubbles displacement at different times, D/L = 0.12, τy = 2 Pa, 

and dh/L = 0.9. 

 

 
Fig. 20. Velocity magnitude field for 3 bubbles displacement at different times, D/L = 0.12, τy = 2 Pa, 

and dh/L = 0.9. 
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effects, but a simulation was carried out for a channel 

width (L) twice larger than the one show in these 

cases, but no difference in the bubbles velocity was 

observed. 

 

 

 
Fig. 21. Two horizontal bubbles displacement, 

D/L = 0.12, τy = 2 Pa, and horizontal distance 

between bubbles equal to: (a) dh/L = 0.09; (b) 

dh/L = 0.21; (c) dh/L = 0.33. 

 

5. FINAL REMARKS 

This work presents a numerical study of the flow of 

air bubbles through yield stress fluids. This problem 

is found in several industrial processes, e.g. gas 

invasion in oil wells during cementation operations. 

Therefore, it is of interest to predict the flow 

dynamics and the bubble shape. The volume of fluid 

method (VoF) is employed to deal with the 

multiphase flow gas/fluid, whereas the Finite 

Volume method is used to solve the governing 

conservation equations. All the numerical 

simulations are per-formed with the Fluent  

software ®. 

First, we analyze the shape and velocity of a single 

bubble as a function of bubble diameter and fluid 

yield stress. The results show that as the bubble 

grows, the rising velocity increases and the bubble 

shape changes from a spherical to an ellipsoidal 

shape due to inertia effects. It was also observed that 

the rising velocity is reduced as the fluids yield stress 

increases. Wall effects were also observed and it was 

found that it influences the rising velocity when the 

ratio D/L (where L is the distance be-tween the 

plates) is higher than around 0.25, where the velocity 

and strain rate field begins to be influenced by the 

wall. It was also noted that very small bubbles are not 

able to rise because buoyancy forces can’t overcome 

the yield stress. 

Considering the vertical multiple in line bubbles 

flow, it could be verified that the distance between 

the bubbles will interfere on the rising behavior. At 

the present study, only after a bubbles interval ratio 

equal to db/L = 1.2 this interference is not significant 

and the bubbles move separately. Moreover, 

considering the numerical solution of the cases 

carried out for a pair of bubbles rising side by side it 

was possible to observe that there is a repulsive effect 

between the bubbles that increases as this interval 

decreases. 
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