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ABSTRACT 

Insertion of large objects or intruders into granular material is common both in nature and industrial 
applications. During penetration due to collision between intruder and granular particles, intruder experiences 
resistance or drag force (analogy from fluid). In literature, it is extensively studied that in dry packed beds 
granular drag force increases with the intrusion depth. However, nearly no information is available about the 
effect of fluidization on the granular drag force and is the main theme of this paper. In this paper, discrete 
element method (DEM) and computational fluid dynamics (CFD) is used for performing numerical simulations. 
Simulations showed that granular drag force becomes independent of intrusion depth at incipient fluidization 
and is a function of Reynolds number. Using the mathematical relation of fluid drag force, granular viscosity 
of the fluidized bed is calculated. The physics for the fluid like state of granular material and the independence 
of granular drag force with intrusion depth is explained at the end of paper.   

Keywords: Resistance force; Fluidized bed; Intruder impact; Granular viscosity; Discrete element method. 

NOMENCLATURE 

 characteristics area ܣ
 Archimedes number ݎܣ
ܿ exponential fitting parameter 
 ௗ drag coefficientܥ
  intruder diameter ܦ
݀ diameter of particles  
݂ friction coefficient 
  drag force in volume averaged equationࢌ
 ூ forcing function in IBMࢌ
   normal contact force on particleࡲ
  ௧ tangential contact force on particleࡲ
  ூ fluid force acting on intruderࡲ
 granular drag force ܨ
  ௨ௗ fluid drag forceܨ
 ሻ depth dependent hydrostatic component ofݖሺܨ

granular drag force 
 ሻ velocity dependent viscous component ofݒሺܨ

granular  drag force 
  frictional component of granular dragܨ

force 
  magnitude of fluid drag forceܨ
݃ gravity  
 ௧ relative particle velocity between particlesܩ

during collision in tangential direction  
 relative particle velocity between colliding ࡳ

particles  
݇ fitting parameter 
  spring constant ܭ
 [௧ tangential spring constantܭ
    normal springܭ

݉ mass of particle 
   fluid moment acting on intruderࡹ
 normal unit vector at the contact point 
  fluid pressure 
ܴ݁ Minimum fluidization velocity Reynolds   

number 
 radius of intruder ࢘
 tangential unit vector at the contact point ࢚
ܷ fluidization velocity 
 fluid velocity in volume averaged equation ࢛
  volume weighted fluid velocity by IBM࢛
ܷ minimum fluidization velocity of the bed 
  intrusion velocity ݒ
 volume of cube enclosing all sides of 1ܸ

intruder 
  particle velocity࢜
 ூ intruder velocityࢂ

ܹ௩ average weight of particles in hemisphere 
z intrusion depth 

 
   fluid densityߩ
  kinematic viscosity ߥ
  fluid viscosityߤ
  granular viscosityߤ
 solid volume fraction of intruder in fluid ߙ

grid cell 
 drag coefficient ߚ
ε void fraction in fluid grid cell 
߮ packing fraction 
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 ௧ tangential damping coefficientߟ
  normal damping coefficientߟ
 ௧ overlap in tangential directionߜ

  overlap in normal directionߜ
  time step ݐ∆
 fluid grid cell ݔ∆

 

 
1. INTRODUCTION 

Granular material consists of large agglomerates of 
discrete particles. Under normal atmospheric 
conditions, the forces between granular grains are 
repulsive and the granular material takes the shape of 
container (Jaeger et al., 1996). One of the distinct 
characteristics of granular material is that under 
different operating conditions i.e. vibration, 
fluidization, rotation etc. granular material 
transforms into different states of matter. For 
example: granular material acts as solid in large heap 
of sand, liquid in sand clock and gas in sand storm. 
Due to its unique properties, granular material can be 
classified as an additional form of matter. In this 
paper, the liquid state of granular material is 
discussed. 

In fluidization, depending upon the gas velocity 
granular material changes to different intermediate 
states (Yang, 2003). For smaller gas velocity, the 
particles do not move and the bed remains packed 
due to weak fluid drag acting on particles and the 
pressure drop across the bed increases with the 
increase in gas velocity. By further increase in gas 
velocity, at certain critical point, the fluid drag 
becomes nearly equal to particles weight. At this 
point, the bed expands and the pressure drop across 
the bed becomes constant with further increase in gas 
velocity. Any further increase in gas velocity results 
in bubble formation in granular material and finally 
leads to pneumatic conveying of granular particles. 
In this paper, granular material near to incipient 
fluidization is studied for the calculations of granular 
drag force. 

In literature, there are various problems that are 
studied for granular material (Le Guen et al. 2011). 
For example: segregation (Ottino & Khakhar 2000) 
and jamming of granular material under shear 
(Behringer, 2015), fluidization (Nirmala & 
Muruganandam 2015), Taylor vortices formation in 
granular particles (Conway et al. (2004)) etc. One 
particularly interesting problem is the insertion of 
intruder or large object into granular material and 
calculation of resulting resistance or granular drag 
force. It has various applications both in nature and 
industry e.g. crater formation by meteors and 
projectiles, foot and tire prints on sand, lifting of soil 
using tractor blades, bullet penetration in sand bag 
etc. (Walsh et al. (2003); Uehara et al. (2003); 
Crassous et al. (2007); Clark et al. (2012)). 

There are number of studies in literature; for 
modeling granular drag or resistance force acting on 
intruder. For example: Lohse et al. (2004) studied 
impact force acting on sphere by falling under 
gravity on sand and proposed that granular drag force 
increases linearly with the depth  of intrusion. Peng 
et al. (2009) and Hill et al. (2005) observed power-
law behavior of granular drag force with the depth of 
intrusion (with exponent=1.3). For intruders with 

relatively larger intrusion velocities; Katsuragi and 
Durian (2007) and Hou et al. (2005) proposed that 
besides the depth dependent term for modeling 
granular drag force there should also be another term 
which is a function of intrusion velocity. Hill et al. 
(2005) and Clark et al. (2014) investigated variation 
of granular drag force by changing shape of intruder. 
Besides the calculation of granular drag force, in 
literature there are also some studies related to 
tracking of motion of intruder in fluidized bed. For 
example: Lim and Agarwal (1994) studied 
circulation patterns around large sphere in two 
dimensional fluidized bed using experiments. Rios et 
al. (1986) studied the sinking and rising of large 
sphere by bubbles in fluidized bed.  

In literature, thus reasonable studies are done for the 
motion of large objects both in packed and fluidized 
bed. However, in literature according to authors’ 
knowledge variation of granular drag force on 
intruder in partially fluidized bed needs further 
investigation (at which the bed is neither perfectly 
packed nor fluidized) and covered in this paper.  

2. FORMULATION 

2.1 Particle-Particle Interactions 

In simulations, for particle-particle and particle-
intruder calculations soft sphere discrete element 
method (DEM) proposed by Cundall and Strack 
(1979) is used. Since this study involves granular 
particles and intruder of different sizes, thus DEM is 
explained by taking into account both events i.e. 
particle-particle collision and particle-intruder 
collision. Both events are shown in Fig. 1. 

 

 
Fig. 1. Schematic of particle-intruder and 

particle-particle collision. 
 
Since intruder and particles used in simulations are 
spherical in shape thus there is no difference in DEM 
calculations for modeling particle-particle (shown by 
particle 2 and 3 in Fig. 1) and particle-intruder 
collision (shown by particle 1 and intruder in Fig. 1). 
In DEM, first the neighboring particles are detected 
by particle in cell method (Sulsky et al. 1995) by 
using grid larger in size than the intruder diameter. 
Particle-particle collision is detected when the inter-
particle distance is less than the sum of particles 
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radii. Similarly, particle-intruder collision is detected 
when the distance between intruder and particle is 
less than the sum of radii of particle and intruder. 
Then the overlap (ߜ ) is calculated by taking the 
difference between sum of particles radii and inter-
particle distance (in case of particle-particle 
collision) or by taking the difference between sum of 
particle and intruder radii with the inter-particle and 
intruder distance (in case of particle-intruder 
collision). The inter-particle and particle and intruder 
collision force is modeled by assuming the collision 
as friction slider, linear spring and dashpot as shown 
in Fig. 2.  
 

 
Fig. 2. Schematic of DEM model. 

 
Furthermore, the collision or contact force is 
resolved into tangential ܨ௧  and normal components 
ܨ  modeled by Eq. (1) and (2) respectively. If the 
magnitude of tangential force is larger than the 
product of friction coefficient and magnitude of 
normal force than slipping occurs and the tangential 
force is calculated by Eq. (4). 

௧ࡲ ൌ ሺെܭ௧ߜ௧ െ  (1)    ࢚	௧ሻܩ௧ߟ

ࡲ ൌ ሺെܭߜ െ ࡳߟ ∙  (2)    ሻ

If  |ࡲ௧|  |    (3)ࡲ|݂

௧ࡲ ൌ െ݂|ࡲ|(4)    ࢚ 

One more important point about DEM is the 
numerically stability. For stable DEM solution, time 
step during simulations should be smaller than one 
by tenth of the period of natural oscillations of a 
mass-spring system (2ܭ√ߨ). Thus, for numerically 
stability, simulations are run at a time step equal to 
10-6 seconds. 

2.2 Fluid-Particle Interactions 

Simulations involve particles of the order ∽105. 
Thus, for reducing computational time and without 
compromising the reliability of results, locally 
phase-averaged Navier-Stokes equations (Anderson 
& Jackson 1967) are used in which fluid mesh is 
larger in size than particles and drag correlations are 
used for incorporating particle-fluid interactions. 
The details about fluid solver can be found 
somewhere else (Tsuji et al. 1993). The continuity 
and momentum equation of fluid are solved using 
SIMPLE (Patankar, 1980) and are given by: 

డ

డ௧
ߝ   ∙ ሺ࢛ߝሻ ൌ 0     (5) 

డ

డ௧
ሺ࢛ߝሻ   ∙ ሺ࢛࢛ߝሻ ൌ െ

ఌ

ఘ
  ࢛ଶߥߝ        (6)ࢌ

ࢌ  in Eq. (6) incorporates the particle effects on 
fluid. In this paper, the relation proposed by Zaidi 
(2018) is used in the calculation of ߚ. 

ࢌ ൌ ߚ
ሺ࢜ି࢛ሻ

ఘ
   (7) 

Simulations involve intruders of diameter (ܦ) which 
is either equal to or larger than six times particle 
diameter (݀). However, in solving volume averaged 
equations fluid mesh should be 2-5 times larger than 
diameter of particle. Thus, immersed boundary 
method (IBM) is used for coupling intruder with 
fluid. In this paper only main points are discussed, 
details about this method can be found somewhere 
else (Zaidi, 2018; Zaidi et al. 2015). For coupling 
fluid with both particles and intruder same fluid grid 
size is used and only the fluid grid regions occupied 
by intruder are solved using IBM. Furthermore, at 
the interface of fluid and intruder, local grid 
refinement is used for the calculation of ߙ and shown 
in the enlarged view in Fig. 3. (more details can be 
found in Zaidi (2018)) 

 

 
Fig. 3. Fluid grid in IBM. 

 
After obtaining the volume weighted fluid velocity 
࢛) ࢛ .(  is changed to ࢛  around intruder by linear 
interpolation and given by:  

࢛ ൌ ୍ࢂߙ  ሺ1 െ  (8)    ࢛ሻߙ

where ߙ  changes from zero to one for fluid and 
intruder grid cell respectively. The motion of 
intruder changes the value of ߙ in the fluid grid cell 
which negligibly affect the numerical stability which 
is primarily dependent on the Courant number 
 for fluid calculations. After calculation of (ݔΔ/ݐΔ࢛)
 .is calculated and given by Eq (ூࢌ)  forcing term࢛
(9).  

ூࢌ ൌ ߙ
ሺࢂି࢛ሻ

௧
    (9) 

The volume integral of forcing term (ࢌூ) is used for 
the calculation of fluid force and moment on intruder 
and given by Eq. (10) and (11) respectively. 

ூࡲ ൌ െߩ  ଵݒூ݀ࢌ    (10) 

ூࡹ ൌ െߩ  ࢘ ൈ ଵݒூ݀ࢌ    (11) 

It is to be noted that both total fluid force on particles 
and intruder and total force due to particles and 
intruder interactions are calculated independently. 
After calculation of net force, velocity and 
displacement of particles and intruder are obtained 
by integrating net acceleration.   
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3. SIMULATION SETUP 

Simulations are done for cubic domain with walls to 
mimic cubical container. Random particle 
arrangement is obtained by giving the particles initial 
random velocity and let them settle under 
gravitational force using DEM solver only. The 
initial setup of simulation and size of computational 
domain are shown in Fig. 4. 
 

 
Fig. 4. Simulation Setup. 

 
There are 512,000 particles in the computational 
domain and each and every particle is tracked during 
simulation. Glass particles are used in simulations 
with size, density, coefficient of restitution, 
coefficient of friction equal to 0.5 mm, 2500 kg/m3, 
0.65 and 0.2 respectively (Ishibashi et al. 1994; 
Sondergaard et al. 1990).  

In simulations fluid grid is 2.5 times the particle 
diameter and the fluidizing medium is air. Similar 
approach for fluid grid selection was previously used 
by Li and Li (2018) and Li et al. (2017). The 
minimum fluidization velocity of air is calculated by 
simulations and compared with the relation of Wen 
and Yu (1966) given by:  

ܷ ൌ
ோఔ

ௗ
   (12) 

ܴ݁ ൌ ሺ33.7ଶ  ሻଵ/ଶݎܣ0.0408 െ 33.7   (13) 

ݎܣ ൌ 	
ௗ

యఘ൫ఘିఘ൯

ఓమ
   (14) 

The percentage difference between simulation 
results and Eq. (12) remains less than 10%. For 
calculation of granular drag force, intruder penetrates 
into granular material with constant velocity. In 
simulations, three parameters are studied i.e. intruder 
diameter, intruder velocity and degree of fluidization 
and their ranges are given in table 1. The second 
column in table 1 shows the parameters that are 
changed for each case while the parameters which 
are kept constant (for that case) are shown in column 
three and four.  

4. RESULTS AND DISCUSSIONS 

4.1 Drag force on intruder without 
fluidization of granular material 

The main aim of this sub-section is to benchmark the 
simulation code by calculating the granular drag 

force in packed bed. In literature (Lohse et al. 2004); 
Katsuragi and Durian 2007; Xu et al. 2014), this 
problem is reasonably studied and the relation for 
modeling granular drag force can be written as:      

,ሺܼܨ ሻݒ ൌ ሻݖሺܨ  ሻݒሺܨ      (15)ܨ

 
Table 1 Cases studied in simulations 

Case 1 
 ,=12,16, 20݀/ܦ

24 ூܸ=0.1 m/s ܷ ܷ⁄ = 0 

Case 2 ூܸ=0.1,0.2,0.3, 0.4 
m/s 

ܷ =16݀/ܦ ܷ⁄ = 0 

Case 3 
ܷ ܷ⁄ =0,0.25, 
0.5,0.75,1,1.25, 

1.5,2 
=16 ூܸ=0.1 m/s݀/ܦ

Case 4 
݀/ܦ =12,16, 
20, 24 

ܷ ܷ⁄ =1.
25 

ூܸ =0.1 
m/s 

Case 5 ூܸ=0.1, 0.3, 0.4 
m/s 

ܷ ܷ⁄ =1.
25 

݀/ܦ = 
16 

 
In some work, ܨ is included in ܨሺݖሻ rather than as a 
separate term (Katsuragi & Durian 2007). For 
intruders with relatively smaller velocities (i.e. 
ூܸ  0.8 m/s, ܨሺݒሻ  can be neglected and ܨሺݖሻ  is 

generally written as shown in Eq. (14). (this value of 
ூܸ for ignoring ܨሺݒሻ and the relation for ܨሺݖሻ in Eq. 

(14) are obtained from literature (Lohse et al. 2004; 
Katsuragi & Durian 2007; Xu et al. 2014; Hou et al. 
2005; Hill et al. 2005) 

ሻݖሺܨ ൌ ܼ݇   (16) 

Lohse et al. (2004) proposed the value of 
݇=13.3	േ0.5 N/m and ܿ=1 using experiments of free 
fall of large object in loosely packed sand. Hill et al. 
(2005) using the plunging and retraction experiments 
of intruders into granular material proposed the value 
of ݇=15	േ3 N/m and ܿ=1.3.  

The cases studied in this section are given by case 1 
and case 2 in table 1. Figures 5 and 6 show the log-
log plot of granular drag force as a function of 
intrusion depth for different intruder diameters and 
intrusion velocities respectively. The depth of 
intrusion is non-dimensionalized by the intruder 
diameter. The granular drag force is plotted after the 
intruder is fully submerged into granular material 
and before the granular drag force increases 
exponentially due to jamming of particles from the 
bottom surface (Stone et al. 2004).  
 

 
Fig. 5. Drag force F on intruder with different 

intruder sizes for 0.1 =۷܄ m/s and ܃ ⁄ܕ܃  = 0 m/s. 
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Fig. 6. Drag force F on intruder with different 
intruder velocities for ۲/16=ܘ܌ and ܃ ⁄ܕ܃  = 0 

m/s. 
 

It can be seen that the granular drag force increases 
with the diameter of intruder and remains 
independent with intrusion velocities (which is 
consistent with the low speed intruder dynamics). 
Furthermore, the granular drag force follows a 
power-law function of intrusion depth as was 
mentioned in Eq. (14). In the small inset in Fig. 5, the 
granular drag force is non-dimensionalised by the 
intruder volume. The non-dimensionalized granular 
drag force collapses on a single line for intruders of 
different diameters with a slope equal to 1.3 which is 
consistent with the findings of Hill et al. (2005).  

4.2 Drag Force on Intruder in Fluidized Bed 

In simulations for cases of fluidized bed, the fluid 
drag acts on both particles and intruder. However, 
since this paper in only focused on resistance force 
acting on intruder due to granular medium or 
granular drag force only this particular force is 
plotted in rest of figures. The cases studied in this 
section are given by case 3, 4 and 5 in table 1. 
Granular drag force is calculated for different 
fluidization velocities (ܷ) and given in Fig. 7. ܷ 
in Fig. 7 is the ratio of ܷ to ܷ.  
 

Fig. 7. Drag force F on intruder with different 
fluidization velocities for 16=ࢊ/ࡰ and ࡵࢂ= 

0.1 m/s. 
 
It can be seen that the slope and the y-intercept of the 
granular drag force decreases with the increase in 
degree of fluidization especially after ܷ   0.75. 
The slope of granular drag force approaches to zero 
with intrusion depth for ܷ =1.25 and becomes 
fluctuating for ܷ=1.5. The main reason for the 
fluctuations in granular drag force for ܷ=1.5 is 
bubble formation in fluidized bed. As the bubble 

rises near to intruder it develops void around intruder 
and thus reduces the granular drag force. After the 
bubble leaves the intruder, granular drag force 
increases again. This motion of bubbles develops 
fluctuations in granular drag force. The zero slope for 
ܷ=1.25 represents an interesting phenomenon and 
is further investigated.  

For ܷ =1.25, the granular drag force becomes 
nearly independent of the intrusion depth which is a 
characteristics of fluid. In literature, the fluid drag 
force on a sphere is a function of relative velocity 
between fluid and sphere, sphere diameter and 
properties of fluid. But the fluid drag force has no 
dependence on the position of sphere in the fluid. For 
ܷ  = 1.25, the effect of intruder diameter and 
intruder velocity on granular drag force is shown in 
Figs. 8 (a) and (b) respectively. Furthermore, it can 
be seen from Fig. 8 (b) that the granular drag force 
increases with the increase in intrusion velocity 
which was not present in the case of packed bed.  

 

(a) 

 
(b) 

Fig. 8. Drag force F on intruder for Umf = 
1.25 (a) Effect of intruder diameter at 0.1 =ࡵࢂ 

m/s (b) Effect of intrusion velocity at ࡰ/
 .16=ࢊ

 
For better understanding, the normalized average 
granular drag force is plotted as a function of intruder 
diameter and intruder velocity in Figs. 9 (a) and (b) 
respectively at ܷ  = 1.25. A linear relationship 
between the granular drag force and intruder 
diameter and intruder velocity can be seen.   

For Newtonian fluids (e.g. air or water), drag force 
 :due to fluid can be written as (௨ௗܨ)

௨ௗܨ ൌ 	
ଵ

ଶ
ܣߩௗܥ ூܸ

ଶ   (17) 

Using drag correlation proposed by Schiller and 
Naumann (1935) for calculating drag coefficient and 
using intruder diameter for the calculation of ܣ (i.e.  
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ܣ ൌ ߨ 4⁄    :ଶ), Eq. (17) becomesܦ

௨ௗܨ ൌ ܦߤߨ3	 ூܸሺ1  0.15ܴ݁.଼ሻ   (18) 

 

 
(a) 

 

  
(b) 

Fig. 9. Drag force F on intruder for Umf = 
1.25 (a) as a function of intruder diameter at 
 m/s (b) as a function of intrusion 0.1 =ࡵࢂ

velocity and 16=ࢊ/ࡰ. 
 

If we use the same analogy and assume granular 
material in fluidized state as complex fluid and 
replace ߤ  to ߤ  then we can calculate granular 
viscosity ( ߤ ). Similarly, Reynolds number of 
intruder during immersion in granular material ܴ݁ 
can be calculated by: 

ܴ݁ ൌ 	
ఘ
ఓ

   (19) 

  is the effective density of granular material andߩ
can be obtained by ߩ ൌ ௦߮ߩ	 . where ߮  is the 
packing fraction. ߤ  can be obtained as a fitting 
parameter by fitting the data for ܨ as a function of 
ܴ݁ (shown in Fig. 10). 

 

 
Fig. 10. Granular drag force on intruder as a 

function of Reynolds number. 
The value of  ߤ  obtained by fitting is 1.695 Pa-s. 
The obtained value of granular viscosity is closer to 
the range proposed by Grace (1970) (0.4-1.3 Pa-s) 
using experiments in bubbling fluidized beds and 
also closer to the range proposed by Schugerl et al. 
(1961)  (1.2-5 Pa-s) using Couette-type viscometer 
for fluidized bed. However, ߤ  from simulations 
deviates significantly from the simulation results of 
Xu et al. (2014) (0.2 Pa-s). It can be due to 
calculation of granular viscosity for partially 
submerged intruder in packed bed by Xu et al. 
(2014). 

4.3 Physics behind the variation of drag 
force with fluidization 

In Subsection 4.2, we have seen that the simulation 
data for ܷ  = 1.25 fits well with the fluid drag 
correlation. Thus, it can be inferred that at 
fluidization, the granular material loses it solid like 
properties and behaves more like a fluid. For further 

elaborating this point, in Figs. 11 and 12 the 
snapshots of insertion of intruder (ܦ/݀=16) are 
shown in packed and fluidized bed (ܷ = 1.25) at 
the center slice of computational domain. The color 
of particles shows the magnitude of resultant force 
 acting on particles non-dimensionalized by (ܨ)
the weight of particles.  

ିௗܨ ൌ 	
ிೌ


   (20) 

The force network or chains of particles show the 
resistance force experienced by intruder during 
penetration into granular material. The larger is the 
size of force chains below intruder, the larger will 
be resistance or granular drag force. It can be seen 
from Figs. 11 and 12; the force chain network 
below the surface of intruder is stronger in case of 
packed bed. Furthermore, in packed bed as the 
intrusion depth increases the strength of force chain 
network also increases. However, for fluidized bed 
clear force chain network is not present regardless 
of intrusion depth.  
 

 
 
 

Fig. 11. Absence of force chains in fluidized bed 
during insertion of intruder. The force on 
particles is non-dimensionalized with the  

weight of particles. 
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Furthermore, in Fig. 11 it can be seen that the bed 
height is larger in fluidized bed in comparison with 
packed bed in Fig. 12. This is due to passing of gas 
through the bed which decreases the packing fraction 
and makes the bed loosely packed. As the grains are 
relatively further apart in case of fluidized bed and 
their weight is counterbalanced by the fluid drag 
force. Thus, when the intruder immerses into 
granular material the local increase in packing 
fraction and corresponding force network around 
intruder with the increase in intrusion depth does not 
happen. This results into depth independent granular 
drag force with intrusion depth in fluidized bed 
which is similar to conventional fluids. However, in 
case of packed bed due to increase in local packing 
fraction around intruder with the depth of intrusion 
results in formation of stronger force chains and 
increase in granular drag force with intrusion depth. 

For further understanding, the average granular drag 
force on particles below the intruder surface is 
calculated in an imaginary hemisphere (concentric 
with intruder) with radius two times the intruder 
radius for both packed and fluidized bed (ܷ  ൌ 
1.25) and shown in Fig. 14. The schematic diagram 
is shown in Fig. 13.  

 

 
Fig. 13. Imaginary hemisphere for calculation of 

local granular drag force on intruder. 
 
It can be seen in Fig. 14 that for packed bed the 

average granular drag force keeps increasing with 
the depth of intrusion and for fluidized bed the 
granular drag force becomes independent with the 
intrusion depth as was observed previously. 

 

 
Fig. 14. Average granular drag force on 
particles in an imaginary hemisphere. 

 

5. CONCLUSION 

Simulations are performed for calculations of 
granular drag force in packed and fluidized bed. In 
packed bed, simulations showed that granular drag 
force is a function of intrusion depth and can be 
modeled using power-law i.e. ܨ ൌ ଵ.ଷݖ݇  in 
agreement with literature results. For fluidized bed, 
it is observed that fluidization decreases the granular 
drag force. At 1.25 times the minimum fluidization 
velocity, granular drag force becomes nearly 
constant with the intrusion depth and behaves more 
like a fluid. In this condition, the fluid correlation i.e. 
one proposed by Schiller and Naumann (1935) is 
better in modeling granular drag force. Later, using 
this relation granular viscosity of fluidized bed is 
calculated. At the end, network of force chains is 
compared for fluidized and packed bed and observed 
that for packed bed network of force chain increases 
with the depth of intrusion. However, for fluidized 
bed the network of force chain breaks due to passing 
gas resulting in depth independent granular drag 
force.  
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