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ABSTRACT 

Heat and mass transfer through porous media has been a topic of research interest because of its importance 
in various applications. The flow system in porous media is modelled by a set of partial differential 
equations. The momentum equation which is derived from Darcy’s law contains a resistivity parameter. We 
investigate the effect of hydraulic resistivity on a weakly nonlinear thermal flow in a horizontal porous layer. 
The present study is a realistic study of nonlinear convection flow with variable resistivity whose rate of 
variation is arbitrary in general. This is a first step for considering more general problems in applications 
that involve variable resistivity that may include both variations in permeability and viscosity of the porous 
layer. Such problems are important for understanding properties of underground flow, migration of moisture 
in fibrous insulations, underground disposal of nuclear waste, welding process, petrochemical generation, 
drug delivery in vascular tumor, etc. Using weakly non-linear procedure, the linear and first-order systems 
are derived. The critical Rayleigh number and the critical wave number are obtained from the linear system 
using the normal mode approach for the two-dimensional case. The linear and first-order systems are solved 
numerically using the fourth-order Runge-Kutta and shooting methods. Numerical results for the 
temperature are presented in tabular and graphical forms for different resistivities. Through this study, it is 
observed that a stabilizing effect on the dependent variables occurs in the case of a positive vertical rate of 
change in resistivity, whereas a destabilizing effect is noticed in the case of a negative vertical rate of change 
in resistivity. The results obtained indicate that the convective flow due to the buoyancy force is more 
effective for weaker resistivity. 

Keywords: Hydraulic resistivity; Weakly nonlinear; Hydro-thermal; Convective flow; Rayleigh number. 

NOMENCLATURE

P perturbed pressure 
p pressure 
pb basic state pressure 
ε perturbation parameter 
i complex unit 
k unit vector in the vertical positive z-

direction 
࣬ Rayleigh number 
࣬			 critical Rayleigh number  
T temperature 
Θ perturbed temperature  
θb basic state temperature 
 t time variable 

(x,y,z) cartesian coordinates 
ሬ࣯Ԧ	 perturbed velocity vector 
U X component of the velocity vector 
V y component of the velocity vector  
W z component of the velocity vector  
  velocity vector												ሬԦݑ
 ሬሬሬሬሬԦ basic state velocity vector	ݑ
 
 wavenumber ߙ
γ resistivity 
γ0 rate of change in resistivity 
 3D Laplacian 2
∆ଶ 2D Laplacian 

 
 

1. INTRODUCTION 

Fluid flow and heat transfer through a porous 
medium have been a topic of research interest for last 

several decades. A porous medium is a material that 
consists of a solid material with inter-connected 
voids or pores. It is characterized by its porosity and 
the permeability of the medium is the. Darcy’s law 
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for porous media is taken into account in the 
momentum equation, which is similar to the Navier-
Stokes equation. In natural porous media the 
distribution of pores with respect to shape and size is 
not regular. But in typical experiments the quantities 
of interest are measured over areas that cross many 
pores and changes of such space averaged quantities 
may be considered in a regular way and hence are 
acceptable to theoretical 

treatment. Heat transfer through a porous medium is 
a very common phenomenon. The normal tendency 
of a fluid to expand due to heating causes a density 
inversion to occur, if the heating is strong enough, a 
circulatory motion follows, termed convection. 
Convection in fluid media is well-studied 
phenomenon and occurs in many natural settings and 
in many industrial applications. Mathematical 
treatment and research on convection in porous 
media have been presented by many authors through 
many research articles (Nield and Bejan 2017, Vafai 
2005). 

Many studies have been presented by various 
authors to investigate convection in porous media 
with varying porosity or permeability. Rubin 
(1981) investigated the onset of thermohaline 
convection in a porous medium with varying 
hydraulic resistivity. Vafai (1984) investigated 
wall effects due to variable porosity. Variable 
porosity and thermal dispersion effects due to 
natural convection in an inclined porous cavity 
were studied by Hsiao (1998). Modal package 
convection for a porous medium with boundary 
imperfections was analyzed by Riahi (1996). The 
effect of variable permeability in porous media 
was analyzed analytically and numerically by Rees 
and Pop (2000). Hassanien and Omer (2005) 
studied the effect of variable permeability in a 
porous medium. Oliveski and Macrczak (2008) 
analyzed the effect of variable porosity and Darcy 
number in a porous cavity. A medium with variable 
permeability was analyzed by Aldoss (2009). 
Linear and nonlinear stability for a rotating porous 
fluid layer was analyzed by Falsaperla et al. 
(2010). Investigations of Darcy’s law for the flow 
with Pressure-dependent viscosity in a porous 
medium were carried out several researched 
including Nakshatrala and Rajagopal (2011), Fusi, 
Farina and Rosso (2015). The onset of Bernard-
Marangoni convection in composite layers with 
anisotropic porous material was studied by 
Gangadharaiah (2016). 

Riahi (1989) carried out nonlinear stability analysis 
in a porous layer with permeable boundaries. The 
case of a continuous finite bandwidth of convection 
modes in a horizontal layer was analyzed by Riahi 
(1996). Convective flows, in a horizontal dendritic 
porous layer (also known as mushy layer) during 
alloy solidification, are known to produce 
undesirable effects in the final form of the alloy. 
Study on oscillatory modes of nonlinear 
compositional convection in mushy layers was 
carried out by Riahi (2009). Muddamallappa et al. 
(2009) used a modified mushy layer model based on 
the standard near eutectic approximation. They used 
linear stability analysis and calculated critical 

Rayleigh number for the cases of both constant and 
variable permeability. However, the issues of 
nonlinear effects and transition effects on the 
chimney formation did not feature in their 
investigation. Bhatta et al. (2010) studied weakly 
nonlinear convective flow in an active (variable 
permeability) mushy layer with permeable mush-
liquid interface. Bhatta et al. (2012) studied weakly 
nonlinear convective flows in mushy layers with and 
without the magnetic effect and permeable mush-
liquid interface. 

A model for an aquifer which can be treated as 
porous media was presented by Fowler (1997). 
Rubin (1982) used Galerkin method to analyze the 
effects of hydraulic resistivity and thermal 
diffusivity on stability in a nonhomogeneous 
aquifer. Bhatta and Riahi (2017) investigated 
weakly nonlinear hydro-thermal two-dimensional 
convective flow in a horizontal aquifer by treating 
it as porous medium. Their investigation was 
limited to small linear vertical variations in the 
permeability and thermal conductivity. Wang et al 
(2017) presented proper orthogonal decomposition 
(POD) reduced-order model to solve heat transfer 
problem for heat exchanger. Recently, Dejam 
(2018, 2019a, 2019b, 2019c), and Kou and Dejam 
(2019) presented a series of research work in 
porous media. 

There have been some research studies on the effect 
of hydraulic resistivity (Rubin 1981; Bhatta and 
Riahi 2017) as well as related ones on variable 
permeability with or without magnetic field (Bhatta 
et al. 2010, 2012). Bhatta et al. (2010, 2012) studied 
nonlinear convective flow in a mushy layer, which is 
a porous layer formed between the solid and liquid 
layers during the solidification process of binary 
alloy. The mushy layer that they considered has 
variable permeability and hence variable resistivity, 
and they determine the flow evolution for both cases 
in the absence or presence of a vertically oriented 
magnetic field. Bhatta and Riahi (2017) studied 
convective flow in an aquifer layer with variable 
resistivity, by under the condition that the rate of 
change of the resisvity was sufficiently small. Tait et 
al. (1992) carried out experimental investigation of 
convective flow in a mushy layer and determined the 
preferred planform of three-dimensional 
compositional convection in a mushy layer with 
variable permeability. 

Under severe restriction of small variation, previous 
theretical studies determined convective flow 
velocity and temperature for different parameter 
values. In this paper, we use weakly nonlinear 
procedure to investigate the effect of the vertical 
rateof change of resistivity on the solutions for a 
hydro-thermal convective flow in a horizontal 
porous medium. The present study is to understand 
the effects of resistivity variations on the non-linear 
convective flow, which is a first step for more 
general problems involving resistivity variations. 
Such problems are important for understanding 
properties of underground flow, migration of 
moisture in fibrous insulations, underground 
disposal of nuclear waste, welding process, 
petrochemical generation, drug delivery in vascular 
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tumor etc. We determine important results, in 
particular, we found that the convective flow is 
effective if the resistivity is weak and vice versa a 
strong resistivity leads to weak flow. 

We present the mathematical formulation in 
section 2 where all the important mathematical 
equations are derived. Section 3 elaborates the 
solution procedure with the usage of weakly 
nonlinear method. Normal mode approach for the 
two dimensional case is derived in section 4. 
Numerical results and discussion are presented in 
section 5. Section 6 summarizes the procedure and 
conclusions of this study. Some derivations of the 
main equations presented in section 3 are added in 
the Appendix. 

2. MATHEMATICAL FORMULATION 

Here, we consider a horizontal porous medium 
bounded above and below by impermeable 
boundaries and heated from below. The horizontal 
xy-plane is taken as the bottom boundary of the 
medium, and z-axis is vertical and positive upward. 
The geometry of the physical system is shown in 
Fig.1. 

 

 
Fig. 1. A sketch of physical system. 

 
The governing equation for nondimensional system 
can be expressed as (Rubin 1982) 

. ሬԦݑ ൌ 0                                                                  (1) 

ሬԦݑߛ െ ࣬ܶ ݇   ൌ 0                                               (2) 

డ்

డ௧
 .ሬԦݑ ܶ ൌ  ଶܶ                                                  (3)

Here ݑሬԦ	, γ, T , p, ࣬, t and	 ݇  , respectively, represent 
the velocity, resistivity, temperature, pressure, 
Rayleigh number, time and unit vector in the upward 
vertical direction. This system consists of the 
continuity equation, the Darcy equation and the heat 
equation. For steady state solution, all dependent 
variables (ݑሬԦ, T , p ) are functions of x,y,z. Here, we 
assume a linear vertical variation in resistivity γ as 

	ߛ ൌ 	1	 	ߛ(4)                                                      ,ݖ 

where γ0 is a constant which is the vertical rate of 
change of the resistivity. The boundary conditions 
are 

ܶ	 ൌ 	1, 	ݓ ൌ ऊ	ݐܽ														0	 ൌ 0                             (5) 

ܶ	 ൌ 	0, 	ݓ ൌ ऊ	ݐܽ														0	 ൌ 1                             (6) 

where w is the vertical z-component of ݑሬԦ  . A 
schematic diagram of the convection caused by the 

heat difference between the bottom and top layers is 
shown in Fig.2. 

 

 
Fig. 2. Convection due to a heated bottom. 

3. SOLUTION PROCEDURE 

We perturb the system given by (1-3) as follows 

ሾܶ, ,	ሬԦݑ ሿ ൌ ሾ	ߠሺऊሻ, ,	ሬሬሬሬԦݑ ሺऊሻሿ 

ߝ ቂ߆ሺݔ, ,ݕ ,ሻݖ ሬ࣯ሬሬԦሺݔ, ,ݕ ,ሻݖ ܲሺݔ, ,ݕ  ሻቃ.                        (7)ݖ

Here, θb,	ݑሬሬሬሬԦ ,pb are the basic steady state solutions of 

system with no flow and Θ, ሬ࣯Ԧ , P are perturbed 
solutions. The perturbation parameter is given by ε = 
(࣬ −࣬c)/	࣬1 > 0 i.e., ࣬ = ࣬c +ε࣬1, where ࣬c is the 
critical Rayleigh number and ࣬ 1 is the nonlinear 
contribution to ࣬ beyond the critical number. 

3.1   Basic State System and its Solutions 

Using (7) in (1) through (3) and by comparing the 
coefficients of ε0 as the basic state system with no 
flow, we have 

ௗమఏ್
ௗ௭మ

ൌ 0,						
ௗ್
ௗऊ

െ ࣬ߠ ൌ ሬሬሬሬԦݑ					,0 ൌ 0ሬԦ	               (8) 

with boundary conditions θb = 1 at z = 0 and θb = 0 = 
pb at ऊ = 1. Now, by solving the basic state system 
(8), we can express the solutions as 

ߠ ൌ 1 െ ऊ,  ൌ െ
࣬

2
	ሺ1 െ ऊሻଶ,					ݑሬሬሬሬԦ ൌ 0ሬԦ.			 

3.2   Perturbed System 

Using (7) in the system given by (1-3), we obtain a 
system in terms of the perturbed variables as follows: 

. ሬ࣯Ԧ ൌ 0                                                                 (9) 

ߛ ሬ࣯Ԧ െ ࣬ߠ ݇  ܲ ൌ  ݇                              (10)߆ଵ࣬ߝ

߆ଶ െ ሬ࣯Ԧ. ߠ ൌ ߝ ሬ࣯Ԧ.  (11)                                       ߆

and the boundary conditions become Θ=W = 0 at ऊ 

= 0, 1. Here, W is the vertical z-component of ሬ࣯Ԧ. 

Now, expressing Θ(x,y,z) and W (x,y,z) as 

߆ ൌ ߆  ଵ߆ߝ  ଶ߆ଶߝ  ⋯                                    (12) 

ܹ ൌ ܹ  ߝ ଵܹ  ଶߝ ଶܹ  ⋯                              (13) 

and the work shown in the Appendix, we obtain 
different order systems, namely, the linear and the 
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first-order. Subindex is used to denote various 
orders. 

3.2.1   Linear System 

Putting Θ, W given by (12), (13) in the Eqs. (25) and 
(26) given in the Appendix, the linear system can be 
expressed by the following equations: 

ଶߘߛ ܹ 
ௗఊ

ௗऊ
ሺܦ ܹሻ െ ࣬ሺ∆ଶ߆ሻ ൌ 0                   (14) 

߆ଶߘ െ ܹ
ௗఏ್
ௗऊ

ൌ 0,				                                          (15) 

with the boundary conditions Θ0 = W0 = 0 at ऊ = 0, 
1. 

3.2.2   First-Order System 

Putting Θ, W given by (12), (13) in the Eqs. (25) and 
(26), the first-order system can be expressed as: 

ଶߘߛ ଵܹ 
ௗఊ

ௗऊ
ሺܦ ଵܹሻ െ ࣬ሺ∆ଶ߆ଵሻ ൌ ࣬ଵሺ∆ଶ߆ሻ  (16) 

ଵ߆ଶߘ െ ଵܹ
ௗఏ್
ௗऊ

ൌ ࣯0
ሬሬሬሬሬԦ.                                      (17)߆

and the boundary conditions are Θ1 =W1 = 0 at ऊ = 
0,1. 

4. 2-D SOLUTIONS: NORMAL MODE 
APPROACH 

Now, we consider the two dimensional case. Using 
the normal mode approach, we take the following 
forms for the linear solutions 

,ݔሺ߆ ऊሻ, ܹሺݔ, ऊሻ ൌ ሾ߆ሺऊሻ, ܹሺऊሻሿ݁ఈ௫,	         (18) 

where α denotes the wave number. As derived in the 
Appendix, the normal mode linear solutions satisfy 

ሺ1  ऊሻߛ ቀ
ௗమ

ௗऊమ
െ ଶቁߙ ܹ  ߛ

ௗௐబ
ௗऊ

 ߆ଶ࣬ߙ ൌ 0	  

(19) 

ቀ ௗ
మ

ௗऊమ
െ ߆ଶቁߙ െ ܹ

ௗఏ್
ௗऊ

ൌ 0                               (20) 

with boundary conditions ߆ = ܹ = 0 at ऊ = 0, 1. 

For the normal mode first-order solutions, we have 
two parts: one is called one-alpha mode due to the 
presence of eiαx and the other called two-alpha mode 
due to the presence of e2iαx. These satisfy (as derived 
in the Appendix) 

ሺ1  ऊሻߛ ቀ
ௗమ

ௗऊమ
െ ଶቁߙ ܹଵଵ  ߛ

ௗௐభభ
ௗऊ

 ଵଵ߆ଶ࣬ߙ ൌ

െߙଶ࣬߆	                                                            (21) 

ቀ
ௗమ

ௗऊమ
െ ଵଵ߆ଶቁߙ  ܹଵଵ ൌ 0                                     (22) 

with ߆ଵଵ = ܹଵଵ = 0  = 0 at ऊ = 0, 1 and 

ሺ1  ऊሻߛ ቀ
ௗమ

ௗऊమ
െ ଶቁߙ4 ܹଵଶ  ߛ

ௗௐభమ
ௗऊ



ଵଶ߆ଶ࣬ߙ4 ൌ 0                                                      (23) 

ቀ
ௗమ

ௗऊమ
െ ଵଶ߆ଶቁߙ  ܹଵଶ ൌ ܹ

ௗ௵బ
ௗऊ
				                       (24) 

with ߆ଵଶ = ܹଵଶ = 0  = 0 at ऊ = 0, 1. 

5. NUMERICAL RESULTS AND 
DISCUSSION 

In obtaining the numerical solutions, the fourth-
order Runge-Kutta method (RK4) is used in 
combination with the shooting method (Kincaid 
and Cheney, 2002). Runge-Kutta methods are 
numerical procedures used to solve a first-order 
ordinary differential equation (ODE) with a given 
initial value, i.e., to solve an IVP (initial value 
problem). These methods are also used to solve a 
system of first-order ordinary differential 
equations with given initial conditions. Higher-
order ODE can be solved by expressing the ODE 
as a system of first-order ODEs. Advantages of 
Runge-Kutta methods over Taylor’s series 
methods are that they do not require computation 
and evaluation of the derivatives which can be very 
complicated and time consuming. In this work, we 
use the fourth-order Runge-Kutta method (RK4). 
It is widely used due to its simplicity in 
implementation and higher-order accuracy up to 
the fourth-order. Higher-order Runge-Kutta 
methods are less attractive than the classical 
fourth-order due to a higher number of function 
evaluations. The shooting method is a numerical 
method used to solve a boundary value problem 
(BVP) by converting it to an IVP. This method 
allows one to shoot out trajectories for possible 
solutions in different directions until a trajectory 
that has the given boundary values is found. For 
solving the ODE systems appearing in this work, 
the codes are written in the Java programming 
language and for graphing the results, MATLAB is 
used. 

To obtain the critical Rayleigh number and wave 
numbers, we solve the linear system (19)-(20). We 
use the fourth order Runge-Kutta method together 
with the shooing method for a particular value of γ0 
by varying the wave number and Rayleigh number 
and then obtain the minimum Rayleigh number 
(which is called the critical Rayleigh number), and 
the corresponding wave number (known as the 
critical wave number). The critical Rayleigh 
numbers and the critical wave numbers obtained 
numerically for different values of γ0 are shown in 
Table-1. 

It is observed from the Table-1 that higher resistivity 
resistivity is stabilizing while smaller resistivity is 
destabilizing. When the rate of change in resistivity, 
γ0, is zero, it reduces to the standard problem of 
constant resistivity where the critical wave number 
and critical Rayleigh number are known to be π and 
4π2, respectively, which match the values computed 
in Table-1 (3rd column). 

 
Table 1 Critical wave numbers and Rayleigh 

numbers 

γ0 -0.5 0.0 0.6 1.4 

αc 3.14021 3.14159 3.14095 3.13928 

࣬ 28.95956 39.47842 50.79039 64.83265 
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The marginal stability curves for different values of 
γ0 are displayed in Fig.3. 

 
Fig. 3. Marginal stability curves for various γ0. 

 
The marginal stability curves make it clear that 
stability region is effected by γ0, the vertical rate of 
change in resistivity. For smaller resistivity 
parameter, unstable region increases. Higher 
resistivity parameter implies higher stability. 

Table-2 displays the linar solutions ߆ (z) for γ0 = 
0.0, 0.6 and -0.5. It is observed from our 
computational work that the linear solution, ߆ (z), 
has the maximum value of 0.01613 at z = 0.5 for 
γ0=0, and it is symmetric about the middle of the 
layer, z = 0.5. It has a maximum value of 0.02040 at 
z =0.53 for γ0 = −0.5, and a maximum value of 
0.01337 at z=0.48 for γ0 = 0.6. 

The linear solutions for the temperature, ߆ (z), for 
different values of γ0 are presented in Fig.4. 

 

 
Fig. 4. Linear ࢨ  (z) for various γ0. 

 
From Fig.4, it is observed that for γ0 = 0.0, the 
temperature has a maximum value at the middle of 
the layer, i.e., at z = 0.5 and temperature is symmetric 
about the middle of the layer. The maximum value 
of the temperature shifts downward in the layer for 
positive values of γ0 and the maximum value of the 
temperature moves upward for negative values of γ0. 

As fluid is moving upward due to the convection 
process, the flow amplitude reaches a maximum 
below the mid-plane if the vertical rate of change of 
resistivity is positive. This maximum value moves 
downward with the increasing such magnitude of the 

vertical rate of change of resistivity. However, flow 
amplitude reaches a maximum above the mid-plane 
if the vertical rate of change of resistivity is negative, 
and such maximum value moves further upward with 
the increasing the magnitude of such negative 
vertical rate of change. 

 
Table 2 Solutions ࢨ  (z) for various γ0 

ऊ γ0 = 0.0 γ0 = 0.6 γ0 = -0.5 

0.68 0.01362 0.01095 0.01796 
0.67 0.01388 0.01118 0.01826 
0.66 0.01413 0.01140 0.01855 
0.65 0.01437 0.01161 0.01881 
0.64 0.01459 0.01181 0.01906 
0.63 0.01480 0.01199 0.01928 
0.62 0.01499 0.01217 0.01949
0.61 0.01517 0.01233 0.01967 
0.60 0.01534 0.01249 0.01983 
0.59 0.01549 0.01263 0.01998 
0.58 0.01562 0.01276 0.02010 
0.57 0.01574 0.01288 0.02020 
0.56 0.01584 0.01298 0.02028 
0.55 0.01593 0.01307 0.02034
0.54 0.01600 0.01315 0.02038 
0.53 0.01605 0.01322 0.02040 
0.52 0.01609 0.01328 0.02039 
0.51 0.01612 0.01332 0.02038 
0.50 0.01613 0.01335 0.02034 
0.49 0.01612 0.01336 0.02028 
0.48 0.01609 0.01337 0.02020 
0.47 0.01605 0.01335 0.02010 
0.46 0.01600 0.01334 0.01998 
0.45 0.01593 0.01330 0.01984 
0.44 0.01584 0.01325 0.01969 
0.43 0.01574 0.01319 0.01951 
0.42 0.01562 0.01311 0.01932 
0.41 0.01549 0.01302 0.01911 
0.40 0.01534 0.01292 0.01888 
0.39 0.01517 0.01280 0.01864 
0.38 0.01499 0.01267 0.01837 
0.37 0.01480 0.01253 0.01810 
0.36 0.01459 0.01237 0.01780 
0.35 0.01437 0.01220 0.01749 
0.34 0.01413 0.01202 0.01717 
0.33 0.01388 0.01182 0.01683 
0.32 0.01362 0.01162 0.01647 

 

Figure 5 displays the two dimensional results for the 
linear solution Θ0(x,z) for γ0 = 0.0 for one period in 
x-direction. For γ0 = 0.0, The maximum value occurs 
at the center of the domain, i.e., at (0.0, 0.5). The 
minimums occur in the middle with respect to z, i.e., 
at z = 0.5, and at both ends of the period with respect 
x, i.e., at x = −1.0 and x = 1.0. Result is symmetric 
with respect to x = 0 and z = 0. Similar results are 
obeserved for the velocity component, W0(x,z). 

Computed result for the linear solution of the 
temperature, Θ0(x,z), for γ0 = 1.4 and γ0 = −1.0 is 
shown in Fig.6. The maximum values occur at x = 0 
and the minimum values occur at both end of the 
period with respect to x. But these values shift 
towards the bottom of the layer for positive γ0 and 
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towards the top of the layer for negative γ0. Similar 
results are obeserved for the velocity component, 
W0(x,z). 
 

 
Fig. 5. Linear Solution Θ0(x,z) for γ0 = 0.0. 

 

 
 

 
Fig. 6. Linear solutionΘ0(x,z) for γ0 = 1.4 and 

γ0=−1.0. 
 

The first-order solutions (one-alpha and two-alpha 
modes) for the first-order temperatures, Θଵଵ  (z) and 
Θଵଶ  (z), are displayed in Fig.7. In all computations, 
we use R1 = 1.0. For one-alpha mode, the maximum 
values of the dependent variables shift down-ward in 
the layer for positive values of γ0 and the maximum 
values move upward for negative values of γ0. But, 
for two-alpha mode, the maximum values of the 
dependent variables shift upward for any values of 
γ0. Both solutions have smaller values for positive γ0 

than those values for γ0 = 0 and have higher values 
for negative γ0 the than the values for γ0 = 0. Two 
alpha mode results dominate one alpha mode results 
for both dependent variables. Similar results hold for 
the vertical components of the velocity, Wଵଵ  (z) and 
Wଵଶ  (z). 

 

 
 

 
Fig. 7. First-order solutions દ  (z) and દ  (z) 

for various γ0. 
 

Figure 8 displays the two dimensional result for the 
first-order for the temperature, Θ11(x,z), for γ0 = 0.0 
for one period in x-direction. The maximum value 
for is obtained at (0.0, 0.5). The minimums occur at 
z = 0.5, and at both ends for x, i.e., at x = −1.0 and x 
= 1.0. For the one-alpha solution for the velocity 
component, W11(x,z), similar behavior is observed. 
 

 
Fig. 8. First-order solution Θ11(x,z) for γ0 = 0.0. 
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Computed results for the first-order one-alpha 
solutions for the temperature, Θ11(x,z), for γ0 = 1.4 
and γ0 = −1.0 are shown in Fig.9. The maximum 
values occur at x = 0 and the minimum values occur 
at both end of the period of x. But these values shift 
upward in the layer for negative γ0 and downwards 
for positive γ0. Similar results hold for the velocity 
component, W11(x,z). 

 

 
 

 
Fig. 9. First-order solutions Θ11(x,z) for γ0 = 1.4 

and γ0 = −1.0. 
 

Figure10 shows the solution for the first-order two-
alpha mode for the temperature, Θ12(x,z), for γ0 = 
0.0. The maximum and minimum values shift up-
ward. Result is symmetric about x = 0. Similar result 
is observed for the velocity component, W12(x,z). 

 
Fig. 10. First-order solution Θ12(x,z) for various 

γ0 = 0.0. 

Table-3 displays the combined first-order 
temperature Θଵ  (z) = Θଵଵ  (z) + ߆ଵଶ  (z) for various 
γ0= 0.0, 0.6 and -0.5. 
 

Table 3 Solution દ  (z) for various γ0 

ऊ γ0 = 0.0 γ0 = 0.6 γ0 = -0.5 

0.66 0.05908 0.04667 0.07994 
0.65 0.05925 0.04688 0.07997 
0.64 0.05938 0.04705 0.07993 
0.63 0.05946 0.04720 0.07982 
0.62 0.05950 0.04731 0.07965 
0.61 0.05949 0.04738 0.07942
0.60 0.05945 0.04743 0.07913 
0.59 0.05936 0.04744 0.07878 
0.58 0.05923 0.04743 0.07838 
0.57 0.05906 0.04738 0.07792 
0.56 0.05884 0.04730 0.07741 
0.55 0.05860 0.04719 0.07684 
0.54 0.05831 0.04706 0.07623
0.53 0.05798 0.04689 0.07557 
0.52 0.05761 0.04669 0.07486 
0.51 0.05721 0.04646 0.07411 
0.50 0.05677 0.04620 0.07331 

 

It is observed from our computational results 
presented in Table 3 that the first-order solution (Θଵ 
(z) = Θଵଵ  (z) + ߆ଵଶ  (z)) has the maximum value of 
0.05950 at z = 0.62 for γ0 = 0. It has a maximum 
value of 0.07997 at z = 0.65 for γ0 = −0.5, and a 
maximum value of 0.04744 at z = 0.59 γ0 = 0.6. 

The first-order solutions for the temperature, Θଵ (z), 
for different values of γ0 are presented in Fig.11. The 
maximum values shift upward (higher z) in the layer 
for any values of γ0. Solutions have smaller values 
for positive γ0 than those values for γ0 = 0 and have 
higher values for negative γ0 than those for γ0 = 0. 
For the vertical component of the velocity, Wଵ  (z), 
similar results are observed. 
 

 
Fig. 11. First-order solution દ  (z) for various γ0. 
 

Fig.12 displays the two dimensional results for the 
first-order (combined one-alpha and two-alpha) 
solution for the temperature, Θ1(x,z), for γ0 = 0.0. 

The maximum value occurs at x = 0. The minimum 
values for Θ1(x,z) not at the end, but inside the period 
of x. 
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Fig. 12. First-order solution Θ1(x,z) for γ0 = 0.0. 

 

Results for the first-order solutions for temperature, 
Θ1(x,z), for γ0 = 1.4 and γ0 = −1.0 are presented in 
Fig.13. The maximum and minimum values shift 
upward in the layer for negative γ0. Results are 
symmetric with respect to x = 0. 

 

 
 

 
Fig. 13. First-order solutions Θ1(x,z) for γ0 = 1.4 

and γ0 = −1.0. 
 

Table-4 displays the nonlinear temperature Θ+ε Θଵ 
for various γ0 = 0.0, 0.652and -0.5. 

 

Table 4 Solution દ+ε દ   for various γ0 

ऊ γ0 = 0.0 γ0 = 0.6 γ0 = -0.5 

0.66 0.02004 0.01607 0.02654 

0.65 0.02029 0.01630 0.02681 

0.64 0.02053 0.01651 0.02705 

0.63 0.02075 0.01671 0.02727 

0.62 0.02094 0.01690 0.02745 

0.61 0.02004 0.01707 0.02761 

0.60 0.02128 0.01723 0.02775 

0.59 0.02142 0.01737 0.02786 

0.58 0.02154 0.01750 0.02794 

0.57 0.02164 0.01761 0.02799 

0.56 0.02172 0.01771 0.02802 

0.55 0.02179 0.01779 0.02803 

0.54 0.02183 0.01786 0.02800 

0.53 0.02185 0.01791 0.02796 

0.52 0.02186 0.01794 0.02789 

0.51 0.02184 0.01796 0.02779 

0.50 0.02180 0.01797 0.02767 

0.49 0.02175 0.01795 0.02752 
0.48 0.02167 0.01793 0.02736 

 

It is observed from our computational results 
presented in Table-4 that the nonlinear solution, 
Θሺݖሻ+ε Θଵ (z), has the maximum value of 0.02186 
at z = 0.52 for γ0 = 0. We use ε = 0.1 It has a 
maximum value of 0.02803 at z = 0.55 for γ0 = −0.5, 
and a maximum value of for 0.01797 at z = 0.50 γ0 = 
0.6. 

Results for the nonlinear temperature, Θሺݖሻ+ε Θଵ 
(z), for different values of γ0 are presented in Fig.14. 
Negative γ0 has destabilizing effect and positive γ0 
has stabilizing effect on the flow. 

 

 
Fig. 14. Linear and first-order combined 

solutions for temperature. 
 

Figure 15 displays the two dimensional results for 
Θ0(x,z) + εΘ1(x,z) for γ0 = 0.0. The maximum value 
occurs at x = 0. The minimum values for Θ1(x,z) 
appear inside the period of x, not at the end. 

Results for Θ0(x,z) + εΘ1(x,z) with γ0 = 1.4 and γ0 = 
−1.0 are presented in Fig.16. The maximum and 
minimum values shift upward in the layer for 
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negative γ0. All the results are symmetric with 
respect to x = 0. Similar results are observed for 
velocity component, W0(x,z) + εW1(x,z) Here are the 
highlights of the findings from this work: 

• The critical Rayleigh numbers and marginal 
stability curves indicate that stability region is 
effected by the resistivity. 

• When the vertical rate of change in resistivity, γ0, is 
zero, it reduces to the standard problem of constant 
resistivity where the critical wave number and 
critical Rayleigh number are known to be π and 
4π2, respectively, which match the values 
computed in Table 1 (3rd column). 

• It is observed that for γ0 = 0.0, the linear solution 
Θ0 has a maximum value at the middle of the layer, 
and is symmetric about the middle of the layer. The 
maximum value of Θ0 shifts downward in the layer 
for positive values of γ0 and its maximum value 
moves upward for negative values of γ0. 

• It is observed that the maximun values for the first-
order solution, (Θଵ = Θଵଵ ଵଶ߆ +  ), shift to the upper 
half plane for any value of γ0. At x = 0, it is 
observed that the first-order solution has the 
maximum value of 0.05950 at z = 0.62 for γ0 = 0. 
It has a maximum value of 0.07997 at z = 0.65 for 
γ0 = −0.5, and a maximum value of for 0.04744 at 
z = 0.59 γ0 = 0.6. 

• The contribution of the linear and first-order 
solutions to temperature at the middle of the layer 
(z = 0.5) for x = 0, are 0.02186, 0.01797, and 
0.02803 for the respective values 0.0, 0.6, and -0.5 
of the resistivity parameter. Computational results 
for the nonlinear solutions demonstrate that 
buoyancy force and the resulting convective flow 
quantities are more effective above the mid-plane 
z = 0.5 if resistivity is weaker. The convective 
temperature decreases with increasing resistivity, 
while it increases with decreasing resistivity. 

• For a positive vertical rate of change in resistivity, 
the flow and temperature are stabilizing and their 
magnitudes are lower in region near the upper 
boundary, while for a negative vertical rate of 
change in resistivity, the flow and temperature are 
destabilizing and their magnitudes are higher in 
region near the upper boundary. 

 

 
Fig. 15. Linear and first-order combined solution 

for γ0 = 0.0. 

 
 

 
Fig. 16. Solutions Θ0(x,z)+εΘ1(x,z) for γ0 = 1.4 

and γ0 = −1.0. 
 

6. SUMMARY AND CONCLUSIONS 

Here we study the effect of the vertical rate of change 
in resistivity on a hydro-thermal convective flow in 
a porous medium. Based on the critical Rayleigh 
number and the critical wave number computed from 
the linear system, we derived the first-order system 
using weakly non-linear procedure. We used the 
fourth-order Runge-Kutta method in combination 
with the shooting method to solve linear and first-
order systems numerically. Results indicate a 
stabilizing effect on the temperature and flow for a 
positive vertical rate of change in resistivity, whereas 
a destabilizing effect is noticed for a negative rate of 
change. It is observed that the convective flow driven 
by the buoyancy force is more effective if resistivity 
is weaker, while the opposite result holds for a 
stronger resistivity effect. Both convective 
temperature and velocity decrease with increasing 
resistivity, while they increase with decreasing 
resistivity. 

In addition, flow is asymmetric with respect to the 
middle of the layer for a non-zero rate of change in 
resistivity. The maximum values for the temperature 
and velocity shift downward for a positive vertical 
rate of change in resistivity and upward for a 
negative rate of change. Advantage of this study is 
that it is a first step for future extension to more 
general variable hydraulic resistivity. The present 
work also provides understanding the nature of the 
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nonlinear flow as is affected by presence of variable 
resistivity whose rate of change is arbitrary. Earlier 
studies only used small variation. The current study 
doesn’t have that restriction. Disadvantage of the 
present study is its limitation for linear variation of 
resistivity, two-dimensionality of the problem, and 
the more involved nonlinear second order solutions 
that are not provided. Future studies may include 
extending the current work to incorporate nonlinear 
second-order system and three dimensional 
extension, and stability of such primary flow 
solutions. 
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APPENDIX 

Elimination of the Pressure 

We eliminate the pressure from the Eq. (10) using the 

poloidal (࣪ ) and toroidal (࣮ ) representations of ሬ࣯Ԧ 
(since . ሬ࣯ሬሬԦ ൌ 0    , Chandrasekhar 1981) which is 
given by 

ሬ࣯Ԧ ൌ ሺܷ, ܸ,ܹ	ሻ ൌ 	െሬ࣪ሬԦ߮	  ሬ࣮ሬԦ߰,  ݁ݎ݄݁ݓ

ሬ࣪Ԧ 	ൌ ߘ	 ൈ ߘ ൈ ݇	, 	ሬ࣮ሬሬԦ 	ൌ ߘ	 ൈ ݇  

Thus, we have W = −∆ଶφ where ∆ଶൌ
డమ

డ௫మ


డమ

డ௬మ
. 

After elimination of pressure by taking the vertical 
component of the double curl of the Eq. (10), the 
perturbed system becomes: 

ଶܹߛ 
ௗఊ

ௗऊ
ሺܹܦሻ െ ࣬ሺ∆ଶ߆ሻ ൌ

 (25)											ሻ߆ଵሺ∆ଶ࣬ߝ

߆ଶ െܹ
ௗఏ್
ௗऊ

ൌ εሬ࣯ሬሬԦ.  (26)                                      ߆

Where ଶൌ
డమ

డ௫మ


డమ

డ௬మ


డమ

డऊమ
ܦ, ൌ

డ

డऊ
. The boundary 

conditions are Θ = W = 0 at ऊ = 0, 1. 

2-D   Normal Mode Solutions 

Now, we consider the two dimensional case. Using 
the normal mode approach, we express the linear 
solutions as 

ሾ߆ሺݔ, ऊሻ, ܹሺݔ, ऊሻሿ ൌ ,ሺऊሻ߆ ܹሺऊሻ݁ఈ௫ 

where α denotes the wave number. Thus, we have 

ଶ ܹሺݔ, ऊሻ ൌ ݁ఈ௫ሺ
݀
݀ऊ

െ ଶሻߙ ܹሺऊሻ 

,ݔሺ߆ଶ ऊሻ ൌ ݁ఈ௫ሺ
݀
݀ऊ

െ  ሺऊሻ߆ଶሻߙ

Using the above equations in the linear system (14)-
(15), we obtain 

ሺ1  ऊሻߛ ቀ
ௗమ

ௗऊమ
െ ଶቁߙ ܹ  ߛ

ௗௐబ
ௗऊ

 ߆ଶ࣬ߙ ൌ 0	     

ቀ
ௗమ

ௗऊమ
െ ߆ଶቁߙ  ܹ

ௗఏ್
ௗऊ

ൌ 0                                (27) 

with boundary conditions Θ  = 0 = 0 at ऊ = 0, 1. 

For the first-order solutions, we have two parts: one 
is called one-alpha mode due to the presence of eiαx 
and the other called two-alpha mode due to the 
presence of e2iαx . Thus for the temperature, the first-
order solution Θ1(x,ऊ) = Θ11(x,	ऊ) + Θ12(x,ऊ), we 
write 

ሾΘଵଵ, Θଵଶሿ ൌ ൣΘଵଵሺऊሻ݁ఈ௫, Θଵଶሺऊሻ݁ଶఈ௫൧ 

which yield 

,ݔଵଵሺ߆ଶ ऊሻ ൌ ݁ఈ௫ሺ
݀ଶ

݀ऊଶ
െ  ଵଵሺऊሻ߆ଶሻߙ

,ݔଵଶሺ߆ଶ ऊሻ ൌ ݁ఈ௫ሺ
݀ଶ

݀ऊଶ
െ  ଵଶሺऊሻ߆ଶሻߙ4

Also for the velocity component, the first-order 
W1(x, ऊ ) = W11(x, ऊ ) + W12(x, ऊ ) where Wଵଵ ൌ
Wଵଵሺऊሻ݁ఈ௫  and Wଵଶ ൌ Wଵଶሺऊሻ݁ଶఈ௫ , similar 
results hold. 

Now using the above results in the first-order system 
(16)-(17), we have one-alpha and two-alpha mode 
systems, respectively, as 

ሺ1  ऊሻߛ ቀ
ௗమ

ௗऊమ
െ ଶቁߙ ܹଵଵ  ߛ

ௗௐభభ
ௗऊ

 ଵଵ߆ଶ࣬ߙ ൌ

െߙଶ࣬ଵ߆	     

ቀ
ௗమ

ௗऊమ
െ ଵଵ߆ଶቁߙ  ܹଵଵ ൌ 0                                   (28) 

with ߆ଵଵ = ܹଵଵ = 0 at ऊ = 0, 1 and 

ሺ1  ऊሻߛ ቀ
ௗమ

ௗऊమ
െ ଶቁߙ4 ܹଵଶ  ߛ

ௗௐభమ
ௗऊ



ଵଶ߆ଶ࣬ߙ4 ൌ 0     

ቀ
ௗమ

ௗऊమ
െ ଵଶ߆ଶቁߙ  ܹଵଶ ൌ ܹ

ௗ௵భమ
ௗऊ

                          (29) 

with ߆ଵଶ = ܹଵଶ = 0 at ऊ = 0, 1 and 
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