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ABSTRACT 

The occurrence of turbulent flows is quite common in nature and several industrial applications. The accurate 
simulation of these complex flows is still a great challenge in science. Large Eddy Simulation (LES) is an 
efficient technique based on the elimination of all scales of a flow smaller than a characteristic length ∆, 
considering that the flow pattern in small scales is homogeneous and isotropic. Therefore, modeling of 
turbulence in such scales is universal and independent of the flow type. This work present PMLES, a new 
OpenMP CUDA Fortran solver for complex turbulent flows at high Reynolds numbers and large computational 
domains (about 1 × 108 cells), using a single GPU card. This was possible by using an economical numerical 
scheme associated with a robust and efficient solution method that requires little variable storage. Theoretical 
and numerical aspects are firstly discussed, and then details of the computational implementation are given. 
Finally, the developed code is tested and validated by simulating a turbulent jet, and comparing the results with 
experimental and computational data from the literature. An analysis of performance gain is also carried out, 
demonstrating the code’s ability to solve this class of problems with a considerable reduction in computational 
time. 

Keywords: CUDA; Open MP; LES; Numerical simulation; Turbulence. 

NOMENCLATURE 

CFL Courant-Friedrichs-Lewy condition 
CFLcritic Critic-Courant Friedrichs-Lewy condition 
Ci, j cross-stress tensor  
Cs Smagorinsky constant 
D nozzle diameter 
Dil dilatation  
Dm domain of filtering operation 
f generic function 
G filter functions 
H transverse length of domain 
L preferential length of domain  
Li, j Leonard-stress tensor 
LK Kolmogorov dissipative scale 
Lλ length of Taylor micro-scale  
Ni Cells number in i-direction  
p pressure 
r radial distance of center domain  
Re Reynolds number 
u instantaneous x-direction velocity 
ui instantaneous i-direction velocity  
Uj jet velocity 
  turbulent axial intensity 	′ݑ
v instantaneous y-direction velocity 
  ത௠௔௫ mean max axial velocityݑ

 ത mean axial velocityݑ
v∆ subgrid characteristic velocity  
xi i direction 
z instantaneous z-direction velocity 
 
(σij)sgs subgrid-scale stress tensor 
|ܵ̅| Frobenius norm  
∆ grid filter 
∆t time step 
∆tconv convective time step  
∆tdif diffusive time step 
 gradient operator ׏
µ viscosity 
µe effective viscosity 
µt turbulent viscosity  
αi Runge-Kutta coefficient 
δ dimensional filter 
δp pressure correction 
δui i-direction velocity correction  
ρ density 
τK characteristic Kolmogorov time  
τλ time of Taylor micro-scale 
Φ time dependent variable
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1. INTRODUCTION 

Turbulence is a phenomenon present in most flows 
observed in nature and in engineering applications. 
Turbulent flows are unstable and their properties 
exhibit fluctuations that are time and space 
dependent. One of the most striking features of 
turbulent flows is the multiplicity of scales. They are 
present from the largest structures (low frequencies), 
which are controlled by the geometry of the flow, to 
the smallest structures (high frequencies), which are 
controlled by molecular viscosity. 

Turbulent flows are present in many physical 
processes and industrial applications, due to the 
presence of boundary layers and shear flows, such as 
in turbulent jets, for example. The numerical 
simulation of turbulent flows remains a challenge in 
computational fluid dynamics (CFD). In this sense 
intense research has been made toward 
understanding and controlling turbulence, due to its 
importance in a wide variety of engineering 
applications, such as in aerodynamics, engines, 
industrial equipment and others. 

There are three widely used methods for simulating 
turbulent flows: Reynolds Averaged Navier-Stokes 
Simulation (RANS), Large Eddy Simulation (LES) 
and Direct Navier-Stokes Simulation (DNS). Each 
one has its own advantages and disadvantages, and 
the methodology is usually chosen based on the 
characteristics of the flow and type of the problem to 
be addressed, as well as of the computational cost 
and availability of computational resources (Piomelli 
1999; Wilcox 2006). 

The Large Eddy Simulation (LES) is a efficient 
technique, based on the elimination of all scales of 
the flow smaller than a characteristic length scale ∆. 
The separation of the scales is performed through the 
proper application of a low-pass filter in the sys-tem 
of equations, as discussed in the next section. The 
filtering operations result in the LES equations, able 
to describe only the flow in the larger scales (Lesieur, 
Métais and Comte 2005). Conceptually, LES is an 
intermediate methodology between DNS and RANS, 
and allow to capture the anisotropic turbulence that 
occurs in the large scales through the solution of the 
intermediate scales, while the small scales are 
described by homogeneous isotropic turbulence 
models. 

The viscous dissipation of the turbulent kinetic 
energy generated at large scales occurs at smaller 
scales, called Kolmogorov scales. It is verified that 
the Kolmogorov scales are smaller than the boundary 
scales which define the flow (the large scale). It is 
observed that the behavior of the small scales is little 
or almost unaffected by the large ones (Tennekes and 
Lumley 1972). In this sense, it is considered that the 
flow pattern in small scales is likely homogeneous 
and isotropic. It is assumed that models for the small 
scales are more universal, independent of the flow 
type, when compared to the classical methodology 
RANS (Piomelli 1999). 

The LES technique enables the computational 
solution of complex transient turbulent flows without 

a prior knowledge of the behavior of turbulence at 
the level of resolved scales. However, its 
computational cost is still far from the acceptable for 
industrial applications, considering that a LES of a 
high Reynolds number flow can easily overwhelm 
the resources of individual workstations. 

A possible solution to popularize LES has been 
consolidating over the last decade, by employing 
Graphics Processing Units (GPUs) in the 
calculations. GPUs have been increasingly used to 
solve scientific problems in many areas. NVIDIA 
launched its first GP-GPU (General Purpose 
Computing on Graphics Processing Unit) in 2006, 
and a parallel programming platform for GPU called 
CUDA in 2007. Initially CUDA emerged as an 
expansion of the widely used C language. However, 
considering that many scientific computational tools 
had been previously developed in Fortran from a 
joint work of NVIDIA and PGI (The Port-land 
Group), a CUDA Fortran Compiler was made 
available in 2010, which is essentially a conventional 
FORTRAN compiler with CUDA extensions. After 
that, many works (Griebel and Zaspel 2010; DeLeon 
and Senocak 2012; Markesteijn, Semiletov, and 
Karabasov 2015; Zhu, Phillips, Spandan, Donners, 
Ruetsch, Romero, Ostilla-M´onico, Yang, Lohse, 
Verzicco, et al. 2018; Kumar, Abdel-Majeed, and 
Annavaram 2019) have been developed in order to 
adapt and redesign the existing codes to the 
architecture of the GPU. 

The challenge in implementing codes in CUDA 
Fortran lies in fundamental differences between CPU 
and GPU architectures. On-card memory is limited 
in GPUs, a factor that must be taken into account 
when designing new GPU algorithms. For example, 
recomputing certain variables along the simulation 
can make the code more efficient, compared to 
computing them once and storing in memory 
(Markesteijn, Semiletov and Karabasov 2015). 
According to Markesteijn et al, the numerical 
schemes applied to discretize and solve the equations 
can make a difference. For optimal computational 
efficiency, all the computations are desired to be 
carried out in the GPU using the on-card memory, 
considering that any copy to conventional (CPU) 
memory is time consuming. Zhu et al. (Zhu, Phillips, 
Spandan, Donners, Ruetsch, Romero, Ostilla-
Mónico, Yang, Lohse, Verzicco, et al. 2018) add that 
GPUs are also characterized by high memory 
bandwidth, favoring the use of low-order finite 
differences CFD codes, characterized by minimal 
data reuse. 

One solution to overcome the memory limitation of 
GPU cards is running the calculations on a cluster of 
GPUs. However, porting a code originally developed 
to run in a single GPU to be executed in multiple 
GPUs may be a complex task. In particular, it 
requires defining how data is partitioned across 
multiple GPU cards, and then launch the appropriate 
thread blocks that can access the local data in each 
card. Cross-card data transfer is a time-consuming 
operation and should be avoided when possible 
(Kumar, Abdel-Majeed and Annavaram 2019). 
Another alternative to address the memory limitation 
is to develop a code that is cost-effective in memory 
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usage, able to solve the problem efficiently and with 
the use of only one GPU. This second approach was 
used in the present work. The resulting solvers can 
be run on a single workstation, which represents an 
interesting advance to-wards bringing LES 
technique closer to industrial applications. 

In this sense the objective of this work is to develop 
a simple and efficient OpenMP CUDA Fortran 
solver, named PMLES, to simulate complex 
turbulent flows capable of simulating high Reynolds 
numbers and large domains (∼ 1 × 108 cells in this 
work), in relevant geometries of industrial interest 
using only one GPU card. The use of a single GPU 
to solve complex problems is achieved by using an 
economical numerical scheme (low order, but 
suitable for engineering problems) associated with a 
robust and relatively cheap numerical method that 
requires little variable storage. The approach 
eliminates the overhead of data transfer usually 
required in MPI-CUDA programming. The code was 
applied to study the coaxial turbulent jet investigated 
experimentally by Amielh et al. (1996), and the 
results obtained were satisfactory, considering the 
quality of the solution and the achieved speedup (55 
compared to a serial execution). 

This work is organized as follows. Section 2 presents 
the methodology to obtain the LES equations from 
the Navier-Stokes equations and modeling their 
specific terms. In the third section, the numerical 
methodology to solve the system of the LES 
equations is discussed. Section 4 is devoted to the 
proposed implementation methodology, aiming to 
efficiently utilize the available architecture. In 
section 5 we describe the test problem and how it was 
modeled. Section 6 present the results and 
discussion, and the final section is devoted to the 
conclusions and future works. 

2. LES MODELING 

2.1   Filtering Conservation Equations 

In the LES methodology, the filtering operation is 
responsible to separate mathematically the large 
scales of the flow that will be solved ݂	̅ሺݔ,  ሻ fromݐ
the small scales that will be modeled 	݂′ሺݔ,  ሻ, alsoݐ
called subgrid scales. As a result we have 

݂	ሺܠ, ሻݐ ൌ ݂	̅ሺܠ, ሻݐ ൅ ݂′ሺܠ,  ሻ      (1)ݐ

also known as Leonard decomposition (Pope and 
Pope 2000). The filtering consists of the convolution 
of the variable to be filtered with the filter function 
Gഥ 

݂	̅ሺܠ, ሻݐ 	ൌ ׬ ׬ ݂	ሺܠ′, ሻ஽௠ݐ
்
଴ ഥܩ	 		ሺܠ െ ,ᇱܠ : ݐ െ  ݐ݀ܠᇱሻ݀ݐ

(2) 

where Dm is the domain on which the operation must 
be performed. 

The filtering process aims to eliminate or smooth out 
fluctuations that are smaller than the predefined 
cutoff wave number. However, the filtering reduces 
the number of degrees of freedom of the problem, 
which can reduce the precision and the performance 
of the model. This occurs because there is a decrease 

in the information contained in the system as the 
filter size is increased. In contrast, there is a 
reduction on the computational cost. The challenge 
is to find a good balance between filter size, accuracy 
and computational cost. 

The LES modeling involves two filtering 
processes:i)a dimensional filter (δ) and ii) a grid filter 
(∆)(Kuo and Acharya 2012). The phenomena that 
occurs in a scale smaller than the grid filter cannot be 
captured by any of the filters, and they are always 
modeled. The scales smaller than grid filter (∆) are 
called sub-grid scales. Figure 1 illustrates the 
resolved scales and the sub-grid scales. 

 

 
Fig. 1. Resolved and filtered scales in LES 

methodology. 
 
The Large Eddy Simulation modeling allows using 
either explicit or implicit filters, provided that they 
represent the properties of the sub-grid terms. As the 
mesh is refined, the solution gets closer to the filtered 
equations when using explicit filters, while for 
implicit filters the solution approaches the equations 
obtained by the DNS methodology (Hሷ allqvist 2006). 
Therefore, in LES it does not make sense to analyze 
mesh convergence. In the limit of grids that allow the 
smaller scales responsible for viscous dissipation to 
be captured, more and more scales are solved and 
fewer scales are modeled. Consequently, the 
influence of subgrid modeling is diminished and 
convergence will only occur for results obtained 
through DNS simulations. 

Most applications in LES use the constant volumetric 
filter, also called top-hat filter (Silva Freire, Menut, 
and Jian 2002) 

ሻܠሺܩ ൌ ൜	1/∆
ଷ	, se|ݔ௜| ൑ ∆/2,				݅ ൌ 1,2,3;

0, otherwise,																																	
            (3) 

which is an implicit filter, considering that the 
characteristic size of the filter is equal to the mesh 
spacing length. In this case the filtering and 
differentiation operation commute. This approach is 
also called Schumann filtering (Huai 2006) and was 
used in this work. 

When the filter function is defined as non-
commutative with the differentiation, the filtering is 
called explicit. The use of explicit filtering has the 
advantage of clearly separating the size of grid filter 
(related to the size of the computational cell) from 



J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.  
 

1070 

the scale filter (related to the physics of the problem). 
The other filter functions most commonly used in 
LES are the Gaussian filter, the cutoff filter (Kuo and 
Acharya 2012; Piomelli 1999; Veynante and 
Vervisch 2002). The detailed development of the 
filtering process is presented in (Kuo and Acharya 
2012). 

2.2   Favre Average 

There are two types of averages that are commonly 
applied to the conservation equations in the solution 
of turbulent flows. The first is the Reynolds 
averaging, that is the conventional temporal average 
procedure, and the second is the Favre averaging, 
based on a mass-weighted average. The Reynolds 
average is widely used for flows with constant 
density, while the Favre average has been preferred 
for variable-mass flows, such as in turbulent flames. 
The Favre averaging is recommended for flows with 
variable density because the governing equations can 
be obtained in the same form as those for the 
incompressible turbulent flow (Kuo and Acharya 
2012). (Piomelli 1999) points out that the subgrid 
terms do not appear in the continuity equation with 
the use of the Favre averaging. Although the flow 
under analysis is incompressible and has constant 
density, the final objective of the code is to study 
turbulent flows with density variation, and the 
formulation is desired to be maintained. 

A filtered variable f with Favre averaging is defined 
as: 

ሚ݂ ൌ
஡௙തതതത

஡ഥ
                                                                        (4) 

and the following relations are verified (Kuo and 
Acharya 2012): 

ρݑపതതതത ൌ ρതݑ෤௜                                                                 (5) 

ρݑపݑఫതതതതതതത ൌ ρതݑపݑఫ෦                                                            (6) 

A variable can be then decomposed into its Favre 
filtered component ሚ݂and its subgrid component f': 

݂	ሺܠ, ሻݐ ൌ ݂	̅ሺܠ, ሻݐ ൅ ݂′ሺܠ,  ሻ                                    (7)ݐ

This procedure can be applied to velocity. Variables 
whose effects of the density are inherent to the 
measurement process, such as pressure, stress 
tensors and the specific mass itself, do not need to be 
filtered by the Favre average. For these variables, the 
conventional time averaging can be used (Kuo and 
Acharya 2012). 

2.3   Filtered Conservation Equations 

As a result of the filtering process, the momentum 
equation becomes 

డሺ஡௨ഢതതതതതሻ

డ௧
൅

డሺ஡௨ഢ௨ണതതതതതതതതሻ

డ௫ೕ
ൌ

డ௣̅

డ௫೔
൅ ሺߤ

డమ௨ഥ೔
డ௫ೕ

మ ൅
డమ௨ഥೕ
డ௫೔

మ ሻ                  (8) 

Details of the application of the filter in the 
momentum equation can be seen in Moint et al. 
(1991) and Kuo and Acharya (2012). 

The nonlinear term of the filtered equation (Eq. 8) 
resulted in a product of two filtered variables, 
making their solution unfeasible. This nonlinear term 

can be treated using the Leonard decomposition in 
terms of the Favre filter (Sagaut 2006), defined in Eq. 
1 and Eq. 4, so that 

ρݑపݑఫതതതതതതത ൌ ρതሺݑ෤ప ൅ ෤ఫݑప′ሻሺݑ 	൅      ఫ′ሻതതതതതതതതതതതതതതതതതതതതതതതതതതതݑ

ρݑపݑఫതതതതതതത ൌ ρതݑప෥ ఫ෥ݑ	 	തതതതതതതത ൅	ρതݑప෥ݑఫ′	തതതതതതതത ൅ ρതݑప′	ݑఫ෥ 	തതതതതതതതത ൅	ρതݑప′ݑఫ′	തതതതതതതതത		 (9) 

Adding and subtracting the term ̅ݑߩ෤௜ݑ෤௝ and replacing 
in the Eq. 8 we have 

߲ሺρݑపതതതതሻ

ݐ߲
൅
߲൫ρതݑ෤௜	ݑ෤௝൯

௝ݔ߲
ൌ
̅݌߲
௜ݔ߲

൅ ߤ ቆ
߲ଶݑത௜
௝ݔ߲

ଶ ൅
߲ଶݑത௝
௜ݔ߲

ଶ ቇ 

													െ
߲
௝ݔ߲

ሾρതݑప෥ ఫ෥ݑ	 െതതതതതതതതതതത ρതݑ෤௜ݑ෤௝ሿ	 

         െ డ

డ௫ೕ
ሾ൅ρതݑప෥ݑఫ′	തതതതതതതത ൅ ρതݑప′	ݑఫ෥ 	തതതതതതതതത ൅	ρതݑప′ݑఫ′	തതതതതതതതതሿ         (10) 

The subgrid-scale stress tensor is defined as (σij)sgs, 
as 

ሺσ୧୨ሻୱ୥ୱ ൌ ρݑపݑఫ	തതതതതതതത െ ρതݑ෤௜	ݑ෤௝                                    (11) 

ሺσ୧୨ሻୱ୥ୱ ൌ ρ	ഥሺݑపݑఫ෦ െ  ෤௝ሻ                                     (12)ݑ	෤௜ݑ

ሺσ୧୨ሻୱ୥ୱ ൌ ρതݑప෥ ఫ෥ݑ	 	തതതതതതതത െ	ρതݑ෤௜	ݑ෤௝ ൅ ρതሺݑప෥ݑఫ′		തതതതതതതത ൅	ݑప′ݑఫ෥ 	തതതതതതതሻ  

               ൅ρതݑప′ݑఫ′	തതതതതതതതത                                                (13)  

ሺσ୧୨ሻୱ୥ୱ ൌ L୧,୨ ൅ C୧,୨ ൅ R୧,୨                                     (14) 

where Li,j is the Leonard-stress tensor that represents 
the interaction between the resolved scales, that 
result in the subgrid contributions, Ci,j is the Cross-
stress tensor that represents the interaction between 
the resolved scales and the unresolved scales, and Ri,j 

is the Reynolds-stress tensor that represents the 
interaction between the unresolved small scales. 

డ஡ഥ

డ௧
൅

డ஡ഥ௨෥೔
డ௫೔

ൌ 0                                                              (15) 

డሺ஡ഥ௨෥೔ሻ

డ௧
൅

డ൫஡ഥ௨෥೔	௨෥ೕ൯

డ௫ೕ
ൌ െ డ௣̅

డ௫೔
൅

డ൫஢౟ౠ൯౩ౝ౩
డ௫೔

൅  

																																							
ଵ

ோ௘
൬
డమ௨෥೔
డ௫ೕ

మ ൅
డమ௨෥ೕ
డ௫೔

మ ൰                     (16) 

2.4   Subgrid Stress Tensor Modelling 

In the framework of LES, there are many submodels 
for describe the subgrid stress tensor. The studies of 
Piomelli (1999), Lesieur et al. (2005) and Sagaut 
(2006) discuss these models in detail. The ideal 
model for the subgrid stress tensor should provide a 
correct description of the interaction between the 
resolved scales and unresolved scales, describing the 
flow of kinetic energy between the scales in both 
directions (forward and reverse energy cascades). 
However, most of the models currently used consider 
only the energy flow of the large scales for the small 
scales and do not consider the reverse energy 
transfer, which has a considerably lower intensity 
(Sagaut 2006). The most commonly used is the 
Smagorinsky Model (Smagorinsky 1963), based on 
the concept of turbulent viscosity proposed by 
Boussinesq. 

The concept of eddy viscosity introduces the 
following hypothesis: “the energy transfer 
mechanism of the scales solved to the subgrid scales 
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is analogous to the molecular momentum transfer 
mechanism, represented by the diffusive term with 
the viscosity µ”. According to this principle, the sub-
grid stress tensor can be described as: 

௜௝ߪ
௦௚௦ ൌ െݒ௧ ൬

డ௨෥೔
డ௫ೕ

൅
డ௨෥ೕ
డ௫೔
൰ ൅ ଶ

ଷ
௧ݒ

డ௨෥ೖ
డ௫ೖ

 ௜௝                  (17)ߜ

This definition (Eq. 17) does not include the 
contribution of the isotropic portion, which can be 
done by using a modified static pressure. However, 
as the study of acoustic interactions and 
compressibility effects are out of the scope of this 
work, this isotropic contribution will be neglected, 
and as a consequence, there is an increase on the 
computational efficiency (Pierce and Moin 2004; 
Pierce 2001). 

The use of the subgrid stress tensor as defined in 
Eq.17 is practical because it allows combining the 
eddy viscosity µt with the molecular viscosity, 
resulting in a dimensionless effective viscosity µe in 
the numerator of the diffusive term of the momentum 
conservation equation (Huai 2006): 

௘ߤ ൌ
ఓାఓ೟
ఓ
,                                                                     (18) 

Then, the Eq. 16 can be rewritten as 

డሺ஡ഥ௨෥೔ሻ

డ௧
൅

డ൫஡ഥ௨෥೔	௨෥ೕ൯

డ௫ೕ
ൌ െ

డ௣̅

డ௫೔
൅  

                              +
ఓ೐
ோ௘
൬
డమ௨෥೔
డ௫ೕ

మ ൅
డమ௨෥ೕ
డ௫೔

మ ൰                         (19) 

Although it is known that µt ≫ µ, keeping both terms 
enhance numerical stability, avoiding null values for 
these properties. Besides, Kuo and Acharya (2012) 
claims that molecular transport effects may be 
important near the walls and close to turbulent/non-
turbulent interfaces (TNTI). 

2.5   Smagorinsky Model 

The turbulent viscosity which arises in the model 
described in the previous section still needs to 
modeled. In this work, the turbulent viscosity will be 
described by the model of Smagorinsky (1963). 
Smagorinsky (1963) assumed that the eddy viscosity 
(µt) is proportional to the characteristic length of the 
filter ∆, and to the characteristic subgrid velocity v∆, 
that are defined as 

୼ߥ ൌ Δ|ܵ̅|                                                                         (20) 

Δ ൌ ඥΔݔΔyΔऊయ                                                       (21) 

where the norm |ܵ̅ | is calculated from the second 
invariant of strain rate tensor. 

|ܵ̅| ൌ ට2ܵ௜̅௝ܵ௜̅௝                                                       (22) 

Then, the turbulent viscosity is evaluated as 

௧ߤ ൌ ρሺܥ௦∆ሻଶ|ܵ̅|,                                                     (23) 

where Cs is called the Smagorinsky constant. We can 
see that the turbulent viscosity has a quadratic 
dependence on Cs; large values of Cs may then 
introduce significant dissipation on the model, being 
able to kill the turbulence due to an excess of 

dissipation of the turbulent kinetic energy in the 
small scales modeled. On the other hand, a small 
value for Cs makes the solution procedure unstable, 
considering that the turbulent kinetic energy 
produced at large scales and transported to the small 
scales is dissipated at a lower rate than it is being 
generated. Consequently, the hypothesis of local 
equilibrium of turbulent kinetic energy, for larger 
scales than the dissipative scale of Kolmogorov, is 
not respected (Haሷ llqvist 2006). 

The positive characteristics of the Smagorinsky 
model for subgrid stress tensor are the easy 
implementation, low computational cost and 
satisfactory results for a large number of 
engineering applications. On the other hand, their 
main weaknesses include the excessive dissipation 
near surfaces, not reproducing the reverse energy 
cascade, and the necessity of defining/choosing the 
ad hoc (Cs) constant, according to the flow 
characteristics. 

For turbulent jets, there is no consensus in the 
literature about the value of Cs than should be used, 
and a wide range has been used. The theoretical 
value is for Smagorinsky constant is 0.18 (Pope and 
Pope 2000; Sagaut 2006). Ylyushin and Krasinsky 
(2006) used Cs = 0.17, as suggested by Pope and 
Pope (2000); Wilson and Demuren (1997), and Jones 
et al. (2002) used 0.1-0.12 as suggested by Lesieur 
(2005) while Deardorff (1970), McMillan (1980) 
and Ferziger and Peric (2012) use Cs between 0.065-
.1. A study for the optimal value of Cs in turbulent 
jets using the PMLES code will be carried out in a 
future work. 

3.  NUMERICAL METHODOLOGY 

The filtered equations presented above (Eq. 19) are 
discretized by the finite difference method, using 
second-order centered schemes for inner mesh points 
and backward or forward second-order schemes for 
the boundary points. This numerical scheme is 
simple, inexpensive, non dissipative, and have 
reasonable accuracy for engineering problems. 

The present version of the code is able to work only 
for regular three-dimensional structured cartesian 
grids, with a uniform spacing between points, ∆x = 
∆y = ∆z. Despite of the apparent simplicity of this 
type of mesh, it has some interesting features. 
Implicit filtering is used as described in Sec. 2.1, and 
the use of a regularly spaced mesh avoids the 
propagation of errors due to filter size variations, as 
described by Piomelli (1999) and shown by Ilyshin 
and Kransinky (2006). Variable integration 
timesteps are used, applying the stability condition 
of Courant Friedrichs-Lewy (CFL), evaluated as 
described in Ferziger and Peric (2012) and 
performed in Damasceno et al. (2015) by 

ݐ∆ ൌ ௖௥௜௧௜௖ܮܨܥ ൬
ଵ

∆௧೎೚೙ೡ
൅

ଵ

∆௧೏೔೑
൰
ିଵ

                              (24) 

Where 

௖௢௡௩ݐ∆ ൌ ቀ∑
∆௫೔

|௨೔|୫ୟ୶
ଷ
௜ୀଵ ቁ                                                 (25) 
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ௗ௜௙ݐ∆ ൌ ቀ∑
∆௫೔మ

ఓ೐
ଷ
௜ୀଵ ቁ                                                     (26) 

Equation (19) was discretized in time using the three-
stage second-order Runge-Kutta scheme presented 
by Blazek (2015): 

ϕ଴ ൌ ϕ௡    

ϕଵ ൌ ϕ଴ ൅ ݐଵΔߙ ∗ ܴ଴ሺϕሻ     

ϕଶ ൌ ϕ଴ ൅ ݐଶΔߙ ∗ ܴଵሺϕሻ                                              (27) 

ϕଷ ൌ ϕ଴ ൅ ݐଷΔߙ ∗ ܴଶሺϕሻ  

where ϕ is the time dependent variable and R(ϕn) 
correspond to the terms that not include the time 
derivative, such as source terms and discretized 
spatial derivatives. αm are the coefficients of each 
stage, given by α1 = 0.1918, α2 = 0.4929, α3 =  1, 
where for these coefficients CFLcritic = 0.65. This 
group of explicit schemes for time integration is 
computationally cheap, consumes little memory and 
can be employed with any spatial discretization 
scheme. The use of an explicit scheme, when 
working on a SIMT (Single Instruction Multiple 
Thread) architecture (of GPU cards) (Quadros 2016), 
makes the method quite interesting, because the 
architecture of the GPU enables the massively 
parallel execution of thousands of threads 
independently and simultaneously (Ruetsch and 
Fatica 2011). 

Although the equations of flow are presented herein 
in compressible form (aiming to facilitate future 
developments), the present version of the PMLES 
code is only able to simulate flow at low Mach 
numbers. In this case, the continuity equation does 
not have a dominant variable, and it configures itself 
as a kinematic constraint that the velocity field must 
respect (Ferziger and Peric 2012). 

Here the calculation of the pressure field for 
incompressible flows is performed using the SOLA 
(SOLution Algorithm) method (Hirt, Nichols, and 
Romero 1975; Wilson, Nichols, Hirt, and Stein 1988; 
Fortuna 2000) which consists in an iterative 
procedure to correct the pressure on a given mesh 
point at an timestep n + 1 

pሺ୧,୨,୩ሻ
୬ାଵ,୩ାଵ ൌ pሺ୧,୨,୩ሻ

୬ାଵ,୩ ൅ δpሺ୧,୨,୩ሻ
୬ାଵ,୩ାଵ,                                 (28) 

where 

δpሺ୧,୨,୩ሻ
୬ାଵ,୩ାଵ ൌ

ି஽௜௟೙శభ,ೖశభ

ଶ୼௧ቂ
భ

౴ೣమ
ା

భ
౴೤మ

ା
భ

౴ऊమ
ቃ
                                 (29) 

and 

݈݅ܦ ൌ .׏ ሺρݑ෤௜ሻ.                                                      (30) 

In this method, the pressure of a cell is 
increased/decreased if there is a net mass flow in-
ward/outward the cell. The flow direction analysis 
and the computation of the pressure correction δp 
are done using the Dilatation Dil, defined in Eq. 30. 
The velocity field is then corrected using the 
pressure correction according to the following 
equations: 

δu
ሺ୧ା

భ
మ
,୨,୩ሻ

୬ାଵ,୩ ൌ
୼௧

஡
ሺ౟శ

భ
మ,ౠ,ౡሻ

౤

ஔ୮ሺ౟,ౠ,ౡሻ
౤శభ,ౡ

୼௫
                                      (31) 

δu
ሺ୧ି

భ
మ
,୨,୩ሻ

୬ାଵ,୩ ൌ െ
୼௧

஡
ሺ౟ష

భ
మ,ౠ,ౡሻ

౤

ஔ୮ሺ౟,ౠ,ౡሻ
౤శభ,ౡ

୼௫
                                          (32) 

δν
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భ
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஡
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భ
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౤
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                                           (33) 
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భ
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భ
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The pressure and velocity fields are recursively 
corrected by the above equations until they reach 
convergence. Hirt et al. (1975) and Fortuna (2000) 
give a detailed explanation about the method and its 
implementation. 

Analyzes of LES performed with different subgrid 
models have shown that in many cases they do not 
have a significant influence on the accuracy of the 
solution, but the proper description of the boundary 
conditions do (Ilyushin and Krasinsky 2006). The 
works of Tabor and Baba-Ahmadi (2010), 
Montorfano et al. (2013) and Damasceno et al. 
(2015) present a good discussion about the LES inlet 
boundary condition modeling. In the present version 
of the code, boundary conditions similar as those 
used in simulations of laminar flows were employed, 
and the computational domain at the inlet is then 
extended to allow the development of the flow 
instabilities, reducing the influence of the inlet 
boundary on results. More specifically, the inlet 
boundary and the rigid boundary walls are modeled 
by Dirichlet conditions, and a Neumann boundary 
condition for fully developed flows was used at the 
outlet, assuming that the gradient of normal 
momentum flux is null. Future versions of PMLES 
will include other possibilities of defining the inlet 
boundary conditions. 

4.  IMPLEMENTATION 
METHODOLOGY 

CUDA Fortran programming is a hybrid 
programming model; the control of the execution 
flow is done by the host, which can also execute 
subprograms and functions, while parts of code are 
executed by the GPU (device). The goal of the 
programmer is to partition the program into blocks 
of great granularity, which can be executed in 
parallel. Each block will then be partitioned into 
others of smaller granularity, to be executed in 
parallel by CUDA cores. 

The developed code - PMLES - is a OpenMP CUDA 
Fortran solver. Figure 2 depicts a flowchart for the 
algorithm implemented in PMLES. Blocks colored 
in blue and green correspond to identified tasks 
performed by the host and the device (GPU), 
respectively. It should be noted that all the arrows 
that connect the green boxes (GPU kernels) are blue. 
It means that all flux control and some necessary 
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Fig. 2. PMLES Solver Flowchart. 

 

synchronizations are performed by the host, thus 
characterizing it by a hybrid execution, on which the 
GPU cards are commanded by the CPU. 

The initial tasks of declaration, allocation (both on 
the host and device), and initialization of variables 
are performed on the host. After the variables 
initialization, the host invokes the boundary 
conditions kernels and starts the temporal loop. In the 
temporal loop, the host calls the sequence of GPU 
kernels that are executed on the CUDA cores, i.e., 
the kernel of the Sub-Grid-Scale (SGS) Turbulence 
Model, followed by the kernels of the integration of 
momentum equations on each direction (Eq. 19) and 
of the Dilatation equation (Eq. 30), finally entering 
the iterative section described from Eq. 28 to Eq. 36, 
which runs until convergence is reached. If the flow 
has variable density (from the mixture of different 
fluids, for example), the mixture fraction equation is 
integrated and density is updated. The analysis of 
non-reactive jet mixture flows and reactive jet flows 
(both with varying density) will be presented in a 
forthcoming publication. 

The flowchart in Fig. 2 shows that the most intensive 
tasks of the solver are implemented in CUDA 
Fortran, namely the subprograms which perform 
loops over the whole domain. We may also note that 
some subprograms (setting boundary conditions, for 
example), are executed on the device, even when it 
would be cheaper to run them on the CPU. This 
approach follows an important good practice 
suggested by (Ruetsch and Fatica 2011) - perform as 
many GPU operations as possible in order to 
minimize data transfer between GPU and CPU, since 
such transfers are usually expensive and greatly 
penalizes the execution time. 

However some operations are not simple to perform 
in GPU. In the code presented in the article, OpenMP 
directives are used to evaluate the control variables 
of pressure correction loop. The maximum values of 
variables such as dilatation and effective viscosity 
are determined using OpenMP (reduction 
operations) directives, resulting in a considerable 
gain, since the computational domain is large. There 
are also subprograms that run occasionally on the 
host, and are programmed in OpenMP, such as 
writing output files and collecting samples for 
statistical analysis of the solution. These 
subprograms run on the host using OpenMP 
directives characterize PMLES as an “OpenMP 
CUDA Fortran code”. 

Since an important limitation of the GPU card 
architecture is the available memory, the 
implementation was focused on memory saving. Due 
to the features of the present numerical method, some 
care must be taken with respect to the synchronism 
and execution sequence of kernels on the device. 

On CUDA Fortran programming we can create 
threads called CUDA streams. The use of CUDA 
streams allows kernels to be launched for 
simultaneous execution on the device. This 
possibility, combined with an adequate definition of 
the size of the thread blocks, results in a high GPU 
occupancy rate, reducing code execution time. The 
optimal thread block size should be set according to 
the characteristics of the GPU card and the loop 
boundaries, as described in (Ruetsch and Fatica 
2011). Another benefit of using CUDA streams is the 
ability to perform data transfer (device to host when 
needed) or update variables concurrently with 
kernels executions. 



J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.  
 

1074 

Fig. 3. a) Characteristic dimensions of the nozzle region. b) Details of computational domain geometry. 
 

The kernels responsible for integrating the 
momentum equations and for evaluating boundary 
conditions (except for inlet and outlet boundary) can 
be executed concurrently. Other kernels or sub-
programs executed on the GPU cannot be executed 
concurrently due to the required synchronism, which 
is responsible for the separation of subprograms out 
of the iterative part of the code shown in Fig. 2. 

5.  DESCRIPTION OF THE TEST 
PROBLEM AND COMPUTATIONAL 
DOMAIN 

The implemented code must be tested and validated 
against reliable results previously published. The 
choice of the test problem followed the guide-lines 
of Morgans et al. (1999): a) availability of 
appropriate experimental data (e.g. boundary 
distributions of velocity and turbulence 
quantities);b) observed or deduced sensitivity of the 
flow to changes in boundary conditions; c) feasibility 
of obtaining the numerical solution. Based on this 
strategy, the experimental turbulent jets studies of of 
Amielh et al. (1996) and Djeridane et al. (1996) were 
chosen. They provide detailed information on 
velocity and scalar profiles for turbulent jets. The 
experimental scheme is depicted on Fig. 3a. The 
authors classify this configuration as a slightly 
confined jet, and the (Air − Air) jet was used as their 
reference case and will be the object of our study. 
This experiment set have been also realized for jets 
with variable density ratios,(s = ρj/ρair) 0.14 
(He−Air) and 1.52 (CO2 − Air) using the same 
configuration. A comparison with these results will 
be done in a future work. 

The knowledge of the turbulent scales is of great 
importance in the analysis of turbulent flows. As 
briefly discussed in previous sections, all the 
conceptual and mathematical development of LES 
methodology is derived from the analysis and study 
of turbulent scales. The characteristic numbers of the 
flow were determined from the Reynolds number, Re 

= 
ఘ௎ೕ஽	

ஜ
= 20650, where ௝ܷ  = 12 m/s is the jet flow 

velocity, and the length scale is the nozzle diameter 
D, illustrated in Fig. 3a. The air properties have been 
taken to standard condition. The characteristic length 
and time of the dissipative scale of Kolmogorov are 
given by 

௄ܮ ൌ
௅

ோ௘
య
ర
ൌ 5.80 ൈ 10ିସ,                                      (37) 

߬௄ ൌ
஽/௎ೕ

ோ௘
భ
మ
ൌ 6.98 ൈ 10ିଷ,												                               (38) 

and the characteristic length and time of the Taylor’s 
micro scale by 

ఒܮ ൌ
௅√ଵ଴

ோ௘
భ
మ
ൌ 2.2 ൈ 10ିଶ,                                            (39) 

߬ఒ ൌ
√ଵହ൫஽/௎ೕ൯

ோ௘
భ
మ

ൌ 2.7 ൈ 10ିଶ,                                  (40) 

The dissipative Kolmogorov scale indicate the mesh 
resolution for a DNS, while Taylor’s micro scale 
provides an estimate of the mesh resolution suitable 
for LES (Sagaut 2013). 

The domain used to define the problem described 
above (Amielh et al. 1996; Djeridane et al. 1996) is 
a rectangular duct section with a circular coaxial duct 
for the high velocity fluid injection. A plane view is 
shown in Fig. 3b. The original setup has dimensions 
L ≃  50D and H  ≃   11D (Amielh et al. 1996; 
Djeridane et al. 1996). Due to the high computational 
cost of the full problem, the analysis is focused on 
regions near the injector, called near field. The near 
field comprises the zone of pure jet, dominated by 
inertial effects and by the transition zone, where the 
inertial effects and gravitational coexist (the latter in 
the presence of fluids with different densities). The 
analysis of the developed zone is outside the scope 
of this work. The three jets zones, as classified for 
Lipary and Stansby (Lipari and Stansby 2011) - pure 
jet, transitional and developed zones - can be 
pictorially visualized in Fig. 4. 
 

 
Fig. 4. Depiction of typical jet zones. 
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Therefore here the domain was limited to L ≃ 35D 
and H ≃ 11D, based on the analysis of 
experimental data of Amielh et al. (1996). The 
computational domain was discretized using Nx = 
1004, Ny = 317 and Nz = 317, resulting on a mesh 
spacing of ∆x = 3.49 × 10−2 and a domain with 
100890956 ∼ 1 × 108 cells. Despite using a 
Cartesian mesh, the circular injection duct of the 
jet was relatively well modeled, as shown in Fig. 5. 
The momentum flux deviation by the cubic cells 
was evaluated and remained below 1 %. 

Fig. 5. Circular nozzle as modeled by cubic cells. 
 

As discussed in Sec. 3, Dirichlet boundary conditions 
are used for the inlet boundary and duct walls in the 
momentum equations. Considering that the walls are 
solid and impermeable, non-slip conditions (null 
velocities) are applied in all walls. For both the 
COFLOW and JETFLOW boundaries, average 
speed profiles were used without fluctuations. A flat 
velocity profile was applied for the COFLOW 
region, while a fully developed turbulent profile was 
used for the JETFLOW boundary, which can be 
evaluated for a circular duct by the following power-
law expression (Abramovich 1963). 

௨ഥሺ௥ሻ

௨ഥ೘ೌೣ
ൌ ቀ1 െ

௥

ோ
ቁ
ଵ/଻
,                                                 (41) 

where ݑത  (r) is the is the velocity of the flow at a 
distance	ݎ from the center of the injector and ݑതmax is 
the maximum jet velocity. For the outlet boundary, a 
Neumann boundary condition was used for fully 
developed flows, assuming that the gradient of 
normal momentum flux is null. 

The subgrid stress tensor is modelled by subgrid 
Smagorinsk Model. For the ad hoc constant the 
Smagorinsk Model, Cs, we set the value of 0.65, as 
suggested by Ferziger and Peric (2012). 

6.  RESULTS 

The main objective of the work is to present the 
mathematical basis and computational aspects used 
in the development of the PMLES source code. As 
discussed before, the code is tested and validated 
using a classical problem from the literature. Results 
obtained for a typical simulation of a air jet flow, as 
described in details in the previous sections, is 
presented in this section. 

Figure 6 shows a view of the instantaneous velocity 
field of a turbulent flow generated by the code, 
illustrating the capture of the transition to turbulence. 
The arising of the Kelvin-Helmholtz instabilities and 
their evolution toward turbulence can be clearly seen 
in the image. Other important result is presented in 
Fig. 7, which shows the mean velocity field. In this 
figure, the occurrence of the three characteristics 
zones of round jets (pure jet, transitional flow and 
developed flow) is evident as also depicted in Fig. 4 
and presented by Lipary and Stansby (Lipari and 
Stansby 2011). The results depicted in Figs. 6 and 7 
show qualitatively the ability of the code to simulate 
turbulent flows. 

A quantitative evaluation of results can be done by 
analyzing velocity and turbulent intensity profiles at 
important sections of the flow. Figure 8a shows a 
comparison of the average axial velocity profile with 
the experimental data of Amielh et al. (1996), LES 
results of Wang et al. (2008) and the similarity law 
proposed by Chen and Rodi (1980). This profile 
corresponds to an average on the statis-tically steady-
state regime, assumed when the mean velocity 
component in the preferred flow direction stopped 
varying significantly for three consecutive samples 
(taken every 2 × 106 timesteps). 

The profiles presented on Fig. 8a have a very good 
agreement with the other data, exhibiting some 
localized discrepancies. In this figure, we can 
observe a small deviation near the nozzle, within the 
pure jet and transitional zones, as defined in Fig.4. 
The deviation is in the same order of magnitude of 
those obtained by Wang et al. (2008). Our result also 
presented good agreement with the law similarity 
proposed by Chen and Rodi (1980). The comparison 
with the law similarity is important, considering that 
it is derived from the study of many turbulent jets, 
representing an overall behavior of such flows. 

The delay in the transition of jet flow regime verified 
in the Fig. 8a was expected, and it is due to the 
application of the simplified inlet boundary 
condition for the jet described in Sec. 6 (in terms of 
the average velocity, without fluctuations). The 
implementation of a more consistent inlet boundary 
condition (as discussed in Sec. 6) will be done and 
shown in a future work, enabling the simulation of 
more realistic flows. 

Figure 9 show radial profiles for the preferential 
velocity component at different axial distances x/D. 
In these figures we can observe that the code captures 
qualitatively well the behavior of the radial 
distribution of axial velocity, and some deviations 
between the simulated and experimental values are 
evident from these figures. These differences are 
consistent with the results observed in Fig. 8a (dis-
cussed in the previous paragraph). The profile in x/D 
= 5 of Fig. 9a shows clearly the delay in the decay of 
the axial velocity for the zone between the pure jet 
and transitional flow regimes. For x/D = 5, the 
velocity distribution along the radial direction is still 
similar to the profile defined in the boundary 
condition at the nozzle. It can also be observed that, 
as the profile is measured further away the nozzle, 
the deviations with the experimental data decrease 
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Fig. 6. Visualization of instantaneous field of axial velocity. 

 

 
Fig. 7. Visualization of mean field of axial velocity. 

 

Fig. 8. 
a) Dimensionless mean axial velocity in the center line of domain, defined as (࢘ࢋ࢚࢔ࢋࢉࢁ െ

࢚ࢋ࢐ࢁሻ/ሺ࢝࢕࢒ࢌ࢕ࢉࢁ െ  'ሻ. b) Axial profile of dimensionless turbulent intensity, u' , defined by u࢝࢕࢒ࢌ࢕ࢉࢁ
࢘ࢋ࢚࢔ࢋࢉࢁ)/ െ  .ሻ࢝࢕࢒ࢌ࢕ࢉࢁ

 

Figure 8b shows an important result that LES is able 
to provide, which is the intensity of the velocity 
fluctuations, here only analyzed for the preferential 
direction of the flow. A excellent qualitative 
agreement is verified, with a systematic deviation in 
the pure jet zone, due to the simplified boundary 
condition as discussed before. As turbulence 
develops, the deviation decreases and computed 
values get closer to the experimental result. This 
result clearly shows the PMLES ability of solving the 
turbulence transition on such flows. 

It is naive to attribute any and all deviation in the 
results simply to the inlet boundary condition used 
for the jet, given the known limitations of the 
Smagorinsky subgrid model. However, considering 
that the largest deviations observed are in regions 
close to the nozzle, and that they decrease upon 
development of the turbulence, it is clear that the 
adequate modeling of this boundary condition 
deserves attention before carrying out a more 
comprehensive quantitative comparison of results.



J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.  
 

1077 

Fig. 9. Dimensionless radial profile of mean axial velocity defined by (࢘ࢋ࢚࢔ࢋࢉࢁ െ ࢚ࢋ࢐ࢁሻ/ሺ࢝࢕࢒ࢌ࢕ࢉࢁ െ
 .ሻ . a) For x/D = 5 and x/D = 10; b) for x/D = 15 and x/D = 20࢝࢕࢒ࢌ࢕ࢉࢁ

 

The simulations using the hybrid OpenMP CUDA 
Fortran code were performed on the SDumont 
supercomputer, available at the LNCC - Laboratorio 
Nacional de Computacão Científica, Brazil. 
Although the GPUs used have support for OpenACC 
directives, specific kernels were developed for the 
solution of the flow equations in order to maximize 
the performance of the available computational 
resource. The solver was not designed with 
portability in mind, but rather to simulate large 
domains using few computational resources. 
Therefore, the simulations were performed using 
only one computational node, which has two 12-
processor IN-TEL XEON E-52695V2 CPUs and two 
NVIDIA TESLA K40 GPUs, where each one has 
2280 CUDA cores with base clock of 745 MHz and 
12 GB of DDR5 memory. 

Table 1 shows the computational performance gain 
per timestep (in the problem analyzed in this work) 
for the parallelization techniques used. The 
execution in CUDA utilized only a single GPU card 
as discussed before. The performance enhancement 
obtained with OpenMP CUDA is interesting; a 
speedup of 55.1 has been achieved for this ma-chine 
configuration and the execution time is reduced to 
about 1/3 compared to a pure OpenMP 
implementation. 

 

Table 1 Speedup obtained for each 
parallelization technique 

Code Version time(s) speedup 
Serial 8.90 1 

OpenMP with 12 threads 1.04 8.5 
OpenMP with 24 threads 0.53 16.6 

OpenMP CUDA 0.16 55.1

7.  CONCLUSIONS AND FUTURE 
WORKS 

This work presented PMLES, a new computational 
tool based on a hybrid implementation OpenMP 
CUDA Fortran, able to simulate complex turbulent 
flows at high Reynolds numbers with reasonable 
time costs, using a workstation with a single GPU 
card. The code was tested in the simulation of an air-

air coaxial turbulent jet previously studied in the 
literature (Amielh et al. 1996; Wang et al. 2008). The 
results obtained for the axial distributions of the axial 
velocity component, in terms of both the mean and 
the turbulence intensity, are of high quality 
considering the complexity of the problem solved. 

Some of the future improvements in the capabilities 
of the code are the implementation of a turbulent 
boundary condition and the implementation of other 
SGS models, such as the Germano dynamic model 
(Germano et al. 1991) and the structure-function 
(SF) model (Métais and Lesieur 1992), to eliminate 
the ad hoc (Cs) constant of the Smagorinsky sub grid 
model, making the solver more robust and generic. 
Also, we are working to adapt the code to simulate 
turbulent jets of variable density, a problem that 
requires not only the modeling of the tensor stresses, 
but also the modeling of the scalar flux. Also, this 
current version of PMLES still lacks the ability to 
properly solve turbulent flows on surfaces, such as in 
aero-dynamics. This restriction is due to the 
occurrence of boundary layers, which require special 
treatment due to the failure of the hypothesis of 
homogeneous and isotropic flow, which is the basis 
of the LES technique. An adequate treatment for 
flows near the walls will soon be implemented. 

The computational performance obtained with the 
use of the GPU card was very good, since it increased 
the speedup by a factor of 55.1, compared to 16 
obtained by Griebel and Zaspel (2010) and 33 
obtained by Thibault and Senocak (2009), 
decreasing the time by 3.3× with respect to the 
solution obtained using full OpenMP. 

A limitation of the present implementation, 
employing only one GPU card, is the limited 
memory of the GPU device, which is small compared 
to that typical of CPUs. This memory limitation 
imposes a constraint on the size of the grid, i.e., in 
the degree of mesh refinement and domain size. 
However, with the growing development of new 
technologies for scientific computing, this limitation 
is being reduced. In 2019 there are GPU cards in the 
market capable of simulating domains of the order of 
500 million cells using PMLES. To overcome the 
memory limitation, multiple GPUs could be used, 
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keeping in mind that there are extra costs involved in 
the data transfer between GPUs, especially if it is 
necessary to perform communication within the 
iterative block of code. 

The speedup analyzes shown in Table 1 are all 
performed for calculations with double precision, 
which is the least favorable condition to gain speed 
with the use of GPU. There is now in the literature 
mixed precision implementations for computational 
fluid dynamics that present considerable reduction of 
computational cost delivering a reasonable 
acceptable accuracy for engineering applications. A 
mixed precision implementation will be analyzed as 
well in future works. 
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