

Journal of Applied Fluid Mechanics, Vol. 13, No. 4, pp. 1067-1079, 2020.
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.
DOI: 10.36884/jafm.13.04.30698

PMLES: A Hybrid Open MP CUDA Source Code for
LES of Turbulent Flows

J. M. Pinho1,2† and A. R. Muniz2

1 IFSC, Federal Institute of Santa Catarina, Euclides Hack St, 1603, 89820-000, Xanxereො, SC, Brazil
2 UFRGS, Department of Chemical Engineering, Rua Engenheiro Luiz Englert, s/no, 90040-040, Porto

Alegre, RS, Brazil

† Corresponding Author Email: jean.pinho@ifsc.edu.br

(Received July 1, 2019; accepted December 28, 2019)

ABSTRACT

The occurrence of turbulent flows is quite common in nature and several industrial applications. The accurate
simulation of these complex flows is still a great challenge in science. Large Eddy Simulation (LES) is an
efficient technique based on the elimination of all scales of a flow smaller than a characteristic length ∆,
considering that the flow pattern in small scales is homogeneous and isotropic. Therefore, modeling of
turbulence in such scales is universal and independent of the flow type. This work present PMLES, a new
OpenMP CUDA Fortran solver for complex turbulent flows at high Reynolds numbers and large computational
domains (about 1 × 108 cells), using a single GPU card. This was possible by using an economical numerical
scheme associated with a robust and efficient solution method that requires little variable storage. Theoretical
and numerical aspects are firstly discussed, and then details of the computational implementation are given.
Finally, the developed code is tested and validated by simulating a turbulent jet, and comparing the results with
experimental and computational data from the literature. An analysis of performance gain is also carried out,
demonstrating the code’s ability to solve this class of problems with a considerable reduction in computational
time.

Keywords: CUDA; Open MP; LES; Numerical simulation; Turbulence.

NOMENCLATURE

CFL Courant-Friedrichs-Lewy condition
CFLcritic Critic-Courant Friedrichs-Lewy condition
Ci, j cross-stress tensor
Cs Smagorinsky constant
D nozzle diameter
Dil dilatation
Dm domain of filtering operation
f generic function
G filter functions
H transverse length of domain
L preferential length of domain
Li, j Leonard-stress tensor
LK Kolmogorov dissipative scale
Lλ length of Taylor micro-scale
Ni Cells number in i-direction
p pressure
r radial distance of center domain
Re Reynolds number
u instantaneous x-direction velocity
ui instantaneous i-direction velocity
Uj jet velocity
 turbulent axial intensity 	′ݑ
v instantaneous y-direction velocity
 ത௫ mean max axial velocityݑ

 ത mean axial velocityݑ
v∆ subgrid characteristic velocity
xi i direction
z instantaneous z-direction velocity

(σij)sgs subgrid-scale stress tensor
|ܵ̅| Frobenius norm
∆ grid filter
∆t time step
∆tconv convective time step
∆tdif diffusive time step
 gradient operator
µ viscosity
µe effective viscosity
µt turbulent viscosity
αi Runge-Kutta coefficient
δ dimensional filter
δp pressure correction
δui i-direction velocity correction
ρ density
τK characteristic Kolmogorov time
τλ time of Taylor micro-scale
Φ time dependent variable

J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.

1068

1. INTRODUCTION

Turbulence is a phenomenon present in most flows
observed in nature and in engineering applications.
Turbulent flows are unstable and their properties
exhibit fluctuations that are time and space
dependent. One of the most striking features of
turbulent flows is the multiplicity of scales. They are
present from the largest structures (low frequencies),
which are controlled by the geometry of the flow, to
the smallest structures (high frequencies), which are
controlled by molecular viscosity.

Turbulent flows are present in many physical
processes and industrial applications, due to the
presence of boundary layers and shear flows, such as
in turbulent jets, for example. The numerical
simulation of turbulent flows remains a challenge in
computational fluid dynamics (CFD). In this sense
intense research has been made toward
understanding and controlling turbulence, due to its
importance in a wide variety of engineering
applications, such as in aerodynamics, engines,
industrial equipment and others.

There are three widely used methods for simulating
turbulent flows: Reynolds Averaged Navier-Stokes
Simulation (RANS), Large Eddy Simulation (LES)
and Direct Navier-Stokes Simulation (DNS). Each
one has its own advantages and disadvantages, and
the methodology is usually chosen based on the
characteristics of the flow and type of the problem to
be addressed, as well as of the computational cost
and availability of computational resources (Piomelli
1999; Wilcox 2006).

The Large Eddy Simulation (LES) is a efficient
technique, based on the elimination of all scales of
the flow smaller than a characteristic length scale ∆.
The separation of the scales is performed through the
proper application of a low-pass filter in the sys-tem
of equations, as discussed in the next section. The
filtering operations result in the LES equations, able
to describe only the flow in the larger scales (Lesieur,
Métais and Comte 2005). Conceptually, LES is an
intermediate methodology between DNS and RANS,
and allow to capture the anisotropic turbulence that
occurs in the large scales through the solution of the
intermediate scales, while the small scales are
described by homogeneous isotropic turbulence
models.

The viscous dissipation of the turbulent kinetic
energy generated at large scales occurs at smaller
scales, called Kolmogorov scales. It is verified that
the Kolmogorov scales are smaller than the boundary
scales which define the flow (the large scale). It is
observed that the behavior of the small scales is little
or almost unaffected by the large ones (Tennekes and
Lumley 1972). In this sense, it is considered that the
flow pattern in small scales is likely homogeneous
and isotropic. It is assumed that models for the small
scales are more universal, independent of the flow
type, when compared to the classical methodology
RANS (Piomelli 1999).

The LES technique enables the computational
solution of complex transient turbulent flows without

a prior knowledge of the behavior of turbulence at
the level of resolved scales. However, its
computational cost is still far from the acceptable for
industrial applications, considering that a LES of a
high Reynolds number flow can easily overwhelm
the resources of individual workstations.

A possible solution to popularize LES has been
consolidating over the last decade, by employing
Graphics Processing Units (GPUs) in the
calculations. GPUs have been increasingly used to
solve scientific problems in many areas. NVIDIA
launched its first GP-GPU (General Purpose
Computing on Graphics Processing Unit) in 2006,
and a parallel programming platform for GPU called
CUDA in 2007. Initially CUDA emerged as an
expansion of the widely used C language. However,
considering that many scientific computational tools
had been previously developed in Fortran from a
joint work of NVIDIA and PGI (The Port-land
Group), a CUDA Fortran Compiler was made
available in 2010, which is essentially a conventional
FORTRAN compiler with CUDA extensions. After
that, many works (Griebel and Zaspel 2010; DeLeon
and Senocak 2012; Markesteijn, Semiletov, and
Karabasov 2015; Zhu, Phillips, Spandan, Donners,
Ruetsch, Romero, Ostilla-M´onico, Yang, Lohse,
Verzicco, et al. 2018; Kumar, Abdel-Majeed, and
Annavaram 2019) have been developed in order to
adapt and redesign the existing codes to the
architecture of the GPU.

The challenge in implementing codes in CUDA
Fortran lies in fundamental differences between CPU
and GPU architectures. On-card memory is limited
in GPUs, a factor that must be taken into account
when designing new GPU algorithms. For example,
recomputing certain variables along the simulation
can make the code more efficient, compared to
computing them once and storing in memory
(Markesteijn, Semiletov and Karabasov 2015).
According to Markesteijn et al, the numerical
schemes applied to discretize and solve the equations
can make a difference. For optimal computational
efficiency, all the computations are desired to be
carried out in the GPU using the on-card memory,
considering that any copy to conventional (CPU)
memory is time consuming. Zhu et al. (Zhu, Phillips,
Spandan, Donners, Ruetsch, Romero, Ostilla-
Mónico, Yang, Lohse, Verzicco, et al. 2018) add that
GPUs are also characterized by high memory
bandwidth, favoring the use of low-order finite
differences CFD codes, characterized by minimal
data reuse.

One solution to overcome the memory limitation of
GPU cards is running the calculations on a cluster of
GPUs. However, porting a code originally developed
to run in a single GPU to be executed in multiple
GPUs may be a complex task. In particular, it
requires defining how data is partitioned across
multiple GPU cards, and then launch the appropriate
thread blocks that can access the local data in each
card. Cross-card data transfer is a time-consuming
operation and should be avoided when possible
(Kumar, Abdel-Majeed and Annavaram 2019).
Another alternative to address the memory limitation
is to develop a code that is cost-effective in memory

J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.

1069

usage, able to solve the problem efficiently and with
the use of only one GPU. This second approach was
used in the present work. The resulting solvers can
be run on a single workstation, which represents an
interesting advance to-wards bringing LES
technique closer to industrial applications.

In this sense the objective of this work is to develop
a simple and efficient OpenMP CUDA Fortran
solver, named PMLES, to simulate complex
turbulent flows capable of simulating high Reynolds
numbers and large domains (∼ 1 × 108 cells in this
work), in relevant geometries of industrial interest
using only one GPU card. The use of a single GPU
to solve complex problems is achieved by using an
economical numerical scheme (low order, but
suitable for engineering problems) associated with a
robust and relatively cheap numerical method that
requires little variable storage. The approach
eliminates the overhead of data transfer usually
required in MPI-CUDA programming. The code was
applied to study the coaxial turbulent jet investigated
experimentally by Amielh et al. (1996), and the
results obtained were satisfactory, considering the
quality of the solution and the achieved speedup (55
compared to a serial execution).

This work is organized as follows. Section 2 presents
the methodology to obtain the LES equations from
the Navier-Stokes equations and modeling their
specific terms. In the third section, the numerical
methodology to solve the system of the LES
equations is discussed. Section 4 is devoted to the
proposed implementation methodology, aiming to
efficiently utilize the available architecture. In
section 5 we describe the test problem and how it was
modeled. Section 6 present the results and
discussion, and the final section is devoted to the
conclusions and future works.

2. LES MODELING

2.1 Filtering Conservation Equations

In the LES methodology, the filtering operation is
responsible to separate mathematically the large
scales of the flow that will be solved ݂	̅ሺݔ, ሻ fromݐ
the small scales that will be modeled 	݂′ሺݔ, ሻ, alsoݐ
called subgrid scales. As a result we have

݂	ሺܠ, ሻݐ ൌ ݂	̅ሺܠ, ሻݐ ݂′ሺܠ, ሻ (1)ݐ

also known as Leonard decomposition (Pope and
Pope 2000). The filtering consists of the convolution
of the variable to be filtered with the filter function
Gഥ

݂	̅ሺܠ, ሻݐ 	ൌ ݂	ሺܠ′, ሻݐ
்
 ഥܩ	 		ሺܠ െ ,ᇱܠ : ݐ െ ݐ݀ܠᇱሻ݀ݐ

(2)

where Dm is the domain on which the operation must
be performed.

The filtering process aims to eliminate or smooth out
fluctuations that are smaller than the predefined
cutoff wave number. However, the filtering reduces
the number of degrees of freedom of the problem,
which can reduce the precision and the performance
of the model. This occurs because there is a decrease

in the information contained in the system as the
filter size is increased. In contrast, there is a
reduction on the computational cost. The challenge
is to find a good balance between filter size, accuracy
and computational cost.

The LES modeling involves two filtering
processes:i)a dimensional filter (δ) and ii) a grid filter
(∆)(Kuo and Acharya 2012). The phenomena that
occurs in a scale smaller than the grid filter cannot be
captured by any of the filters, and they are always
modeled. The scales smaller than grid filter (∆) are
called sub-grid scales. Figure 1 illustrates the
resolved scales and the sub-grid scales.

Fig. 1. Resolved and filtered scales in LES

methodology.

The Large Eddy Simulation modeling allows using
either explicit or implicit filters, provided that they
represent the properties of the sub-grid terms. As the
mesh is refined, the solution gets closer to the filtered
equations when using explicit filters, while for
implicit filters the solution approaches the equations
obtained by the DNS methodology (Hሷ allqvist 2006).
Therefore, in LES it does not make sense to analyze
mesh convergence. In the limit of grids that allow the
smaller scales responsible for viscous dissipation to
be captured, more and more scales are solved and
fewer scales are modeled. Consequently, the
influence of subgrid modeling is diminished and
convergence will only occur for results obtained
through DNS simulations.

Most applications in LES use the constant volumetric
filter, also called top-hat filter (Silva Freire, Menut,
and Jian 2002)

ሻܠሺܩ ൌ ൜	1/∆
ଷ	, se|ݔ| ∆/2,				݅ ൌ 1,2,3;

0, otherwise,																																	
 (3)

which is an implicit filter, considering that the
characteristic size of the filter is equal to the mesh
spacing length. In this case the filtering and
differentiation operation commute. This approach is
also called Schumann filtering (Huai 2006) and was
used in this work.

When the filter function is defined as non-
commutative with the differentiation, the filtering is
called explicit. The use of explicit filtering has the
advantage of clearly separating the size of grid filter
(related to the size of the computational cell) from

J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.

1070

the scale filter (related to the physics of the problem).
The other filter functions most commonly used in
LES are the Gaussian filter, the cutoff filter (Kuo and
Acharya 2012; Piomelli 1999; Veynante and
Vervisch 2002). The detailed development of the
filtering process is presented in (Kuo and Acharya
2012).

2.2 Favre Average

There are two types of averages that are commonly
applied to the conservation equations in the solution
of turbulent flows. The first is the Reynolds
averaging, that is the conventional temporal average
procedure, and the second is the Favre averaging,
based on a mass-weighted average. The Reynolds
average is widely used for flows with constant
density, while the Favre average has been preferred
for variable-mass flows, such as in turbulent flames.
The Favre averaging is recommended for flows with
variable density because the governing equations can
be obtained in the same form as those for the
incompressible turbulent flow (Kuo and Acharya
2012). (Piomelli 1999) points out that the subgrid
terms do not appear in the continuity equation with
the use of the Favre averaging. Although the flow
under analysis is incompressible and has constant
density, the final objective of the code is to study
turbulent flows with density variation, and the
formulation is desired to be maintained.

A filtered variable f with Favre averaging is defined
as:

ሚ݂ ൌ
തതതത

ഥ
 (4)

and the following relations are verified (Kuo and
Acharya 2012):

ρݑపതതതത ൌ ρതݑ (5)

ρݑపݑఫതതതതതതത ൌ ρതݑపݑఫ෦ (6)

A variable can be then decomposed into its Favre
filtered component ሚ݂and its subgrid component f':

݂	ሺܠ, ሻݐ ൌ ݂	̅ሺܠ, ሻݐ ݂′ሺܠ, ሻ (7)ݐ

This procedure can be applied to velocity. Variables
whose effects of the density are inherent to the
measurement process, such as pressure, stress
tensors and the specific mass itself, do not need to be
filtered by the Favre average. For these variables, the
conventional time averaging can be used (Kuo and
Acharya 2012).

2.3 Filtered Conservation Equations

As a result of the filtering process, the momentum
equation becomes

డሺ௨ഢതതതതതሻ

డ௧

డሺ௨ഢ௨ണതതതതതതതതሻ

డ௫ೕ
ൌ

డ̅

డ௫
 ሺߤ

డమ௨ഥ
డ௫ೕ

మ
డమ௨ഥೕ
డ௫

మ ሻ (8)

Details of the application of the filter in the
momentum equation can be seen in Moint et al.
(1991) and Kuo and Acharya (2012).

The nonlinear term of the filtered equation (Eq. 8)
resulted in a product of two filtered variables,
making their solution unfeasible. This nonlinear term

can be treated using the Leonard decomposition in
terms of the Favre filter (Sagaut 2006), defined in Eq.
1 and Eq. 4, so that

ρݑపݑఫതതതതതതത ൌ ρതሺݑప ఫݑప′ሻሺݑ 	 ఫ′ሻതതതതതതതതതതതതതതതതതതതതതതതതതതതݑ

ρݑపݑఫതതതതതതത ൌ ρതݑప ఫݑ	 	തതതതതതതത 	ρതݑపݑఫ′	തതതതതതതത ρതݑప′	ݑఫ 	തതതതതതതതത 	ρതݑప′ݑఫ′	തതതതതതതതത		 (9)

Adding and subtracting the term ̅ݑߩݑ and replacing
in the Eq. 8 we have

߲ሺρݑపതതതതሻ

ݐ߲

߲൫ρതݑ	ݑ൯

ݔ߲
ൌ
߲̅
ݔ߲

 ߤ ቆ
߲ଶݑത
ݔ߲

ଶ
߲ଶݑത
ݔ߲

ଶ ቇ

													െ
߲
ݔ߲

ሾρതݑప ఫݑ	 െതതതതതതതതതതത ρതݑݑሿ	

 െ డ

డ௫ೕ
ሾρതݑపݑఫ′	തതതതതതതത ρതݑప′	ݑఫ 	തതതതതതതതത 	ρതݑప′ݑఫ′	തതതതതതതതതሿ (10)

The subgrid-scale stress tensor is defined as (σij)sgs,
as

ሺσ୧୨ሻୱୱ ൌ ρݑపݑఫ	തതതതതതതത െ ρതݑ	ݑ (11)

ሺσ୧୨ሻୱୱ ൌ ρ	ഥሺݑపݑఫ෦ െ ሻ (12)ݑ	ݑ

ሺσ୧୨ሻୱୱ ൌ ρതݑప ఫݑ	 	തതതതതതതത െ	ρതݑ	ݑ ρതሺݑపݑఫ′		തതതതതതതത 	ݑప′ݑఫ 	തതതതതതതሻ

 ρതݑప′ݑఫ′	തതതതതതതതത (13)

ሺσ୧୨ሻୱୱ ൌ L୧,୨ C୧,୨ R୧,୨ (14)

where Li,j is the Leonard-stress tensor that represents
the interaction between the resolved scales, that
result in the subgrid contributions, Ci,j is the Cross-
stress tensor that represents the interaction between
the resolved scales and the unresolved scales, and Ri,j

is the Reynolds-stress tensor that represents the
interaction between the unresolved small scales.

డഥ

డ௧

డഥ௨
డ௫

ൌ 0 (15)

డሺഥ௨ሻ

డ௧

డ൫ഥ௨	௨ೕ൯

డ௫ೕ
ൌ െ డ̅

డ௫

డ൫ౠ൯౩ౝ౩
డ௫

																																							
ଵ

ோ
൬
డమ௨
డ௫ೕ

మ
డమ௨ೕ
డ௫

మ ൰ (16)

2.4 Subgrid Stress Tensor Modelling

In the framework of LES, there are many submodels
for describe the subgrid stress tensor. The studies of
Piomelli (1999), Lesieur et al. (2005) and Sagaut
(2006) discuss these models in detail. The ideal
model for the subgrid stress tensor should provide a
correct description of the interaction between the
resolved scales and unresolved scales, describing the
flow of kinetic energy between the scales in both
directions (forward and reverse energy cascades).
However, most of the models currently used consider
only the energy flow of the large scales for the small
scales and do not consider the reverse energy
transfer, which has a considerably lower intensity
(Sagaut 2006). The most commonly used is the
Smagorinsky Model (Smagorinsky 1963), based on
the concept of turbulent viscosity proposed by
Boussinesq.

The concept of eddy viscosity introduces the
following hypothesis: “the energy transfer
mechanism of the scales solved to the subgrid scales

J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.

1071

is analogous to the molecular momentum transfer
mechanism, represented by the diffusive term with
the viscosity µ”. According to this principle, the sub-
grid stress tensor can be described as:

ߪ
௦௦ ൌ െݒ௧ ൬

డ௨
డ௫ೕ

డ௨ೕ
డ௫
൰ ଶ

ଷ
௧ݒ

డ௨ೖ
డ௫ೖ

 (17)ߜ

This definition (Eq. 17) does not include the
contribution of the isotropic portion, which can be
done by using a modified static pressure. However,
as the study of acoustic interactions and
compressibility effects are out of the scope of this
work, this isotropic contribution will be neglected,
and as a consequence, there is an increase on the
computational efficiency (Pierce and Moin 2004;
Pierce 2001).

The use of the subgrid stress tensor as defined in
Eq.17 is practical because it allows combining the
eddy viscosity µt with the molecular viscosity,
resulting in a dimensionless effective viscosity µe in
the numerator of the diffusive term of the momentum
conservation equation (Huai 2006):

ߤ ൌ
ఓାఓ
ఓ
, (18)

Then, the Eq. 16 can be rewritten as

డሺഥ௨ሻ

డ௧

డ൫ഥ௨	௨ೕ൯

డ௫ೕ
ൌ െ

డ̅

డ௫

 +
ఓ
ோ
൬
డమ௨
డ௫ೕ

మ
డమ௨ೕ
డ௫

మ ൰ (19)

Although it is known that µt ≫ µ, keeping both terms
enhance numerical stability, avoiding null values for
these properties. Besides, Kuo and Acharya (2012)
claims that molecular transport effects may be
important near the walls and close to turbulent/non-
turbulent interfaces (TNTI).

2.5 Smagorinsky Model

The turbulent viscosity which arises in the model
described in the previous section still needs to
modeled. In this work, the turbulent viscosity will be
described by the model of Smagorinsky (1963).
Smagorinsky (1963) assumed that the eddy viscosity
(µt) is proportional to the characteristic length of the
filter ∆, and to the characteristic subgrid velocity v∆,
that are defined as

ߥ ൌ Δ|ܵ̅| (20)

Δ ൌ ඥΔݔΔyΔऊయ (21)

where the norm |ܵ̅ | is calculated from the second
invariant of strain rate tensor.

|ܵ̅| ൌ ට2ܵ̅ܵ̅ (22)

Then, the turbulent viscosity is evaluated as

௧ߤ ൌ ρሺܥ௦∆ሻଶ|ܵ̅|, (23)

where Cs is called the Smagorinsky constant. We can
see that the turbulent viscosity has a quadratic
dependence on Cs; large values of Cs may then
introduce significant dissipation on the model, being
able to kill the turbulence due to an excess of

dissipation of the turbulent kinetic energy in the
small scales modeled. On the other hand, a small
value for Cs makes the solution procedure unstable,
considering that the turbulent kinetic energy
produced at large scales and transported to the small
scales is dissipated at a lower rate than it is being
generated. Consequently, the hypothesis of local
equilibrium of turbulent kinetic energy, for larger
scales than the dissipative scale of Kolmogorov, is
not respected (Haሷ llqvist 2006).

The positive characteristics of the Smagorinsky
model for subgrid stress tensor are the easy
implementation, low computational cost and
satisfactory results for a large number of
engineering applications. On the other hand, their
main weaknesses include the excessive dissipation
near surfaces, not reproducing the reverse energy
cascade, and the necessity of defining/choosing the
ad hoc (Cs) constant, according to the flow
characteristics.

For turbulent jets, there is no consensus in the
literature about the value of Cs than should be used,
and a wide range has been used. The theoretical
value is for Smagorinsky constant is 0.18 (Pope and
Pope 2000; Sagaut 2006). Ylyushin and Krasinsky
(2006) used Cs = 0.17, as suggested by Pope and
Pope (2000); Wilson and Demuren (1997), and Jones
et al. (2002) used 0.1-0.12 as suggested by Lesieur
(2005) while Deardorff (1970), McMillan (1980)
and Ferziger and Peric (2012) use Cs between 0.065-
.1. A study for the optimal value of Cs in turbulent
jets using the PMLES code will be carried out in a
future work.

3. NUMERICAL METHODOLOGY

The filtered equations presented above (Eq. 19) are
discretized by the finite difference method, using
second-order centered schemes for inner mesh points
and backward or forward second-order schemes for
the boundary points. This numerical scheme is
simple, inexpensive, non dissipative, and have
reasonable accuracy for engineering problems.

The present version of the code is able to work only
for regular three-dimensional structured cartesian
grids, with a uniform spacing between points, ∆x =
∆y = ∆z. Despite of the apparent simplicity of this
type of mesh, it has some interesting features.
Implicit filtering is used as described in Sec. 2.1, and
the use of a regularly spaced mesh avoids the
propagation of errors due to filter size variations, as
described by Piomelli (1999) and shown by Ilyshin
and Kransinky (2006). Variable integration
timesteps are used, applying the stability condition
of Courant Friedrichs-Lewy (CFL), evaluated as
described in Ferziger and Peric (2012) and
performed in Damasceno et al. (2015) by

ݐ∆ ൌ ௧ܮܨܥ ൬
ଵ

∆௧ೡ

ଵ

∆௧
൰
ିଵ

 (24)

Where

௩ݐ∆ ൌ ቀ∑
∆௫

|௨|୫ୟ୶
ଷ
ୀଵ ቁ (25)

J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.

1072

ௗݐ∆ ൌ ቀ∑
∆௫మ

ఓ
ଷ
ୀଵ ቁ (26)

Equation (19) was discretized in time using the three-
stage second-order Runge-Kutta scheme presented
by Blazek (2015):

ϕ ൌ ϕ

ϕଵ ൌ ϕ ݐଵΔߙ ∗ ܴሺϕሻ

ϕଶ ൌ ϕ ݐଶΔߙ ∗ ܴଵሺϕሻ (27)

ϕଷ ൌ ϕ ݐଷΔߙ ∗ ܴଶሺϕሻ

where ϕ is the time dependent variable and R(ϕn)
correspond to the terms that not include the time
derivative, such as source terms and discretized
spatial derivatives. αm are the coefficients of each
stage, given by α1 = 0.1918, α2 = 0.4929, α3 = 1,
where for these coefficients CFLcritic = 0.65. This
group of explicit schemes for time integration is
computationally cheap, consumes little memory and
can be employed with any spatial discretization
scheme. The use of an explicit scheme, when
working on a SIMT (Single Instruction Multiple
Thread) architecture (of GPU cards) (Quadros 2016),
makes the method quite interesting, because the
architecture of the GPU enables the massively
parallel execution of thousands of threads
independently and simultaneously (Ruetsch and
Fatica 2011).

Although the equations of flow are presented herein
in compressible form (aiming to facilitate future
developments), the present version of the PMLES
code is only able to simulate flow at low Mach
numbers. In this case, the continuity equation does
not have a dominant variable, and it configures itself
as a kinematic constraint that the velocity field must
respect (Ferziger and Peric 2012).

Here the calculation of the pressure field for
incompressible flows is performed using the SOLA
(SOLution Algorithm) method (Hirt, Nichols, and
Romero 1975; Wilson, Nichols, Hirt, and Stein 1988;
Fortuna 2000) which consists in an iterative
procedure to correct the pressure on a given mesh
point at an timestep n + 1

pሺ୧,୨,୩ሻ
୬ାଵ,୩ାଵ ൌ pሺ୧,୨,୩ሻ

୬ାଵ,୩ δpሺ୧,୨,୩ሻ
୬ାଵ,୩ାଵ, (28)

where

δpሺ୧,୨,୩ሻ
୬ାଵ,୩ାଵ ൌ

ିశభ,ೖశభ

ଶ௧ቂ
భ

ೣమ
ା

భ
మ

ା
భ

ऊమ
ቃ
 (29)

and

݈݅ܦ ൌ . ሺρݑሻ. (30)

In this method, the pressure of a cell is
increased/decreased if there is a net mass flow in-
ward/outward the cell. The flow direction analysis
and the computation of the pressure correction δp
are done using the Dilatation Dil, defined in Eq. 30.
The velocity field is then corrected using the
pressure correction according to the following
equations:

δu
ሺ୧ା

భ
మ
,୨,୩ሻ

୬ାଵ,୩ ൌ
௧

ሺశ

భ
మ,ౠ,ౡሻ

ஔ୮ሺ,ౠ,ౡሻ
శభ,ౡ

௫
 (31)

δu
ሺ୧ି

భ
మ
,୨,୩ሻ

୬ାଵ,୩ ൌ െ
௧

ሺష

భ
మ,ౠ,ౡሻ

ஔ୮ሺ,ౠ,ౡሻ
శభ,ౡ

௫
 (32)

δν
ሺ୧,୨ା

భ
మ
,୩ሻ

୬ାଵ,୩ ൌ
௧

ሺ,ౠశ

భ
మ,ౡሻ

ஔ୮ሺ,ౠ,ౡሻ
శభ,ౡ

௬
 (33)

δν
ሺ୧,୨ି

భ
మ
,୩ሻ

୬ାଵ,୩ ൌ െ
௧

ሺ,ౠష

భ
మ,ౡሻ

ஔ୮ሺ,ౠ,ౡሻ
శభ,ౡ

௬
 (34)

δݓ
ሺ୧,୨,୩ା

భ
మ
ሻ

୬ାଵ,୩ ൌ
௧

ሺ,ౠ,ౡశ

భ
మሻ

ஔ୮ሺ,ౠ,ౡሻ
శభ,ౡ

ऊ
 (35)

δݓ
ሺ୧,୨,୩ି

భ
మ
ሻ

୬ାଵ,୩ ൌ
௧

ሺ,ౠ,ౡష

భ
మሻ

ஔ୮ሺ,ౠ,ౡሻ
శభ,ౡ

ऊ
 (36)

The pressure and velocity fields are recursively
corrected by the above equations until they reach
convergence. Hirt et al. (1975) and Fortuna (2000)
give a detailed explanation about the method and its
implementation.

Analyzes of LES performed with different subgrid
models have shown that in many cases they do not
have a significant influence on the accuracy of the
solution, but the proper description of the boundary
conditions do (Ilyushin and Krasinsky 2006). The
works of Tabor and Baba-Ahmadi (2010),
Montorfano et al. (2013) and Damasceno et al.
(2015) present a good discussion about the LES inlet
boundary condition modeling. In the present version
of the code, boundary conditions similar as those
used in simulations of laminar flows were employed,
and the computational domain at the inlet is then
extended to allow the development of the flow
instabilities, reducing the influence of the inlet
boundary on results. More specifically, the inlet
boundary and the rigid boundary walls are modeled
by Dirichlet conditions, and a Neumann boundary
condition for fully developed flows was used at the
outlet, assuming that the gradient of normal
momentum flux is null. Future versions of PMLES
will include other possibilities of defining the inlet
boundary conditions.

4. IMPLEMENTATION
METHODOLOGY

CUDA Fortran programming is a hybrid
programming model; the control of the execution
flow is done by the host, which can also execute
subprograms and functions, while parts of code are
executed by the GPU (device). The goal of the
programmer is to partition the program into blocks
of great granularity, which can be executed in
parallel. Each block will then be partitioned into
others of smaller granularity, to be executed in
parallel by CUDA cores.

The developed code - PMLES - is a OpenMP CUDA
Fortran solver. Figure 2 depicts a flowchart for the
algorithm implemented in PMLES. Blocks colored
in blue and green correspond to identified tasks
performed by the host and the device (GPU),
respectively. It should be noted that all the arrows
that connect the green boxes (GPU kernels) are blue.
It means that all flux control and some necessary

J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.

1073

Fig. 2. PMLES Solver Flowchart.

synchronizations are performed by the host, thus
characterizing it by a hybrid execution, on which the
GPU cards are commanded by the CPU.

The initial tasks of declaration, allocation (both on
the host and device), and initialization of variables
are performed on the host. After the variables
initialization, the host invokes the boundary
conditions kernels and starts the temporal loop. In the
temporal loop, the host calls the sequence of GPU
kernels that are executed on the CUDA cores, i.e.,
the kernel of the Sub-Grid-Scale (SGS) Turbulence
Model, followed by the kernels of the integration of
momentum equations on each direction (Eq. 19) and
of the Dilatation equation (Eq. 30), finally entering
the iterative section described from Eq. 28 to Eq. 36,
which runs until convergence is reached. If the flow
has variable density (from the mixture of different
fluids, for example), the mixture fraction equation is
integrated and density is updated. The analysis of
non-reactive jet mixture flows and reactive jet flows
(both with varying density) will be presented in a
forthcoming publication.

The flowchart in Fig. 2 shows that the most intensive
tasks of the solver are implemented in CUDA
Fortran, namely the subprograms which perform
loops over the whole domain. We may also note that
some subprograms (setting boundary conditions, for
example), are executed on the device, even when it
would be cheaper to run them on the CPU. This
approach follows an important good practice
suggested by (Ruetsch and Fatica 2011) - perform as
many GPU operations as possible in order to
minimize data transfer between GPU and CPU, since
such transfers are usually expensive and greatly
penalizes the execution time.

However some operations are not simple to perform
in GPU. In the code presented in the article, OpenMP
directives are used to evaluate the control variables
of pressure correction loop. The maximum values of
variables such as dilatation and effective viscosity
are determined using OpenMP (reduction
operations) directives, resulting in a considerable
gain, since the computational domain is large. There
are also subprograms that run occasionally on the
host, and are programmed in OpenMP, such as
writing output files and collecting samples for
statistical analysis of the solution. These
subprograms run on the host using OpenMP
directives characterize PMLES as an “OpenMP
CUDA Fortran code”.

Since an important limitation of the GPU card
architecture is the available memory, the
implementation was focused on memory saving. Due
to the features of the present numerical method, some
care must be taken with respect to the synchronism
and execution sequence of kernels on the device.

On CUDA Fortran programming we can create
threads called CUDA streams. The use of CUDA
streams allows kernels to be launched for
simultaneous execution on the device. This
possibility, combined with an adequate definition of
the size of the thread blocks, results in a high GPU
occupancy rate, reducing code execution time. The
optimal thread block size should be set according to
the characteristics of the GPU card and the loop
boundaries, as described in (Ruetsch and Fatica
2011). Another benefit of using CUDA streams is the
ability to perform data transfer (device to host when
needed) or update variables concurrently with
kernels executions.

J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.

1074

Fig. 3. a) Characteristic dimensions of the nozzle region. b) Details of computational domain geometry.

The kernels responsible for integrating the
momentum equations and for evaluating boundary
conditions (except for inlet and outlet boundary) can
be executed concurrently. Other kernels or sub-
programs executed on the GPU cannot be executed
concurrently due to the required synchronism, which
is responsible for the separation of subprograms out
of the iterative part of the code shown in Fig. 2.

5. DESCRIPTION OF THE TEST
PROBLEM AND COMPUTATIONAL
DOMAIN

The implemented code must be tested and validated
against reliable results previously published. The
choice of the test problem followed the guide-lines
of Morgans et al. (1999): a) availability of
appropriate experimental data (e.g. boundary
distributions of velocity and turbulence
quantities);b) observed or deduced sensitivity of the
flow to changes in boundary conditions; c) feasibility
of obtaining the numerical solution. Based on this
strategy, the experimental turbulent jets studies of of
Amielh et al. (1996) and Djeridane et al. (1996) were
chosen. They provide detailed information on
velocity and scalar profiles for turbulent jets. The
experimental scheme is depicted on Fig. 3a. The
authors classify this configuration as a slightly
confined jet, and the (Air − Air) jet was used as their
reference case and will be the object of our study.
This experiment set have been also realized for jets
with variable density ratios,(s = ρj/ρair) 0.14
(He−Air) and 1.52 (CO2 − Air) using the same
configuration. A comparison with these results will
be done in a future work.

The knowledge of the turbulent scales is of great
importance in the analysis of turbulent flows. As
briefly discussed in previous sections, all the
conceptual and mathematical development of LES
methodology is derived from the analysis and study
of turbulent scales. The characteristic numbers of the
flow were determined from the Reynolds number, Re

=
ఘೕ	

ஜ
= 20650, where ܷ = 12 m/s is the jet flow

velocity, and the length scale is the nozzle diameter
D, illustrated in Fig. 3a. The air properties have been
taken to standard condition. The characteristic length
and time of the dissipative scale of Kolmogorov are
given by

ܮ ൌ

ோ
య
ర
ൌ 5.80 ൈ 10ିସ, (37)

߬ ൌ
/ೕ

ோ
భ
మ
ൌ 6.98 ൈ 10ିଷ,												 (38)

and the characteristic length and time of the Taylor’s
micro scale by

ఒܮ ൌ
√ଵ

ோ
భ
మ
ൌ 2.2 ൈ 10ିଶ, (39)

߬ఒ ൌ
√ଵହ൫/ೕ൯

ோ
భ
మ

ൌ 2.7 ൈ 10ିଶ, (40)

The dissipative Kolmogorov scale indicate the mesh
resolution for a DNS, while Taylor’s micro scale
provides an estimate of the mesh resolution suitable
for LES (Sagaut 2013).

The domain used to define the problem described
above (Amielh et al. 1996; Djeridane et al. 1996) is
a rectangular duct section with a circular coaxial duct
for the high velocity fluid injection. A plane view is
shown in Fig. 3b. The original setup has dimensions
L ≃ 50D and H ≃ 11D (Amielh et al. 1996;
Djeridane et al. 1996). Due to the high computational
cost of the full problem, the analysis is focused on
regions near the injector, called near field. The near
field comprises the zone of pure jet, dominated by
inertial effects and by the transition zone, where the
inertial effects and gravitational coexist (the latter in
the presence of fluids with different densities). The
analysis of the developed zone is outside the scope
of this work. The three jets zones, as classified for
Lipary and Stansby (Lipari and Stansby 2011) - pure
jet, transitional and developed zones - can be
pictorially visualized in Fig. 4.

Fig. 4. Depiction of typical jet zones.

J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.

1075

Therefore here the domain was limited to L ≃ 35D
and H ≃ 11D, based on the analysis of
experimental data of Amielh et al. (1996). The
computational domain was discretized using Nx =
1004, Ny = 317 and Nz = 317, resulting on a mesh
spacing of ∆x = 3.49 × 10−2 and a domain with
100890956 ∼ 1 × 108 cells. Despite using a
Cartesian mesh, the circular injection duct of the
jet was relatively well modeled, as shown in Fig. 5.
The momentum flux deviation by the cubic cells
was evaluated and remained below 1 %.

Fig. 5. Circular nozzle as modeled by cubic cells.

As discussed in Sec. 3, Dirichlet boundary conditions
are used for the inlet boundary and duct walls in the
momentum equations. Considering that the walls are
solid and impermeable, non-slip conditions (null
velocities) are applied in all walls. For both the
COFLOW and JETFLOW boundaries, average
speed profiles were used without fluctuations. A flat
velocity profile was applied for the COFLOW
region, while a fully developed turbulent profile was
used for the JETFLOW boundary, which can be
evaluated for a circular duct by the following power-
law expression (Abramovich 1963).

௨ഥሺሻ

௨ഥೌೣ
ൌ ቀ1 െ

ோ
ቁ
ଵ/
, (41)

where ݑത (r) is the is the velocity of the flow at a
distance	ݎ from the center of the injector and ݑതmax is
the maximum jet velocity. For the outlet boundary, a
Neumann boundary condition was used for fully
developed flows, assuming that the gradient of
normal momentum flux is null.

The subgrid stress tensor is modelled by subgrid
Smagorinsk Model. For the ad hoc constant the
Smagorinsk Model, Cs, we set the value of 0.65, as
suggested by Ferziger and Peric (2012).

6. RESULTS

The main objective of the work is to present the
mathematical basis and computational aspects used
in the development of the PMLES source code. As
discussed before, the code is tested and validated
using a classical problem from the literature. Results
obtained for a typical simulation of a air jet flow, as
described in details in the previous sections, is
presented in this section.

Figure 6 shows a view of the instantaneous velocity
field of a turbulent flow generated by the code,
illustrating the capture of the transition to turbulence.
The arising of the Kelvin-Helmholtz instabilities and
their evolution toward turbulence can be clearly seen
in the image. Other important result is presented in
Fig. 7, which shows the mean velocity field. In this
figure, the occurrence of the three characteristics
zones of round jets (pure jet, transitional flow and
developed flow) is evident as also depicted in Fig. 4
and presented by Lipary and Stansby (Lipari and
Stansby 2011). The results depicted in Figs. 6 and 7
show qualitatively the ability of the code to simulate
turbulent flows.

A quantitative evaluation of results can be done by
analyzing velocity and turbulent intensity profiles at
important sections of the flow. Figure 8a shows a
comparison of the average axial velocity profile with
the experimental data of Amielh et al. (1996), LES
results of Wang et al. (2008) and the similarity law
proposed by Chen and Rodi (1980). This profile
corresponds to an average on the statis-tically steady-
state regime, assumed when the mean velocity
component in the preferred flow direction stopped
varying significantly for three consecutive samples
(taken every 2 × 106 timesteps).

The profiles presented on Fig. 8a have a very good
agreement with the other data, exhibiting some
localized discrepancies. In this figure, we can
observe a small deviation near the nozzle, within the
pure jet and transitional zones, as defined in Fig.4.
The deviation is in the same order of magnitude of
those obtained by Wang et al. (2008). Our result also
presented good agreement with the law similarity
proposed by Chen and Rodi (1980). The comparison
with the law similarity is important, considering that
it is derived from the study of many turbulent jets,
representing an overall behavior of such flows.

The delay in the transition of jet flow regime verified
in the Fig. 8a was expected, and it is due to the
application of the simplified inlet boundary
condition for the jet described in Sec. 6 (in terms of
the average velocity, without fluctuations). The
implementation of a more consistent inlet boundary
condition (as discussed in Sec. 6) will be done and
shown in a future work, enabling the simulation of
more realistic flows.

Figure 9 show radial profiles for the preferential
velocity component at different axial distances x/D.
In these figures we can observe that the code captures
qualitatively well the behavior of the radial
distribution of axial velocity, and some deviations
between the simulated and experimental values are
evident from these figures. These differences are
consistent with the results observed in Fig. 8a (dis-
cussed in the previous paragraph). The profile in x/D
= 5 of Fig. 9a shows clearly the delay in the decay of
the axial velocity for the zone between the pure jet
and transitional flow regimes. For x/D = 5, the
velocity distribution along the radial direction is still
similar to the profile defined in the boundary
condition at the nozzle. It can also be observed that,
as the profile is measured further away the nozzle,
the deviations with the experimental data decrease

J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.

1076

Fig. 6. Visualization of instantaneous field of axial velocity.

Fig. 7. Visualization of mean field of axial velocity.

Fig. 8.
a) Dimensionless mean axial velocity in the center line of domain, defined as (࢘ࢋ࢚ࢋࢉࢁ െ

࢚ࢋࢁሻ/ሺ࢝ࢌࢉࢁ െ 'ሻ. b) Axial profile of dimensionless turbulent intensity, u' , defined by u࢝ࢌࢉࢁ
࢘ࢋ࢚ࢋࢉࢁ)/ െ .ሻ࢝ࢌࢉࢁ

Figure 8b shows an important result that LES is able
to provide, which is the intensity of the velocity
fluctuations, here only analyzed for the preferential
direction of the flow. A excellent qualitative
agreement is verified, with a systematic deviation in
the pure jet zone, due to the simplified boundary
condition as discussed before. As turbulence
develops, the deviation decreases and computed
values get closer to the experimental result. This
result clearly shows the PMLES ability of solving the
turbulence transition on such flows.

It is naive to attribute any and all deviation in the
results simply to the inlet boundary condition used
for the jet, given the known limitations of the
Smagorinsky subgrid model. However, considering
that the largest deviations observed are in regions
close to the nozzle, and that they decrease upon
development of the turbulence, it is clear that the
adequate modeling of this boundary condition
deserves attention before carrying out a more
comprehensive quantitative comparison of results.

J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.

1077

Fig. 9. Dimensionless radial profile of mean axial velocity defined by (࢘ࢋ࢚ࢋࢉࢁ െ ࢚ࢋࢁሻ/ሺ࢝ࢌࢉࢁ െ
 .ሻ . a) For x/D = 5 and x/D = 10; b) for x/D = 15 and x/D = 20࢝ࢌࢉࢁ

The simulations using the hybrid OpenMP CUDA
Fortran code were performed on the SDumont
supercomputer, available at the LNCC - Laboratorio
Nacional de Computacão Científica, Brazil.
Although the GPUs used have support for OpenACC
directives, specific kernels were developed for the
solution of the flow equations in order to maximize
the performance of the available computational
resource. The solver was not designed with
portability in mind, but rather to simulate large
domains using few computational resources.
Therefore, the simulations were performed using
only one computational node, which has two 12-
processor IN-TEL XEON E-52695V2 CPUs and two
NVIDIA TESLA K40 GPUs, where each one has
2280 CUDA cores with base clock of 745 MHz and
12 GB of DDR5 memory.

Table 1 shows the computational performance gain
per timestep (in the problem analyzed in this work)
for the parallelization techniques used. The
execution in CUDA utilized only a single GPU card
as discussed before. The performance enhancement
obtained with OpenMP CUDA is interesting; a
speedup of 55.1 has been achieved for this ma-chine
configuration and the execution time is reduced to
about 1/3 compared to a pure OpenMP
implementation.

Table 1 Speedup obtained for each
parallelization technique

Code Version time(s) speedup
Serial 8.90 1

OpenMP with 12 threads 1.04 8.5
OpenMP with 24 threads 0.53 16.6

OpenMP CUDA 0.16 55.1

7. CONCLUSIONS AND FUTURE
WORKS

This work presented PMLES, a new computational
tool based on a hybrid implementation OpenMP
CUDA Fortran, able to simulate complex turbulent
flows at high Reynolds numbers with reasonable
time costs, using a workstation with a single GPU
card. The code was tested in the simulation of an air-

air coaxial turbulent jet previously studied in the
literature (Amielh et al. 1996; Wang et al. 2008). The
results obtained for the axial distributions of the axial
velocity component, in terms of both the mean and
the turbulence intensity, are of high quality
considering the complexity of the problem solved.

Some of the future improvements in the capabilities
of the code are the implementation of a turbulent
boundary condition and the implementation of other
SGS models, such as the Germano dynamic model
(Germano et al. 1991) and the structure-function
(SF) model (Métais and Lesieur 1992), to eliminate
the ad hoc (Cs) constant of the Smagorinsky sub grid
model, making the solver more robust and generic.
Also, we are working to adapt the code to simulate
turbulent jets of variable density, a problem that
requires not only the modeling of the tensor stresses,
but also the modeling of the scalar flux. Also, this
current version of PMLES still lacks the ability to
properly solve turbulent flows on surfaces, such as in
aero-dynamics. This restriction is due to the
occurrence of boundary layers, which require special
treatment due to the failure of the hypothesis of
homogeneous and isotropic flow, which is the basis
of the LES technique. An adequate treatment for
flows near the walls will soon be implemented.

The computational performance obtained with the
use of the GPU card was very good, since it increased
the speedup by a factor of 55.1, compared to 16
obtained by Griebel and Zaspel (2010) and 33
obtained by Thibault and Senocak (2009),
decreasing the time by 3.3× with respect to the
solution obtained using full OpenMP.

A limitation of the present implementation,
employing only one GPU card, is the limited
memory of the GPU device, which is small compared
to that typical of CPUs. This memory limitation
imposes a constraint on the size of the grid, i.e., in
the degree of mesh refinement and domain size.
However, with the growing development of new
technologies for scientific computing, this limitation
is being reduced. In 2019 there are GPU cards in the
market capable of simulating domains of the order of
500 million cells using PMLES. To overcome the
memory limitation, multiple GPUs could be used,

J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.

1078

keeping in mind that there are extra costs involved in
the data transfer between GPUs, especially if it is
necessary to perform communication within the
iterative block of code.

The speedup analyzes shown in Table 1 are all
performed for calculations with double precision,
which is the least favorable condition to gain speed
with the use of GPU. There is now in the literature
mixed precision implementations for computational
fluid dynamics that present considerable reduction of
computational cost delivering a reasonable
acceptable accuracy for engineering applications. A
mixed precision implementation will be analyzed as
well in future works.

ACKNOWLEDGMENTS

The authors acknowledge CAPES for financial
support through PROEX/CAPES program, and the
National Laboratory for Scientific Computing
(SDumont supercomputer, LNCC/MCTI, Brazil) for
providing computational resources for the
calculations reported in this paper.

REFERENCES

Abramovich, G. (1963). The theory of turbulent jets.
Ph. D. thesis, MIT Press, Massachusetts
Institute of technology.

Amielh, M., T. Djeridane, F. Anselmet and L.
Fulachier (1996). Velocity near-field of variable
density turbulent jets. International Journal of
Heat and Mass Transfer 39(10), 2149–2164.

Blazek, J. (2015). Computational fluid dynamics:
principles and applications. Butterworth-
Heinemann.

Chen, C. J. and W. Rodi (1980). Vertical turbulent
buoyant jets: a review of experimental data.
NASA Sti/Recon Technical Report A 80.

Damasceno, M., J. Vedovoto and A. da Silveira-Neto
(2015). Turbulent inlet conditions modeling
using large-eddy simulations. Computer
Modeling in Engineering & Sciences 104(2),
105–132.

Deardorff, J. W. (1970). A numerical study of three-
dimensional turbulent channel flow at large
reynolds numbers. Journal of Fluid Mechanics
41(2), 453–480.

DeLeon, R. and I. Senocak (2012). Gpu-accelerated
large-eddy simulation of turbulent channel
flows. In 50th AIAA Aerospace Sciences
Meeting including the New Horizons Forum and
Aerospace Exposition, pp.722.

Djeridane, T., M. Amielh, F. Anselmet and L.
Fulachier (1996). Velocity turbulence properties
in the near-field region of axisymmetric variable
density jets. Physics of Fluids 8(6), 1614–1630.

Ferziger, J. H. and M. Peric (2012). Computational
methods for fluid dynamics. Springer Science &
Business Media.

Fortuna, A. D. O. (2000). T݁́cnicas computacionais
para din ොܽminca dos fluidos: conceitos bܽ́sicos
e aplicacões. Edusp.

Germano, M., U. Piomelli, P. Moin and W. H. Cabot
(1991). A dynamic subgrid-scale eddy viscosity
model. Physics of Fluids A: Fluid Dynamics
3(7), 1760–1765.

Gharbi, A., E. Ruffin, F. Anselmet and R. Schiestel
(1996). Numerical modelling of variable density
turbulent jets. International journal of heat and
mass transfer 39(9), 1865–1882.

Griebel, M. and P. Zaspel (2010). A multi-gpu
accelerated solver for the three-dimensional
two-phase incompressible navier-stokes
equations. Computer Science-Research and
Development 25(1-2), 65–73.

H aሷ llqvist, T. (2006). Large eddy simulation of
impinging jets with heat transfer. Ph. D. thesis,
Royal Institute of Technology.

Hirt, C., B. Nichols and N. Romero (1975). Sola: A
numerical solution algorithm for transient fluid
flows. Technical report, Los Alamos Scientific
Lab., N. Mex. (USA).

Huai, Y. (2006). Large Eddy Simulation in the scalar
field. Ph. D. thesis, Technische Universitaሷ t.

Ilyushin, B. and D. Krasinsky (2006). Large eddy
simulation of the turbulent round jet dynamics.
Thermophysics and Aeromechanics 13(1), 43–
54.

Jones, S., F. Sotiropoulos and M. Sale (2002). Large-
eddy simulation of turbulent circular jet flows.
Technical report, EERE Publication and
Product Library, Washington, DC (United
States).

Kumar, M. K., M. R. Abdel-Majeed and M.
Annavaram (2019). Efficient automatic
parallelization of a single gpu program for a
multiple gpu system. Integration 66, 35–43.

Kuo, K. K. Y. and R. Acharya (2012). Fundamentals
of Turbulent and Multi-Phase Combustion. John
Wiley & Sons.

Lesieur, M., O. Métais and P. Comte (2005). Large-
eddy simulations of turbulence. Cambridge
University Press.

Lipari, G. and P. K. Stansby (2011). Review of
experimental data on incompressible turbulent
round jets. Flow, turbulence and combustion
87(1), 79–114.

Métais, O. and M. Lesieur (1992). Spectral large-
eddy simulation of isotropic and stably stratified
turbulence. Journal of Fluid Mechanics 239,
157–194.

Markesteijn, A. P., V. Semiletov and S. A.
Karabasov (2015). Cabaret gpu solver for fast-
turn-around flow and noise calculations. In 21st
AIAA/CEAS Aeroacoustics Conference, pp.
2223.

McMillan, O. (1980). Tests of new subgrid-scale

J. M. Pinho and A. R. Muniz / JAFM, Vol. 13, No. 4, pp. 1067-1079, 2020.

1079

models in strained turbulence. aiaa paper aiaa-
80-1339. In AIAA 13th Fluid and Plasma
Dynamics Conference, Snowmass, Co.

Moin, P., K. Squires, W. Cabot and S. Lee (1991). A
dynamic subgrid-scale model for compressible
turbulence and scalar transport. Physics of
Fluids A: Fluid Dynamics 3(11), 2746–2757.

Montorfano, A., F. Piscaglia and G. Ferrari (2013).
Inlet boundary conditions for incompressible
les: A comparative study. Mathematical and
Computer Modelling 57(7-8), 1640–1647.

Morgans, R., B. Dally, G. Nathan, P. Lanspeary and
D. Fletcher (1999). Application of the revised
wilcox (1998) k-ω turbulence model to a jet in
co-flow. In Second International Conference on
CFD in the Mineral and Process Industries,
Melbourne, Australia.

Pierce, C. D. (2001). Progress-variable approach for
large-eddy simulation of turbulent combustion.
Ph. D. thesis, stanford university.

Pierce, C. D. and P. Moin (2004). Progress-variable
approach for large-eddy simulation of non-
premixed turbulent combustion. Journal of
Fluid Mechanics 504, 73–97.

Piomelli, U. (1999). Large-eddy simulation:
achievements and challenges. Progress in
Aerospace Sciences 35(4), 335–362.

Pope, S. B. and S. B. Pope (2000). Turbulent flows.
Cambridge university press.

Quadros, A. E. R. (2016). Processamento Paralelo
em CUDA Aplicado ao Modelo de Gerac ܽo de
cen´arios sint ݁́ ticos de vaz es e Energias-
GEVAZP. Ph. D. thesis, Universidade Federal
do Rio de Janeiro.

Ruetsch, G. and M. Fatica (2011). Cuda fortran for
scientists and engineers. NVIDIA Corporation
2701.

Sagaut, P. (2006). Large eddy simulation for
incompressible flows: an introduction. Springer
Science & Business Media.

Sagaut, P. (2013). Multiscale and multiresolution
approaches in turbulence: LES, DES and hybrid
RANS/LES methods: applications and
guidelines. World Scientific.

Silva Freire, A. P., P. P. M. Menut and S. Jian (2002).
Turbul݁̂ncia, Volume 1. ABCM.

Smagorinsky, J. (1963). General circulation
experiments with the primitive equations: I. the
basic experiment. Monthly weather review
91(3), 99–164.

Tabor, G. R. and M. Baba-Ahmadi (2010). Inlet
conditions for large eddy simulation: A review.
Computers & Fluids 39(4), 553–567.

Tennekes, H. and J. L. Lumley (1972). A first course
in turbulence. MIT press.

Thibault, J. and I. Senocak (2009). Cuda
implementation of a navier-stokes solver on
multi-gpu desktop platforms for incompressible
flows. In 47th AIAA aerospace sciences meeting
including the new horizons forum and
aerospace exposition, pp. 758.

Veynante, D. and L. Vervisch (2002). Turbulent
combustion modeling. Progress in Energy and
Combustion Science 28(3), 193–266.

Wang, P., J. Froሷhlich, V. Michelassi and W. Rodi
(2008). Large-eddy simulation of variable-
density turbulent axisymmetric jets.
International Journal of Heat and Fluid Flow
29(3), 654–664.

Wilcox, D. C. (2006). Turbulence modeling for
CFD. La Canada, CA: DCW Industries. DCWI
ndustries.

Wilson, R. V. and A. O. Demuren (1997). Numerical
simulation of turbulent jets with rectangular
cross-section. Number 97. National Aeronautics
and Space Administration, Langley Research
Center.

Wilson, T., B. Nichols, C. Hirt and L. Stein (1988).
Sola-dm: A numerical solution algorithm for
transient three-dimensional flows. Technical
report, Los Alamos National Lab.

Zhu, X., E. Phillips, V. Spandan, J. Donners, G.
Ruetsch, J. Romero, R. Ostilla-M ó nico, Y.
Yang, D. Lohse, R. Verzicco, M. Fatica and R.
J. A. M. Stevens (2018). Afid-gpu: a versatile
navier–stokes solver for wall-bounded turbulent
flows on gpu clusters. Computer physics
communications 229, 199–210.

