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ABSTRACT 

Developing an accurate and reliable model for the pressure strain correlation is a critical need for the success 
of the Reynolds Stress Modeling approach. This is challenging because replicating the non-local effects of 
pressure using a modeling basis composed of local tensors is limiting. In this paper we use physics based 
arguments and analysis of simulation data to select additional tensors to extend this modeling basis for pressure 
strain correlation modeling to formulate models with improved precision and robustness. We integrate these 
tensors in the modeling basis and develop separate models for the slow and rapid pressure strain correlation. 
This complete pressure strain correlation model is tested for different turbulent flows and its predictions are 
compared to prior pressure strain correlation models. We show that the new model with an extended tensor 
basis is able to show improvements in accuracy and reliability. 

Keywords: Turbulence modeling; Computational fluid dynamics; Reynolds stress models; Pressure strain 
correlation. 

 

NOMENCLATURE 

bi j Reynolds stress anisotropy  
di j dissipation anisotropy tensor 
fs blending function 
k turbulent kinetic energy  
L length scale tensor  
p fluctuating pressure 
P mean pressure 
Pi j production tensor  
Ri j Reynolds stress tensor 
Ti jk,k diffusive transport term 

ui  fluctuating velocity component  
Ui mean velocity component 
 
β ellipticity parameter 
δi j Kronecker delta tensor 
ηi j dissipation tensor 
ν kinematic viscosity 
ρ density 
ψi j pressure strain correlation 

 

 
 
 

  
1. INTRODUCTION 

Turbulent flows are important to problems in many 
fields of engineering and sciences like Mechanical 
Engineering, Chemical Engineering, Aerospace 
Engineering, Environmental Engineering, 
Oceanography, Civil Engineering, Meteorology, 
Astrophysics, etc. The ability to predict the evolution 
and properties of turbulent flows better will have 
impact in these fields. An example from Biomedical 
engineering turbulent flow of blood in the heart 
causes sclerosis (Wesolowski et al. 1965) leading to 
cardiovascular disorders like strokes and heart 
attacks (Al-Omari and Rousan, 2010). Improved 

understanding of turbulence can help Biomedical 
community to treat and cure such disorders. The 
number of people suffering from congestive heart 
failure (CHF) in the United States is estimated to be 
more than 4.5 million, and more than half a million 
additional people develop CHF each year. This 
situation is made worse by the low number of heart 
donors. Over the last five years, on an average less 
than 2,000 heart trans-plants were successfully 
carried out in the United States, a country with highly 
advanced medical facilities. Artificial heart devices 
like Ventricular Assist Devices (VAD) have 
emerged as the only alternative therapy for patients 
suffering from such heart diseases. Improved 
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prediction of cardiovascular turbulence can aid in 
faster and more reliable design of these devices 
(Bachmann et al. 2000; Zhang et al. 2013). 

In academic and industrial applications, most 
simulations into turbulent flow problems use 
turbulence models. Turbulence models are 
simplified relations relating high order quantities that 
are difficult to compute in terms of simpler flow 
parameters. These unknown correlations represent 
the actions of viscous dissipation, pressure-velocity 
interactions, etc. For example pressure strain 
correlation is a non-local phenomenon and is 
difficult to compute. Using models for pressure 
strain correlation, it is expressed as a function of 
Reynolds stresses, dissipation and mean velocity 
gradients which are local quantities. This enables 
estimation of the pressure strain correlation and its 
effects on flow evolution in a simpler manner which 
is computationally inexpensive also. Turbulence 
models are an important component of all 
computational fluid dynamics software and are used 
in almost all simulations of fluid flows of 
engineering importance. 

Most industrial applications use simple two-equation 
turbulence models like the k − ε and k −ω models. 
However recent emphasis in the scientific 
community has shifted to Reynolds stress models 
(Hanjalić and Launder 2011; Durbin 2017; Klifi and 
Lili 2013; Mishra and Girimaji 2014; Jakirlić and 
Maduta 2015; Manceau 2015; Eisfeld et al. 2016; 
Schwarzkopf et al. 2016; Moosaie and Manhart 
2016; Lee et al. 2016; Mishra and Girimaji 2017; 
Panda et al. 2018; Sun et al. 2017; Mitra et al. 
2019a,b). Reynolds stress models have the potential 
to provide better predictions than turbulent viscosity 
based models at a computational expense much 
lower than Direct Numerical Simulation (DNS) or 
Large Eddy Simulations (LES) based studies. They 
may be able to model the directional effects of the 
Reynolds stresses and additional complex 
interactions in turbulent flows (Johansson and 
Hallb ሷܽck 1994). They have the ability to accurately 
model the return to isotropy of decaying turbulence 
and the behavior of turbulence in the rapid distortion 
limit (Pope 2000). The important difference between 
the popular eddy viscosity models and Reynolds 
Stress Modeling method is the computation of the 
components of the Reynolds stress. In 2-equation 
models like the k − ε and k − ω models, the turbulent 
kinetic energy is computed. Then the eddy-viscosity 
hypothesis is used to determine the components of 
the Reynolds stress tensor from the turbulent kinetic 
energy and the mean velocity gradient. The eddy 
viscosity hypothesis is somewhat accurate for simple 
sheared flows, it gets unsatisfactory for complex 
turbulent flows with mean streamline curvature, 
zones of recirculation, turbulent separation and 
reattachment, etc. Reynolds Stress Models use 
explicit transport equations for the components of the 
Reynolds stress. This ensures that these models can 
account for complex physics, deal with high degrees 
of anisotropy and provide more accurate results. 

Reynolds stress models use equations for the 
transport of the individual components of the 
Reynolds stress tensor. This Reynolds stress 

transport equation forms the foundation of the 
Reynolds stress modeling approach and is given by 
Pope (2000). 
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The turbulence production process is represented by 
Pi j and represents transfer of energy from the mean 
velocity field to the turbulent fluctuations. ηi j 
represents the dissipation process where the 
turbulent kinetic energy is lost as internal energy. 
The turbulent transport process is represented by Ti 

jk and has contributions from viscous diffusion, 
pressure transport and turbulent convection. Finally 
ψi j represents the pressure strain correlation and 
redistributes turbulent kinetic energy among the 
components of the Reynolds stresses. Of these terms, 
production is the only process that is closed at the 
single point level. The other terms require models for 
their closure. The accuracy of the Reynolds stress 
modeling approach depends on the quality of the 
models developed for these turbulence processes. 
Out of these the modeling of the pressure strain 
correlation is considered to be the most important. 

The pressure strain correlation of turbulence consists 
of two components- the slow pressure strain 
correlation modeling the non-linear interactions in 
between the fluctuating velocity field and the rapid 
pressure strain correlation modeling the interactions 
between the mean velocity and the fluctuating 
velocity field. This is shown in the Poisson equation 
for pressure Pope (2000). 

ଵ

ఘ
ଶሺpோ׏ ൅ pௌሻ ൌ െ2

ப௎ೕ
డ௫೔

ப௨೔
డ௫ೕ

െ
பమ௨೔௨ೕ
డ௫೔డ௫ೕ

                      (2) 

Here pR and pS are the rapid and slow components of 
pressure. On the right-hand side of Eqs. (2), the first 
term represents linear interactions between the 
fluctuating velocity field with the mean velocity 
gradient and the second term represents the non-
linear interactions in between the fluctuating velocity 
field. 

Due to its importance there have been many attempts 
to develop closure models for the pressure strain 
correlation. Chou (1945) established the formulation 
for the second moment closure approach and 
introduced the pressure strain correlation term. Rotta 
(1951) developed a linear closure for the slow 
pressure strain correlation term using a modeling 
expression that was linear in the Reynolds stresses. 
Launder et al. (1975) developed a model for the 
complete pressure strain correlation. They developed 
a novel closure for the rapid pressure term and 
incorporated the model of Rotta (1951) for the slow 
pressure strain correlation. Jones and Musonge 
(1984) attempted to develop pressure strain 
correlation models that could be applicable for 
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complex recirculating flows. Their model expression 
was similar to Launder et al. (1975) but the closure 
coefficients were calibrated to different values 
determined by the best agreement with their data for 
high Reynolds number homogeneous flows. Sarkar 
and Speziale (1990) developed a nonlinear extension 
for the slow pressurestrain correlation for high 
Reynolds number flows. This model was able to 
show improved agreement with the non-linear trends 
in the return to isotropy behavior. This was extended 
to a fully non-linear quadratic model for the 
complete pressure strain correlation in Speziale et al. 
(1991). Johansson and Hallb ሷܽck (1994) formulated a 
non-linear model for the rapid pressure strain 
correlation with terms in the expression that are of 
the fourth order in the Reynolds anisotropy tensor. 
This model showed improved agreement for some 
homogeneous turbulent flows. 

There remain deficiencies in the performance of 
established models for the pressure strain 
correlation. These deficiencies are two-fold- 
limitations in accuracy and limitations in 
realizability. 

Available pressure strain correlation models have 
unsatisfactory accuracy in many important classes of 
flows. For example in vorticity dominated flows 
their predictions may not be satisfactory. For these 
flows linear stability theory, experiments and DNS 
show growth in the turbulent kinetic energy. 
However established models predict that turbulence 
is decaying in these cases Blaisdell and Shariff 
(1996). Similarly the predictions of available 
pressure strain correlation models are inadequate in 
non-equilibrium turbulent flows, flows with swirl 
and re-circulation, etc. Mishra and Girimaji (2015, 
2019). 

Most pressure strain correlation models suffer from 
realizability violations. Realizability conditions 
ensure that the predictions of the turbulence model 
are consistent with a stochastic process. The pressure 
strain correlation models available lead to 
realizability violations at or in the neighborhood of 
the two-component limit of turbulence (Mishra and 
Girimaji, 2016). While the two-component limit is 
termed as a limiting state for the Reynolds stresses, 
it is found in many engineering flows. For example 
in near wall turbulence the state of the Reynolds 
stress tensor is extremely close to the two-component 
limit with the wall normal component of the 
Reynolds stresses being negligible. Such 
realizability violations in important flows limit the 
applicability of pressure strain correlation models. 

Most classical pressure strain correlation models 
have focused on the closure modeling expression and 
the values of the closure coefficients to improve the 
performance of models. With respect to the model 
expression there has been a trend to-ward more 
complex terms that are non-linear in the Reynolds 
stress tensor Speziale et al. (1991). For example 
while the model of Launder et al. (1975) was linear 
in the Reynolds stress tensor, the model of Speziale 
et al. (1991) is quadratic and the model of Johansson 
and Hallb ሷܽck (1994) is fourth order. With respect to 
the closure coefficients, investigations have tried to 

calibrate them to more specialized data sets from 
experiments and DNS. Investigators have also made 
the closure coefficients functions of the invariants of 
the Reynolds stress tensor. This allows additional 
degrees of freedom in the modeling expression and 
enables better agreement with additional data sets. 
However the improvements due to such steps have 
been incremental. The central issues of 
unsatisfactory accuracy in specific important classes 
of flow or the issues with realizability are still present 
and important. 

Some investigations have raised questions about the 
inadequacy of the modeling basis used in pressure 
strain correlation closures. The modeling basis is 
composed of the set of tensors used in the modeled 
constitutive equation for the pressure strain 
correlation. In classical one-point closure modeling 
these are one-point tensors including the Reynolds 
stress anisotropies, the turbulent kinetic energy and 
the dissipation. The set of tensors used in the 
modeling basis determines the type and extent of 
information about the turbulent flow field that is 
avail-able in the model formulation. In an 
incompressible flow pressure is governed by the 
Poisson equation. Due to the elliptic nature of this 
governing equation the pressure strain correlation is 
not a one-point tensor and attempts to model it using 
one-point tensors may be limited. Reynolds and 
Kassinos (1995) have claimed that in rotation-
dominated turbulent flows, the modeling basis for 
the pressure strain correlation is limited. They 
introduced additional non-local tensors to the 
modeling basis like stropholysis, circulicity, etc. 
Cambon et al. (1992) have also claimed that 
additional tensors may be needed to model the 
pressure strain correlation in rotation-dominated 
flows. However both these models use non-local 
tensors that may not be avail-able in an engineering 
application. Mishra and Girimaji (2010) and Mishra 
and Girimaji (2013) have carried out a spectral 
analysis to outline the manner in which the modeling 
basis is limited and the manner in which it affects the 
ability of the model to replicate specific features of 
turbulent flows. 

If the limitations in the pressure strain correlation 
models are due to limited modeling basis, there are 
three important questions to be answered: 

1. What tensors need to be added to the modeling 
basis to have additional information that is 
relevant for modeling. 

2. While many different correlations and turbulent 
statistics may be added to the modeling basis and 
may offer different degrees of benefit, we must 
identify the optimal tensors to be added. 

3. Finally with these added tensors, how much 
improvement can we show in the performance of 
single-point pressure strain correlation models. 

In this paper we address these questions in order. 
Using physics based arguments we outline a set of 
tensors to be added to the modeling basis for the slow 
pressure strain correlation and separately for the 
rapid pressure strain correlation. We show that these 
tensors add missing information to the modeling 
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effort that is important to improve the potential 
performance of pressure strain correlation closures. 
We develop a complete model for the pressure strain 
correlation using this extended modeling basis. This 
model is tested for a range of mean flows while 
compared to DNS results. In this investigation, we 
use the popular models of Launder et al. (1975) and 
Speziale et al. (1991) for comparison. The present 
model shows improved agreement with DNS results 
and significant improvements over these earlier 
pressure strain correlation models. 

2. THEORETICAL AND 
MATHEMATICAL DETAILS 

In this section we outline our procedure to select 
specific tensors to the modeling basis for the pressure 
strain correlation. During this process, physical 
arguments for the choice of specific tensors and the 
particular benefits that they offer, with respect to the 
modeling of definite features of the pressure velocity 
interaction term. We demarcate this procedure 
sequentially, first for the slow pressure strain 
correlation model and then for the rapid pressure 
strain correlation model. During this selection, we try 
to consider tensors that are still single point and are 
available in the engineering single point modeling 
methodology. Following this selection, we develop 
the individual slow and rapid pressure strain 
correlation models with this expanded modeling 
basis. 

2.1   Slow Pressure Strain Correlation 
Modeling Basis 

Considering the slow pressure strain correlation 
model, we commence with the details of the rate of 
dissipation tensor. The rate of dissipation tensor can 
be decomposed into its deviatoric and isotropic 
components: 

௜௝ߟ ൌ ௜௝ܦ ൅
ଶ

ଷ
 ௜௝                                                  (3)ߜߟ

Here, η = 
ఎ೔೔
ଶ

 and Di j is the deviatoric component of 

the rate of dissipation tensor. 

Traditionally, the deviatoric component of the rate of 
dissipation tensor is combined with the pressure 
strain correlation mechanism and the two are 
modeled together (Lumley and Newman, 1977) 

߰௜௝ ൌ ௜௝ܦ ൅ ߰ᇱ
௜௝                                                      (4) 

In flows where the Reynolds number is large 
dissipation can be assumed to be isotropic Di j = 0. In 
most Reynolds Stress Modeling investigations this 
assumption is adopted and it is assumed that the rate 
of dissipation tensor is nearly isotropic. For all 
practical modeling purposes, ψi j is the slow pressure 
strain correlation only. However recent direct 
numerical simulation studies suggest that this 
assumption is inadequate Kim et al. (1987); Lee and 
Reynolds (1985b). For example in near wall 
turbulence this assumption is unsatisfactory Lee and 
Reynolds (1985b). In fact Yeung and Brasseur 
(1991) have proved that if the large scale structures 
in a turbulent flow are anisotropic the small scale 

turbulent motions will have a significant level of 
anisotropy. Due to these arguments the assumption 
of the isotropy of the rate of dissipation is a 
significant shortcoming and causes deficiencies in 
the slow pressure strain correlation model. To 
address the shortcomings due to this assumption we 
introduce the dissipation anisotropy tensor (di j) in the 
modeling basis: 

݀௜௝ ൌ
ఎ೔ೕ
ఎ
െ

ଶ

ଷ
 ௜௝                                                     (5)ߜ

This tensor allows the model to have information 
about the anisotropy in the rate of dissipation 
mechanism and should improve the predictions of 
the models especially in the inhomogeneous flows. 

There is a direct proportionality between anisotropy 
of large scale stress bearing eddies and the 
dissipative eddies at the small scales (Jakirlić and 
Hanjalić 2002). From this assumption, the 
dissipation anisotropy can be modeled in terms of the 
Reynolds stress anisotropy (Warrior et al. 2014). 

݀௜௝ ൌ 2 ௦݂ܾ௜௝                                                             (6) 

The blending function appeared in above equation 
ensures a smooth transition from anisotropic 
turbulence to isotropic turbulence (Jakirlić and 
Hanjalić, 2002). The blending function was defined 
in terms of the second and third invariants of 
Reynolds stress anisotropy as defined in (Warrior et 
al. 2014). 

A considerable amount of information required for 
the closure modeling of the terms in the Reynolds 
Stress Models is contained in the two-point 
correlation tensor,   Ri j(xሬԦ, rԦ) =ui(xሬԦ)uj(xሬԦ+rԦ) . The two-
point correlation contains significant information 
about the dissipation and the pressure strain 
correlation, both of which can be expressed as 
functionals of the two-point correlation. The two-
point correlation also has important information 
about the turbulent length scales. As the two-point 
correlation is non-local it is not used in the single-
point modeling basis. This causes another significant 
shortcoming in classical Reynolds Stress Models that 
is the assumption of a single integral length scale. 
This is markedly true in flows where the geometry of 
the flow domain or body forces lead to a coordinate 
direction in the flow being decidedly preferred. For 
example axisymmetric expansion and axisymmetric 
contraction mean flows. In many anisotropic 
turbulent flows, the characteristic length scale is 
observed to be varying in different directions Panda 
et al. (2017); Tietjens and Prandtl (1934). At the 
most basic level, we must try to include this 
anisotropy in the length scale in the modeling basis 
for the pressure strain correlation. We introduce the 
length scale anisotropy tensor (li j) in the modeling 
basis and derive it as follows. The length scale 
information tensor (Li j) is defined as: 
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A scaling factor l is defined as
௞య/మ

ఎ
. The expression 

for the length scale anisotropy is given by 
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݈௜௝ ൌ
௅೔ೕ
௟
ൌ

ଷ

ସ
ሺܿ∗ଵܾ௜௝ ൅ ܿ∗ଶ݀௜௝ሻ                             (8) 

This derivation can be found in detail in Panda et al. 
(2017). 

2.2   Rapid Pressure Strain Correlation 
Modeling Basis 

Considering the rapid (or linear) pressure strain 
correlation term, we address the level of information 
used to characterize the state of the turbulent flow 
field. One of the key shortcomings in the Reynolds 
Stress Modeling approach to pressure strain 
correlation closures is the use of only the Reynolds 
stress tensor to describe the state of the turbulent 
flow field. This leads to a coarse grained description 
that limits the potential accuracy of the rapid 
pressure strain correlation model. Mishra (2014); 
Mishra and Girimaji (2010, 2013, 2014, 2015) have 
made important insights about the specific 
limitations due to this level of characterization of the 
turbulent flow field. They have shown that turbulent 
flow fields with the same Reynolds stresses can have 
very different internal structuring and lead to very 
different evolution Mishra and Girimaji (2010, 
2013). Using spectral analysis, they have established 
a universal evolution (termed the statistically most 
likely behavior) that is dependent on the mean 
velocity gradient. This behavior was shown to be 
highly dependent on the mean velocity gradient of 
the flow Mishra and Girimaji (2013, 2014). At the 
primary level, including information about the local 
mean velocity gradients may be a good substitute for 
detailed multi-point information about the internal 
structuring of the turbulent flow field. For 
information about the mean velocity gradient, we 
introduce the invariants of the mean velocity gradient 
in the modeling basis. In this paper we restrict 
ourselves to planar mean velocity gradients. Here the 
information about the mean velocity field can be 
included using the ellipticity parameter Mishra 
(2014); Panda and Warrior (2018): 

ߚ ൌ
୛ౣ౤ା୛ౣ౤
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                                             (9) 

2.3   Integration of Additional Tensors Into 
Model Expressions 

To integrate these three tensors into the model 
expression we adopt a practical recourse. For the 
slow pressure strain correlation, the addition of the 
tensors requires that the model expression be 
extended. On experimenting with variants where the 
coefficients of the closure expression were made 
functions of di j and li j, we found the final model to 
not perform well. However the general expression 
for the rapid pressure strain correlation closure is 
retained and the closure coefficients are made 
functions of these three tensors. On experimenting 
with variations (where additional terms involving 
these tensors were included in the model expression) 
we have found that this does not negatively affect the 
performance of the new model. Additionally we 
hope that retaining the established closure expression 
and only changing the nature of the closure 
coefficients will encourage the scientific community 
to incorporate this model into their proprietary codes. 

A most general form of the slow pressure strain 
correlation can be written as: 

߰௜௝
ሺ௦ሻ ൌ ଵܾ௜௝ߚ ൅ ଶሺܾ௜௞ܾ௞௝ߚ െ

ଵ

ଷ
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Fig. 1. Calculated values of the rapid pressure 

strain correlation model coefficients L2,L3 and L4 
as functions of β (Panda and Warrior, 2018). 

Here bi j is the Reynolds stress anisotropy, IIb is the 
second invariant of the Reynolds stress anisotropy 
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tensor. In the most general case, β1 and β2 are 
assumed to be functions of the second and third 
invariants of the Reynolds stress anisotropy tensor. 
The model of Rotta (1951) assumed β1 to be a 
constant and β2 to be zero. Sarkar and Speziale 
(1990) assumed both β1 and β2 to be non-zero 
constants. The slow pressure-strain correlation used 
in this investigation has the model expression 
derived by Panda et al. (2017). This involves the 
most general expression for the slow pressure strain 
correlation in terms of the three tensors bi j,di j and li 

j. 
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The values of the model coefficients have been 
derived in Panda et al. (2017) and are given by 
(c1,c2,c3,c4,c5,c6,c7,c8,c9)=(3.1,1.1,−0.6,−4.3,−15
.8,−7.2,8.4,6.6,9.8). 

Considering the rapid pressure strain correlation, the 
linear form of the model expression is 
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 is the Reynolds stress 

anisotropy tensor, Si j is the rate of strain term for the 
mean velocity field and Wi j is the rate of rotation 
term for the mean velocity field. Following the 
notation of Speziale et al. (1991) C2,C3 and C4 are 
the coefficients of the rapid pressure strain 
correlation model. 

Based on this form of the rapid pressure strain 
correlation, the Reynolds stress anisotropy evolution 
equation is derived from the Reynolds stress 
transport equation at the rapid distortion limit 

ௗ௕೔ೕ
ௗ௧

ൌ 2ܾ௜௝ܾ௠௡S୫୬ ൅ ୨	ଶS୧ܮ ൅  

ଷሺܾ௜௞S୨୩ܮ ൅ ௝ܾ௞S୧୩ െ
ଶ

ଷ
ܾ௠௡S୫୬ߜ௜௝ሻ+ 

ସሺܾ௜௞W୨୩ܮ ൅ ௝ܾ௞W୧୩ሻ                                            (13) 
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ଶ
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ଷ
 , L3 = 
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ଶ

 − 1 and L4 = 
஼ర
ଶ

 − 1. Once 

the form of the rapid pressure strain correlation 
model expression is fixed, the modeling reduces to 
determine the values of the model coefficients C2,C3 
and C4 (or of L2,L3 and L4). To integrate the 
additional tensor in the rapid pressure expression (the 
ellipticity parameter, carrying information about the 
mean velocity gradient) we follow the outline of 
Mishra and Girimaji (2013, 2014). Here the model 
coefficients are made explicit functions of the 
ellipticity parameter. To this end, we use 
representation theory and try to ensure that the 
stationary state of the anisotropy evolution equation 
(Eq. (12)) matches the stationary state of the 
Reynolds stress anisotropy tensor observed in RDT 
simulations Devaney (2008). Using representation 

theory the values of the Reynolds stress anisotropy at 
equilibrium can be expressed as a polynomial 
function in terms of the mean rate of strain and mean 
rate of rotation. Based on Pope Pope (1975); Panda 
and Warrior (2018), the general form of this is given 
by 

ܾ௜௝ ൌ ୨	ଵS୧ܩ ൅ ଶሺܩ	 ௜ܵ௞W୩୨ ൅ ௞ܹ௜S୩୨ሻ ൅	  

ଷሺS୧୩S୩୨ܩ ൅
ሺఉିଵሻ݆݅ߜ

ଷ
ሻ											                                    (14) 

G1,G2 and G3 are scalars that are functions of the 
invariants of flow statistics. This approach can be 
extended to three dimensional mean flow cases 
(Mishra and Girimaji (2015); Panda and Warrior 
(2018)). In this paper, we study two dimensional 
mean flow cases that can be completely described 
using β. Using the polynomial form from Eq. (13), 
and using a Matlab script to calculate values of the 
Reynolds stress anisotropies at the stationary 
equilibrium points (designated by b∗11, b∗22 and b∗12), 
G1,G2 and G3 can be expressed in terms of these 
stationary values of the Reynolds stress anisotropies 

ଵܩ ൌ
௕భభ
∗ ି௕మమ

∗

ඥଶሺଵିఉሻ
           

ଶܩ ൌ െ
௕భమ
∗

ඥఉሺଵିఉሻ
  

ଵܩ ൌ
௕భభ
∗ ା௕మమ

∗

ሺଵିఉሻ/ଷ
                                                           (15) 

At the stationary states for the Reynolds stress 
anisotropy, the evolution equation Eq. (12) 
simplifies to 

2ܾ௜௝
∗ ܾ௠௡

∗ S୫୬ ൅ ୨	ଶS୧ܮ ൅   ଷܮ	

ሺܾ௜௞
∗ S୨୩ ൅ ௝ܾ௞

∗ S୧୩ െ
ଶ

ଷ
ܾ௠௡
∗ S୫୬ߜ௜௝ሻ  

൅ܮସሺܾ௜௞
∗ W୨୩ ൅ ௝ܾ௞

∗ W୧୩ሻ ൌ 0                                    (16) 

Here ܾ௜௝
∗ is the value of the Reynolds stress 

anisotropy at the stationary state. 

Replacing b∗ij in Eq. (15) by the polynomial form 
from Eq. (13), we get a equation for the coefficients 
L2,L3,L4 as functions of G1,G2,G3 

ଶܮ ൌ െ2ሺ1 െ ଵܩሻߚ
ଶ െ ሺ1ߚ4 െ ଶܩሻߚ

ଶ ൅
ሺଵିఉሻమ

ଷ
ଷܩ
ଶ   

ଷܮ  ൌ െሺ1 െ        ଷܩሻߚ

ସܮ ൌ 2ሺ1 െ  ଶ                                                  (17)ܩሻߚ

According to Crow (1968) the value of the C2 (and 
the L2) coefficient should be fixed. This Crow 
Constraint just improves the initial evolution of the 
turbulent flow. In this paper we choose to not follow 
this constraint. Many popular models like the model 
of Speziale et al. (1991) do not follow this constraint. 
Substituting the values of G1,G2 and G3 computed in 
Eq. (14) into the Eq. (16), we get the values of L2,L3 
and L4. The detailed steps of derivation is available 
in Panda and Warrior (2018). 

At this point, we have outlined the additional tensors 
to be added to the modeling basis for the pressure 
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strain correlation and the specific reasons for their 
addition. The slow and rapid pressure strain 
correlation models with these additional tensors have 
been formulated. In the next section we use these two 
model expressions together to simulate the evolution 
of general turbulent flows that are far off the limiting 
states of turbulence. This methodology follows the 
procedure counseled by Speziale et al. (1992), where 
they have warned against testing models of the rapid 
and slow pressure strain correlation in isolation. 
During the test cases, the turbulent kinetic energy (k 

= 
௨೗௨೗തതതതതത

ଶ
	) evolves as 

ௗ௞

ௗ௧
ൌ ܲ െ  (18)                                                               ߟ

The modeled evolution equation for the dissipation 
is 

ௗఎ

ௗ௧
ൌ ఎଵܥ

ఎ

௞
ܲ െ ఎଶܥ

ఎమ

௞
                                               (19) 

The values of the coefficients are taken as Cη1 = 1.44 
and Cη2 = 1.88. 

3. RESULTS AND DISCUSSION 

In this section, the present pressure strain 
correlation model is tested for a wide variety of 
general turbulent flows. We ensure that these flows 
are general in the sense that they are not at the 
limiting states of decaying turbulence or the rapid 
distortion limit. We use the predictions of 
established models by Launder et al. (1975) and 
Speziale et al. (1991) as yard sticks to compare the 
performance of the present model. 

The case of a homogeneous turbulent flow under 
mean plane strain is a benchmark test case for 
turbulence models. This situation happens when the 
fluid flow is acted upon only by load forces that are 
parallel to them. The fluid particle is stretched along 
one directions and squeezed along a perpendicular 
axis. In Fig. 2 the evolution of Reynolds stress 
anisotropy and turbulent kinetic energy is shown for 
plane strain mean flow. The present model 
predictions are shown in a solid line, the SSG and the 
LRR model are shown in dash-dot and dotted lines 
respectively. DNS data from Lee and Reynolds 
(1985a) is shown using unfilled circles in the figure. 
The predictions of the present model for both the 
components of the Reynolds stress anisotropy and 
the evolution of the turbulent kinetic energy show 
agreement with the DNS data. The present model is 
able to show some improvement in comparison to the 
predictions of popular models like those by Launder 
et al. (1975) and Speziale et al. (1991). 

Turbulent flows that are dominated by rotation 
effects are common in many aerospace applications. 
Mean rotation dominated flows include many flows 
of importance in aerospace applications such as 
trailing vortex (Govindaraju and Saffman, 1971), 
flap-edge vortex (Brooks and Marcolini, 1986), 
leading-edge vortex flows, etc. This limitation means 
that these models (and by extension, the en-tire 
Reynolds Stress Modeling approach) may not be 
suitable for application in such important problems. 

It is documented that the LRR and SSG models may 
not give satisfactory performance in many elliptic 
streamline flows. Blaisdell and Shariff (1996) have 
simulated homogeneous turbulence subjected to 
elliptic mean flows: 

డ௎೔
డ௫ೕ

ൌ ൥
0 0 െߛ െ ݁
0 0 0

ߛ െ ݁ 0 0
൩                                   (20) 

 

 
 

 
Fig. 2. Evolution of a) the Reynolds stress 

anisotropy b11 b) turbulent kinetic energy k for 
plane strain mean flow. The predictions of the 
present model are shown by the solid line. SSG 
and LRR model are shown by the dashed and 

dash-dot lines. The data from the direct 
numerical simulation of Lee and Reynolds Lee 

and Reynolds (1985a) is included for 
comparison. 

 

where ݁	 ൌ ටଵିఉ

ଶ
 and ߛ	 ൌ ටఉ

ଶ
 . For e > γ the mean 

flow has elliptic streamlines of aspect ratio E	 ൌ
ඥሺߛ	 ൅ 	݁ሻሺߛ	 െ 	݁ሻ.  We use this data from 3 
simulations with mean flows having aspect ratios 
E=3,2 and 1.5. The turbulent velocity field is initially 
isotropic and the initial 

ఎ

ௌ௞
 = 0.167. 
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Fig. 3. Turbulent kinetic energy evolution for 

elliptic flows a) E=1.5 b) E=2 c) E=3. The present 
model predictions are in the solid line, the SSG 
and the LRR model are shown in dash-dot and 

dotted lines. The data from the direct numerical 
simulation of Blaisdell and Shariff Blaisdell and 

Shariff (1996) is included for comparison. 
 

In Figs. 3 and 4 we use the data from the direct 
numerical simulations of Blaisdell and Shariff 
(1996) in elliptic streamline mean flows. Figure 3 
represents the time evolution of turbulence kinetic 
energy for elliptic mean flow with different values of 
aspect ratio. For case E=1.5 in Fig. 3 (a) the LLR and 
SSG models predict turbulent kinetic energy growth 
but at a rate much lower than the DNS of Blaisdell 

and Shariff (1996). As the relative strength of mean 
rotation effect increases, in Figure 3 (b) and (c), the 
performance of LLR and SSG becomes less 
satisfactory. For the case E=3 the LLR and SSG 
models predict turbulent kinetic energy decay but the 
DNS predicts turbulent kinetic energy growth. For 
all 3 cases the predictions of the present model are in 
agreement with the DNS data qualitatively and 
quantitatively. Unlike LRR and SSG models, the 
present model predicts growth of turbulent kinetic 
energy for all three cases of elliptic streamline mean 
flow. The rate of growth of turbulent kinetic energy 
predicted by the present model is able to show 
quantitative agreement with the DNS data also. 

In Fig. 4, the evolution of Reynolds stress anisotropy 
(b13 component) is shown. For all three values of 
aspect ratio the new model predictions shows 
improvement agreement with the DNS data of 
Blaisdell and Shariff (1996). Testing across a variety 
of elliptic streamline flows seems to suggest that the 
present model is able to show significant 
improvement in predictions of both the Reynolds 
stress anisotropy and the turbulent kinetic energy 
evolution. 

An important feature to test in pressure strain 
correlation models is the interaction and the relative 
accuracy of the slow and rapid pressure strain 
correlation models. This needs to be tested in 
isolation and also in tandem at different values of 
Sk/ε (Mishra, 2010; Mishra et al. 2016). The hurdle 
for such testing is to find a reliable set of data from 
DNS or experimental studies where the only 
parameter that varies is Sk/ε over a large margin. In 
Figs. 5 and 6, we perform a exhaustive validation for 
the case of homogeneous sheared mean flow. This 
flow case is of great importance theoretically and 
from the point of view of the engineering 
applicability of the model. We use the data from 
Isaza and Collins (2009) where the evolution of the 
Reynolds stress anisotropies and the turbulent kinetic 
energy was collected for a range of different shear 
parameter S∗. This is important as it tests the 
performance of the slow and rapid pressure strain 
correlation models when used in conjunction with 
each other. This issue is emphasized in Speziale et 
al. (1992) where the authors comment that testing the 
rapid and slow pressure strain correlation models in 
isolation can lead to unsound and misleading results. 
Testing the complete pressure strain correlation 
model, for a range of in this manner acts as an 
exhaustive test of entire pressure strain correlation 
model as a unit where the rapid and slow models 
work in conjunction with each other. We select three 
specific cases of the shear parameter from Isaza and 
Collins (2009), a) S*= 3 b) S*= 15 c) S*= 27. At S*= 
3, the nonlinear behavior is dominant in the flow 
physics and the performance depends more on the 
accuracy of slow pressure strain model. At S∗ = 27, 
the linear behavior is dominant and the performance 
depends more on the ac-curacy of rapid pressure 
strain model. Finally, At S*= 15, both linear and non-
linear physics are of equal importance in the 
turbulence evolution. This case tests how well the 
entire pressure strain correlation model works as a 
unit. The present model predictions matches well 
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with the DNS data for all three values of the shear 
parameter. There is a significant improvement over 
the predictions of both the LLR and SSG models. 

 

 
 

 
 

 
Fig. 4. Reynolds stress anisotropy b13 evolution 
for elliptic flows a) E=1.5 b) E=2 c) E=3. The 

present model predictions are in the solid line, 
the SSG and the LRR model are shown in dash-

dot and dotted lines. The data from the direct 
numerical simulation of Blaisdell and Shariff 

Blaisdell and Shariff (1996) is included for 
comparison. 

 
 

 
 

 
Fig. 5. Turbulence kinetic evolution for purely 
sheared flows a) S*=3 b) S*=15 c) S*=27. The 

predictions of the present model are shown by 
the solid line, the SSG and the LRR model are 
shown in dash-dot and dotted lines. The data 
from the direct numerical simulation of Isaza 

and Collins Isaza and Collins (2009) is included 
for comparison. 

 

In Fig. 7, the present model prediction of the 
evolution of turbulence kinetic energy is compared 
with the large eddy simulation data of Bardina et al. 
(1983) for purely sheared flows. The predictions of 
the present model are in reasonable agreement with 



J. P. Panda / JAFM, Vol. 13, No. 4, pp. 1167-1178, 2020.  
 

1176 

the LES data and show accuracy at par with the 
models of LLR and SSG. 

 

 
 

 
 

 
Fig. 6. Reynolds stress anisotropy b12 for purely 

sheared flows a) S*=3 b) S*=15 c) S*=27. The 
predictions of the present model are shown by 
the solid line, the SSG and the LRR model are 
shown in dash-dot and dotted lines. The data 
from the direct numerical simulation of Isaza 

and Collins Isaza and Collins (2009) is included 
for comparison. 

 
Fig. 7. Evolution of turbulent kinetic energy for 
the purely sheared flow. The predictions of the 
present model are shown by the solid line. SSG 
and LRR model are shown by the dashed and 

dash-dot lines. The data from the direct 
numerical simulation of Bardina et al. Bardina et 

al. (1983) is included for comparison. 
 

In testing across these flows we find that the present 
model is able to show some improvements in 
accuracy for strain dominated flows like multiple 
examples of homogeneous shear flow Bardina et al. 
(1983); Isaza and Collins (2009) and plane strain 
flow Lee and Reynolds (1985a). For rotation 
dominated flows like those investigated by Blaisdell 
and Shariff (1996) the present model shows much 
improvement over the established models of SSG 
Speziale et al. (1991) and LRR Launder et al. (1975). 

4. CONCLUSIONS 

It is accepted in the turbulence modeling community 
that the pressure strain correlation model is a critical 
component for the success of the Reynolds Stress 
Modeling approach. Pressure strain correlation 
models try to capture the effects of the interaction of 
fluctuating pressure with the fluctuating rate of strain 
tensor. Such models try to express the effects of the 
pressure strain correlation using a tensor basis of 
local tensors like Reynolds stresses, disspation and 
mean velocity gradients. The physics that the 
pressure strain correlation model tries to capture is 
non-local due to the non-local nature of pressure. 
Using a limited set of local tensors to capture this 
physics leads to limitations in model performance. In 
this investigation we extend the tensor basis used for 
pressure strain correlation modeling. This set of 
additional tensors sequentially justified based on 
physics based arguments. We formulate a model 
using this extended modeling basis. The present 
model is tested for a wide variety of turbulent flows 
and contrasted against the predictions of other 
popular models like those by Launder et al. (1975) 
and Speziale et al. (1991). It is shown that the new 
model provides significant improvement in 
predictive accuracy. We are currently testing this 
pressure strain correlation model for inhomogeneous 
turbulent flows where the effects of boundaries and 
walls are important. This article aims to 
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communicate the promising performance of this 
model in homogeneous turbulent flows to the 
turbulence modeling community. 
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