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ABSTRACT 

This work focuses on the performance and validation of some recent Reynolds stress models in compressible 

homogeneous shear flow. The SSG model developed by Speziale Sarkar and Gatski has shown a great 

success in simulating a variety of incompressible complex turbulent flows. On the other hand, it has not 

predicted correctly the compressible turbulence at high speed shear flow.  Thus, a compressibility correction 

for this model is the major aim of this study.  In the present work, two recent compressible models for the 

pressure strain-strain correlation have been used to modify the linear term of the SSG model. These 

modifications make the linear term dependent on a turbulent Mach number. In addition, compressibility 

correction model for the slow part of the pressure strain is proposed. The obtained results are compared with 

DNS results of Sarkar. The results show that important parameters characteristic of compressibility in 

homogeneous turbulent shear flow are well captured by the extended SSG model. 

 

Keywords: Compressible, Turbulence, Pressure-Strain, Models of Turbulence, Shear flow. 

NOMENCLATURE 

Mt turbulent Mach number 

a speed of sound 

Mg gradient Mach number 

t time 

ui velocity in the direction, ix     

p pressure 

K turbulent kinetic energy 

d’ fluctuation of the dilatation 

R specific gas constant 

T temperature 

Cp specific heat at constant pressure 

Cv specific heat at constant volume 

γ specific heat ratio 

εs Solenoidal part of the dissipation 

 

μ viscosity coefficient 

ρ density 

ε dissipation  rate of turbulence 

δij Kronecker delta 

κ thermal conductivity 

εC dilatational part of the dissipation  

bij        Reynolds stress anisotropy 

Rij Reynolds stress intensity 

()’’ Favre fluctuation 

()’ Reynolds fluctuation 

()       standard ensemble mean 

)(
~

       Favre average 

i,()      spatial gradient 

 

 
 

1.  INTRODUCTION 

Several experiments and numerical simulations 

studies have been performed during the last decade 

to understand the compressibility effects on the 

turbulence. Compressible turbulent flows arise in 

many engineering applications related to the 

combustion, environment, spacecraft, and 

hypersonic flight problems. The work recently 

developed by Younis et al. (2009) is one of these 

types of research in which computational and 

analysis of the supersonic turbulent  flow in 

complex configuration are examined. In particular, 

compressible homogeneous shear flow is mainly an 

important motivation for some authors. The reason 

behind that motivation is that compressible 

homogeneous shear flow summarizes some of the 

important of flow compressibility effects in a 

simplified setting in which the complex effects of 

turbulent diffusion are not considered. It has been a 

useful test case for the calibration and testing of 

variety of turbulence models. In this context, many 
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studies of the compressible shear flow show that the 

changes of the turbulence structures are principally 

due to the structural compressibility effects which 

significantly affect the pressure field and then the 

pressure-strain correlation. Eventually, the pressure-

strain correlation appears as the main factor for the 

changes in the magnitude of the Reynolds stress 

anisotropies. The extension of the standard models 

to compressible flows represents a research topic of 

great scientific and industrial interest. A major 

challenge related to this extension is to take into 

account the compressibility effects in the classical 

scheme closures of turbulence. In this context, 

extensive research initiatives in compressible 

modeling have been taken during the last few years. 

It is well concluded that the Favre Reynolds stress 

closure using the standard models of the pressure 

strain correlation with the addition of the 

compressible dissipation and pressure-dilatation 

correlation models failed to predict high 

compressible flows (see Speziale et al. 1995). 

Sarkar (1995) and Fujihiro Hamba (1999) also 

performed DNS results of compressible 

homogeneous shear flow and reached similar 

conclusions concerning the roles of dilatational 

terms. They found out a notable decrease of the 

growth rate of the turbulent kinetic energy when the 

values of the turbulent Mach number increase, the 

reduction of the turbulence levels arising from 

compressibility effects is related to the inhibited 

turbulence production and not the explicit 

dilatational terms. These conclusions are confirmed 

by Vreman et al. (1996) and Pantano et al. (2003) 

in their DNS results which show that 

compressibility terms do not affect the compressible 

mixing layer. In contrast to dilatational effects, the 

structural compressibility effects strongly affect the 

pressure field, so the pressure fluctuations were 

reduced. The consequent effects on the pressure-

strain correlation may cause significant changes on 

turbulence structures. According to the DNS results 

of Sarkar (1995), there is a reduction in the 

magnitude of the Reynolds shear stress anisotropy 

and an increase in the magnitude of the normal 

stress anisotropy. As a consequence, the pressure 

strain modeling seems to be an important issue in 

the second order closures for the compressible 

turbulent flows. 

An extension of the non-linear incompressible 

model of Speziale et al. (1991) to compressible 

shear flows is the major aim of the present work. In 

the present work, two linear models due to 

Adumitroiae et al. (1999) and Park et al. (2005) are 

used to make the linear terms of the SSG model 

dependent on an extra compressibility parameter : 

the turbulent Mach number tM ( 2 /tM K a ), 

where a is the mean speed of sound). The validity 

of the proposed compressibility corrections of the 

SSG model has been tested for four selected cases 

from the DNS results of Sarkar (1995) for 

compressible homogeneous shear flow.  

2. GOVERNING EQUATIONS 

The general equations governing the motion of a 

compressible fluid are the Navier Stokes equations. 

They can be written as follows for mass, 

momentum and energy conservation: 

   0i

i

u
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 
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                                          (1) 

  i i j ij
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ij ij ij σ pδ τ     The Favre averaged equations 
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( )  0i

i

U
t x
 

 
 

 
                                        (4) 

( ) (  )

    (   )

i i j

i

ij ij i j

j j

U U U
t x

u u
x x

 

  

 
 

 

 
   

 

                        (5) 

e

j

  -

                
x

j

j

d v i

e eU
t x

c u T

  

 

 
 

 


  



                          (6) 
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,(  ) ( )e i i ij i j

i i i

p U u T u
x x x

  
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,

2
2

3
ij ij k k ijS U      

, ,( ) / 2ij i j j iS U U   

,d i ip d p u       

The Favre averaged Reynolds stress 

/ij i jR u u   are solutions of the transport 

equation, namely 

( ) ( )

                         

ij m ij ij

m

ij ij ij ij

R U R P
t x

D V

 

 

 
  

 

  

                  (7) 

where the symbols ,   ,   ,   ij ijm ij ijP D    and ijV  

represent turbulent production, turbulent diffusion, 

pressure strain  correlation, turbulent dissipation 

and the mass flux variation respectively. 

, ,ij jm i m im j mP R U R U     

(

)

ijm i j m j im i jm

im j jm i

D u u u p u p u

u u

  

 

          

   
 

, , ,

2
( )

3
ij i j j i ij k k ijp u u p u           
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, ,ij im j m jm i mu u        

, , ,

,            

ij j i i j im m j

jm m i

V p u p u u

u





       


 

Classically, the second order closure suggests to 

determine the dissipation term ij  by using 

isotropic dissipation model: 

2

3
ij ij                                                             (8) 

Recently a concept of the dissipation in 

compressible turbulence was proposed by Sarkar 

(1991), Zeman (1990) as 

s c                                                                (9) 

where, for homogeneous shear flow turbulence 

s i i    , i  is the fluctuating vorticity, and 

' 2

,

4

3
c k ku  . The authors argued that the 

solenoidal part of the dissipation can be modeled by 

using the traditional incompressible equation 

model, namely: 

1 2

3

( ) ( )

     ( )

      ( )

s
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k
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m

km s

k s m

U
t x K

C R U C
x

K
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  
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 


 
 

 


 



 

 

                       (10) 

The compressible dissipation c  is determined by 

the commonalty used models as  

c c sg                                                              (11) 

cg is a function of the turbulent Mach number. 

3.  COMPRESSIBLE TURBULENCE 

MODELS FOR THE PRESSURE STRAIN 

CORRELATION 

Many DNS and experiment results have been 

carried out on compressible turbulent flows, most of 

which show the significant compressibility effects 

on the pressure-strain correlation via the pressure 

field. Such effects induce reduction in the 

magnitude of the anisotropy of the Reynolds shear 

stress and increase in the magnitude of the normal 

stress anisotropy. Consequently, the pressure-strain 

correlation requires a careful modeling in the 

Reynolds stress turbulence model. With respect to 

the incompressible case, many compressible models 

have been developed for the pressure-strain 

correlation. Hereafter, most of all these models are 

generated from a simple extension of its 

incompressible counter-part. In general, they 

perform well in the simulation of important 

turbulent flows evolving with moderate 

compressibility. 

3.1 Model of Adumitroiae et al. (1999) 

Adumitroiae et al. assumed that incompressible 

modeling approach of the pressure-strain can be 

used to develop turbulent models taking into 

account compressibility effects. Considering a non 

zero divergence for the velocity fluctuations called 

the compressibility continuity constraint and using 

different models for the pressure dilatation which is 

proportional to the trace of the pressure-strain, their 

model for the pressure strain is written as follows: 

*

1 1

3 2

4 2

2

4 2
( )
5 5

1
K ( ) 2

3

(1 2 )[  

2
] (1 2 )

3

4
[ ]

3
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j
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ml ml ij

ik jk jk ik kk ij

C b d

S S K
i

C d b S b S

b S K C d

b b d S b



  

 

    

 

  

   

   

                (12) 

where 

, , , ,0.5( ), 0.5( )ij i j j i ij i j j iS U U U U     and 

1
/ 2

3
ij ij ijb R K    

The compressible coefficients 1d  and 2d  are 

determined from some compressible closures for 

the pressure-dilatation correlation (see Adumitroiae 

et al. 1999). 

3.2 Model of Park et al. (2005)  

The authors used the concept of moving 

equilibrium in homogeneous shear flow 

to modify the linear pressure strain term 

part as follows: 

*

1 4( 1.2 ( ))ij s ij tC b B F M    

*

2K ( ( )ij tS B F M    

3
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3

2
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3
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 

 
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where  

2
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2 3
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( ) [1 exp( ( ) )]

2

2

t tF M F M

B B
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
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, ,

, ,
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ij jm m i im m j

P R U R U

D R U R U

 

 

  
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For the function ( )tF M , 4  and  between 1 

and 4 are the suited values by Park et al. One can 

see that, when ( ) 0tF M  , the model like the 

original Launder Reece and Rodi (LRR) model 

(1975) and the coefficients 1 2 3 4,   ,   ,   C B B B  and 

5 B are: 
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2 3

8 8 2
,

11 11

C C
B B

 
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4 5

60 4 6 4
,

55 11

C C
B B

 
   

0 and  0.4C   

4. A PRIORI AN EXTENSION OF THE 

SSG MODEL 

Speziale Sarkar and Gatski (1991) developed a 

model for the pressure-strain correlation namely: 

* *

1 1
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1
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where 
*

1 1 2 3 4,   ,   ,   ,C C C C C  and 5C  are: 

*

1 1 2 33.4,   1.8,   4.2,   0.8C C C C     

4 51.25,   0.4.C C   

ij ijII b b  and , ij i jP R U  . 

The pressure strain *( )ij SSG  can be split in two 

parts: *( )ij lin  is linear of the mean strain and 

Reynolds stress which uses a formulation like that 

of Launder Reece and Rodi (1975). Moreover, the 

non-linear part *( )ij non lin   is quadratic in the 

Reynolds stress. Thus, we can write:  

* * *( ) ( ) ( )ij SSG ij lin ij non lin                              (15) 

where 

*
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 The starting point of the proposed compressibility 

modification of this model is from the several 

analysis and development in which Pope (1994) 

establishes correspondence between some second 

order closure models. Here, we concentrate on the 

modification of *( )ij lin   and we propose to write: 

* * *( ) ( ) ( )comp

ij SSG ij lin ij non lin                              (18) 

Different compressible models can be used for 
*( )comp

ij lin  which is essentially extension of the LRR 

model (1975) using different extra compressibility 

parameters like pressure variance, gradient Mach 

number and turbulent Mach number. Two 

compressible models due to Adumitroiae et al. 

(1999) and Park et al. (2005) are used to express
*( )comp

ij lin . Thus, the SSG model becomes dependent 

on the turbulent Mach turbulent number: 

* * *( ) (( ) ) ( )comp Adumitroiae

ij SSG ij lin ij non lin                   (19) 

* * *( ) (( ) ) ( )comp Park

ij SSG ij lin ij non lin                           (20) 

All the model constants are summarized in Table 1. 

 

Table 1 Compressibility correction of the SSG 

coefficients model of 
comp

linij )( *  

SSGi 

1 3.4C   

3 0.8C   

4 1.25C   

5 0.4C   

 

 

 

 

 

SSGa 

1 3.4C   

3 0.8C   

4 1.25 0.3 tC M   

5 0.4 0.3 tC M   

 

 

 

 

SSGp 

 

                
1 3.4C   

3 10.8C F   

4 21.25C F   

5 30.4C F   

1 2

4 6
(1 ) ,  2(1 )

3 5
                              (21) 

3

2

2( 1)

0.54
(1 exp( (4 ) ))

2
tF M

 



 

  


                         (22) 

The SSGa and SSGp are the modified versions of 

the standard model SSGi by using Adumitroiae et 

al. (1999) and Park et al. (2005) respectively. 
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5. MODELING THE SLOW PART OF 

THE PRESSURE-STRAIN 

CORRELATION  

The slow part of the pressure strain correlation 

describes the return to isotropy behavior of the 

turbulence. This behavior of the flow is observed 

when the mean velocity gradients are removed (see 

Park et al. 2005). Most models like Rotta (1951) 

use linear formulation: 

*

1ijs s ijC b                                                    (23) 

Now the purpose is to investigate compressibility 

effects in this term by modifying the standard 

coefficient 1 C . Using the general formulation 

published by Pope (1994).
ijs  is written as follow: 

0

2
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3

          ( ) ( )
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il lj jl li
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G R G R
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

                                  (24) 

with the tensor G
ij

 given by 

2

1 2 3( )s

ij ij ij ijG b b
K


                                (25) 

where 1 2 3,   ,       and 0C  are model constants. 

Here, a simplification which corresponds to the 

choice of G
ij

 as an isotropic tensor is considered: 

1

s

ij ijG
K


                                                        (26) 

and we obtain 

0 1 1

2 4
( ) 4
3 3

ijs s ij s ijC b                          (27) 

The contraction i j  in this equation leads to: 

0 1/ (2 3 4 )iis sC                                       (28) 
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2( )iis sp d                                                        (29) 
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0 1
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2 2 4

s

s
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
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 
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and the coefficient 1  is given by 

1 0

( ) / 1 3
( )

2 2 4

s

s

p d
C






 
                               (31) 

For incompressible turbulence, ( )sp d   vanishes 

and 1

inc  is given in Pope (1994) as 

1 0

1 3
( )
2 4

inc C                                                 (32) 

Thus we can write 

1 1

( ) /

2

incs

s

p d 
 



 
                                         (33) 

As pointed out in detail in Pope (1994), the class of 

linear Reynolds stress closure for the slow part of 

the pressure strain correlation is used to obtain  

* 12

3
ij ij ij s ijp d A b                                  (34) 

where 1A is a model constant, thus corresponds to 

1

14A                                                               (35) 

Using Eq. (33), we obtain  

1 1

1

1

( ) /
4

2

4

incs

s

inc inc

p d
A A

A







 
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

                                   (36) 

In Pope (1994), the coefficient 1incA  corresponds 

to Rotta model (1951) 

1

1

incA C                                                           (37) 

Thus , we can obtain 

*

1

( ) /
( 2 )

2

s

ij s ij

s

p d
C b


 



 
                           (38) 

In general, according to Sarkar et al. (1991) and 

Ristorcelli (1997), ( )p d
s

   is proportional to 2M
t

 

as 

2( )p d M
s t s

                                              (39) 

and finally, the compressibility modification model 

is proposed, namely : 

* 2

1( )ij t s ijC bM b                                        (40) 

The coefficient b  is a model constant.  

The revised models SSGa and SSGp  using the 

compressibility correction in Eq. (40) are referred to 

SSGac and SSGpc respectively. 

6. SIMULATION OF COMPRESSIBLE 

HOMOGENEOUS SHEAR FLOW 

For homogeneous shear flow, the mean velocity 

gradient is given  

, 1 2i j i jU S                                                       (41) 

where S is the mean shear rate. Thus, the mean 

dilatation is  

, 0i iU                                                                (42) 

cte                                                                 (43) 

The Favre averaged Reynolds stress should be 

solutions of the transport equation 
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* 2 2
( )

3 3
ij ij ij ij ij

d
R P p d

dt
                 (44) 

The Favre averaged turbulent kinetic energy 

/ 2K R
ii

  and its dissipation rate is obtained by 

solving the following transport equations: 

 
d

K P p d
dt

                                         (45) 

1

2

2                   

      

s

s km k

m

s

d
C R U

dt K x

C
K






  









                           (46) 

where 1.4
1

C


  and 1.9
2

C


 . 

The turbulent Mach number is described by the 

transport equation as follow (see Speziale et al. 

1995). 

2(1 0.5 ( 1) )
2

                   ( )
2

t

t t

t

Md
M M

dt K

M
p d P

K

 




  

   

                  (47) 

 where 
,

P R U
ij i j

   is the turbulent production 

and 
p

v

c

c
  . 

7. RESULTS AND DISCUSSION 

The transport Eqs. (44), (45), (46) and (47) on 

which the second order closure for compressible 

homogeneous shear flow is based, are solved using 

the fourth-order accurate Runge-Kutta numerical 

scheme. The calibration of the coefficient b  in Eq. 

(40) based on the DNS results of Sarkar (1995) 

gives 1.6b  and the coefficient 1.5   in Eqs. 

(21) and (22). 

Table 2 Initial conditions for the DNS results of 

Sarkar (1995) of compressible homogeneous shear 

flow 

case 1A  2A  3A  4A  

0tM  
0.4 0.4 

 

0.4 0.4 

0( / )sSK   
1.8 3.6 

 

5.4 10.8 

0gM  
0.22 0.44 

 

0.66 1.32 

11b  
0 0 

 

0 0 

22b
 

0 0 

 

0 0 

12b  
0 0 

 

0 0 

 

Turbulence models for the dilatational part of the 

turbulent dissipation and the correlation pressure-

dilatation are needed. For these terms, we choose 

the models proposed by Sarkar et al. (1991), 

namely: 

20.5c t sM                                                       (48) 

and  

2

2
0.15 ( )

3

            0.2

t ij ij

t s

p d M R K

M

 

 

   



                         (49) 

The ability of the proposed model to predict the 

anisotropy of compressible homogeneous turbulent 

shear flow will now be considered. The model 

predictions will be compared with DNS results 

developed by Sarkar (1995) for cases: A1, A2, A3 

and A4. These cases correspond to different initial 

conditions listed in Table 2. From all of the figures, 

it is clear that the incompressible SSG model (1991) 

referred to SSGi is still unable to predict the 

dramatic changes in the magnitude of the Reynolds-

stress anisotropy that arise from compressibility. 

The proposed extension of the SSG model involves 

the turbulent Mach number. It provides an 

acceptable performance in compressible homo-

geneous shear flow. Figs. 1 to 12 show that the 

present model appears to be able to predict correctly 

the significant decrease in the magnitude of the 

normalized production term 122b  and the increase 

in the magnitude of the streamwise 11b and the 

transverse 22b Reynolds-stress anisotropy. The 

proposed model yields reasonably acceptable 

results that are in good qualitative agreement with 

the DNS results of Sarkar (1995). An acceptable 

improvement of the results especially at high 

gradient Mach number /gM S a  , where   is 

an integral length scale, (see Sarkar 1995) and at 

high turbulent Mach number (cases A3 and A4) can 

be noticed with the use SSGac and SSGpc modified 

models.  

 

 

Fig. 1. Time evolution of the streamwise Reynolds 

stress anisotropy b11 in the case: A 1 
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Fig. 2. Time evolution of the streamwise Reynolds 

stress anisotropy b11 in the case: A 2 

Fig. 3. Time evolution of the streamwise Reynolds 

stress anisotropy b11 in the case: A 3 

 

Fig. 4. Time evolution of the streamwise Reynolds 

stress anisotropy b11 in the case: A 4 

 

Fig. 5. Time evolution of the transverse Reynolds 

stress anisotropy b22 in the case: A 1 

 

Fig. 6. Time evolution of the transverse Reynolds 

stress anisotropy b22 in the case: A 2 

 

Fig. 7. Time evolution of the transverse Reynolds 

stress anisotropy b22 in the case: A3 

 

Fig. 8. Time evolution of the transverse Reynolds 

stress anisotropy b22 in the case: A 4 

 

Fig. 9. Time evolution of the shear Reynolds stress 

anisotropy b12 in the case: A 1 
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Fig. 10. Time evolution of the shear Reynolds stress 

anisotropy b12 in the case: A 2 

 

Fig. 11. Time evolution of the shear Reynolds stress 

anisotropy b12 in the case: A 3 

 

Fig. 12. Time evolution of the shear Reynolds stress 

anisotropy b12 in the case: A 4 

 

Figs. 13, 14, 15 and 16 present the behavior of the 

normalized dissipation 12( / 2 / )s sSK b P   , 

/s SK  for cases: A1, A2, A3 and A4. It can be seen 

that there is a decrease in /s SK  when 0gM   

increases, since the compressibility effects cause 

significant reduction in the Reynolds turbulent 

shear stress 12b  from numerical simulation cases: 

A1 to A4 of the previous DNS results. It is clear that 

the proposed model is in accordance with the DNS 

results. The predicted growth rates of the turbulent 

kinetic energy  , ( ( / ) / )dK dt SK  with and 

without the compressibility corrections SSG model 

are potted in Figs. 17, 18, 19 and 20. It is clearly 

seen that all of the models appear to be able to 

predict accurately the trend of reduced growth rate 

with increasing the initial values of the gradient 

Mach number. This phenomenon has often been 

observed in DNS results of compressible 

homogeneous shear flow. The initial time values of 

  show a systematic increase from cases A1 to A4. 

To find the causes of this discrepancy, an equation 

for   obtained from Eq. (45) to be written as 

follows: 

122 (1 )b                                                     (50) 

where s c p d

SK

 


  
  includes dilatational 

effects. 

  

Fig. 13. Time evolution of the normalized 

dissipation (esk= /s SK ) in the case: A1 

 

Fig. 14. Time evolution of the normalized 

dissipation (esk= /s SK ) in the case: A2 

 

Fig. 15. Time evolution of the normalized 

dissipation (esk= /s SK ) in the case: A3 
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Fig. 16. Time evolution of the normalized 

dissipation (esk= /s SK ) in the case: A4 

 

Fig. 17. Time evolution of the growth rate of the 

turbulent kinetic energy (tau=  ) in the case: A1 

 

Fig. 18. Time evolution of the growth rate of the 

turbulent kinetic energy (tau=  ) in the case: A2 

 

Fig. 19. Time evolution of the growth rate of the 

turbulent kinetic energy (tau=  ) in the case: A3 

 

Fig. 20. Time evolution of the growth rate of the 

turbulent kinetic energy(tau=  ) in the case: A4  

Figs. 9, 10, 11 and 12 show that 122b  seems to 

grow to constant maximum value which is about 

0.38 for initial times ( 4)St   and it shows very 

little differences among the different cases. 

According to the DNS results of Sarkar (1995), it is 

easy to see that the difference of 122b  is much 

smaller than the difference of   for initial times 

among cases A1 to A4. Also, the magnitude of the 

dilatational term: c

d

p d

SK




 
  in case A4 is very 

larger relative to that in case A1. This implies that 

the important increase in magnitude of d  is 

responsible for the increase in the initial time values 

of   with increasing compressibility effects. On 

the contrary, for ( 15)St  , d  becomes 

approximately very smaller and the reduced level of 

production is solely responsible for the reduced 

growth rate of turbulent kinetic energy. 

In all of the figures, it is shown that the 

compressibility corrected models SSGa and SSGp 

yield considerably  different predictions for the 

major structural compressibility parameters 

characteristic of flow. As it is indicated above, 

Adumitroiae et al. and Park et al. developed two 

different models for the pressure strain correlation 

to simulate compressible turbulent flows. In their 

approaches modeling, the part of pressure strain 

responsible to return to isotropy is simply defined 

as in incompressible model of Launder Reece and 

Rodi (1975). However, the remainder part which is 

called the rapid part (predictable in principle by the 

rapid distortion theory) is modified to become 

dependent on a turbulent Mach turbulent. From 

Figs. 1, 2, 3 and 4, one can remark that there is 

substantial differences between the two models 

SSGa and SSGp in their predictions, particularly for 

the anisotropy tensor 11b  for initial times ( 4)St  . 

This disparity in the initial time predictions of the 

models SSGa and SSGp arises from the way in 

which the rapid pressure strain is modeled. Also, 

the differences between the models can be seen in 

Figs. 9, 10, 11 and 12 that show the models 

predictions of the shear stress anisotropy 12b . It 

should be noted that the SSGa model yields a large 
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improvement of the results for low gradient Mach 

number (cases: A1 and A4). The SSGp model shows 

an underestimation of the DNS results at these low 

gradient Mach numbers. Whereas, at high gradient 

Mach number (cases: A3 and A4), the SSGp model 

has better behavior. On the contrary, the SSGa 

model overestimates the DNS results for these 

ranges of gradient Mach number. As mentioned 

earlier, the difference in performance between 

SSGa and SSGp models is probably due to the fact 

that these models are derived by using two different 

approaches with an explicit account of the 

compressibility effects. In fact, the compressibility 

correction model by Adumitroiae et al(1999). is 

based on a procedure of the incompressible 

modeling that does not appear to be suited for high 

speed shear flow. While Park et al. use the concept 

of moving equilibrium in homogeneous turbulent 

shear flow to take into account the compressibility 

effects in the modeling of pressure-strain 

correlation. From the previous results, we can 

conclude that the Reynolds-stress closure using 

compressible SSG model involving the parameter

tM appears to appropriate to intercept coherent 

compressibility effects on homogeneous turbulence 

at high speed shear flows.  

8. CONCLUSION 

In this study, the widely used second order closure 

has been used for the prediction of compressible 

homogeneous turbulent shear flow. The standard 

Reynolds-stress turbulence closure with the 

addition of the pressure-dilatation and compressible 

dissipation models yields very poor predictions of 

the changes in the Reynolds-stress anisotropy 

magnitude. The deficiency of this closure is due to 

the use of the incompressible models of the 

pressure-stress correlation. A new version of the 

extended SSG standard model has been proposed to 

reflect compressibility effects. Application of the 

model to predict compressible homogeneous shear 

flow shows satisfactory agreement with available 

DNS results. This model appears to be able to 

predict accurately the structural compressibility 

effects: the significant decrease in the magnitude of 

the Reynolds shear stress, the increase in the 

magnitude of diagonal components of the 

Reynolds-stress anisotropies and the reduction of 

the growth rate of the turbulent kinetic energy with 

increasing initial values of the gradient Mach 

number at high Mach number. The present model, 

successfully predicts the reduced of the normalized 

dissipation /s SK . Therefore, the extension of the 

SSG model by using the turbulent Mach number is 

found out to be an important issue in the modeling 

of the pressure-strain correlation with respect to 

compressible turbulent flows.  

 

REFERENCES 

Adumitroiae, V., J.R. Ristorcelli and D.B. Taulbee 

(1999). Progress in Favre Reynolds stress 

closures for compressible flows. Phys. Fluids. 

A9, 2696-2719. 

Hamba, F.(1999). Effects of pressure fluctuations 

on turbulence growth compressible 

homogeneous shear flow. Phys. Fluids. 

A11,1623-1625. 

 

Launder, B. E., G.J. Reece and Rodi (1975). 

Progress in the development of  a Reynolds 

stress turbulence closure. J. Fluid Mech. 68, 

537-566. 

 

Pantano. C. and S. Sarkar (2003). A study of 

compressibility effects in the high-speed 

turbulent shear layer using direct simulation. J. 

Fluid Mech. 451, 329-371. 

 

Park, C.H. and S.O. Park (2005). Compressible 

turbulence model for the pressure-strain 

correlation. J. of Turbulence 6(2), 1-24. 

 

Pope, S. B.(1994). On the relation between 

stochastic Lagrangian models of turbulence and 

second moment closures. Phys. Fluids. A2, 

973-985.   

 

Ristorcelli, J.R. (1997). A pseudo-sound constituve 

relationship for the dilatational covariances in 

compressible turbulence : An analytical theory. 

J .Fluid Mech. 347, 37-70. 

 

Rotta, J. (1951). Statische theorie nichthomogener 

turbulenz. Zeitschrift für Physik 129, 547-572.  

 

Sarkar,S., G. Erlebacher, M.Y. Hussaini and H.O. 

Kreiss (1991). The analysis and modeling of 

dilatational terms in compressible turbulence. J. 

Fluid Mech. 227, 473-493. 

 

Sarkar, S. (1995). The stabilizing effects of 

compressibility in turbulent shear flow. J. Fluid 

Mech 282, 163-186. 

 

Speziale, C.G., R. Abid and N.N. Mansour (1995). 

Evaluation of Reynolds stress turbulence 

closures in compressible homogeneous shear 

flow. J. Appl. Math. Phys. 46, 5717-5736. 

 

Speziale,C.G.,S. Sarkar and T.B. Gatski (1991). 

Modeling the pressure-strain correlation of 

turbulence: an invariant dynamical systems 

approach. J. Fluid Mech.227,245-272. 

 

 

 



K. Hechmi et al. / JAFM, Vol. 5, No. 4, pp. 101-111, 2012.  

 

111 

 

Vreman,A.W., N.D. Sandham and K.H. Luo 

(1996). Compressible mixing layer growth rate 

and turbulence characteristics. J. Fluid Mech. 

320, 320-325. 

 

Younis, Y., A. Bibi, A. U. Haque and S. 

Khushnood (2209). Vortical flow topology on 

windward and leeward side of delta wing at 

supersonic speed, Journal of Applied Fluid 

Mechanics 2(4), 13-21. 

 

Zeman, O. (1990). Dilatational dissipation, the 

concept and application in modeling 

compressible mixing layers. Phys. Fluids. A2, 

178-188.  

 


