
 

 

 

 

A Magneto-convection Over a Semi -infinite Porous Plate with 

Heat Generation 

T. Raja
1†, S.Karthikeyan

2
 and B. Senthilnathan

3 

1 Department of Mathematics, Mahendra Engg. College, Namakkal, 637503, India 
2 Department of Mathematics, Erode Arts and Science College, Erode, 638009, India 

3
 Department of Mathematics, Jansons Institute of Technology, Coimbatore, 641659, India 

†Corresponding Author Email: rajaski88@gmail.com 

(Received July 31, 2012; accepted October 17, 2012) 

ABSTRACT 

Convective flow through porous media is a branch of research undergoing rapid growth in fluid mechanics and heat 

transfer. This is quite natural because of its important applications in environmental, geophysical and energy related 

engineering problems. Prominent applications are the utilization of geothermal energy, the control of pollutant spread 

in ground water, the design of nuclear reactors, solar power collectors and the heat transfer associated with the deep 

storage of nuclear waste. The study of heat generation in moving fluids is important in problems dealing with 

chemical reactions and those concerned with dissociating fluids. Heat generation effects may alter the temperature 

distribution and this in turn can affect the particle deposition rate in nuclear reactors, electronic chips and semi 

conductor wafers. Although exact modeling of internal heat generation is quite difficult, some simple mathematical 

models can be used to express its general behaviour for most physical situations. The objective of this work is to 

investigate the effects of internal heat generation on an unsteady two-dimensional magnetohydrodynamic free 

convection flow of a viscous, incompressible fluid free convection flow past a semi-infinite vertical porous plate 

embedded in a porous medium, in the presence of variable suction. The equations of continuity, linear momentum 

and energy, which govern the flow field, are transformed to a system of ordinary differential equations by 

perturbation technique. The resulting equations are solved analytically to obtain the solutions for the velocity and 

temperature fields. The behavior of the velocity, temperature, skin-friction and Nusselt number have been discussed 

for variations in the physical parameters. 
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NOMENCLATURE 

A            suction velocity parameter 

0B           magnetic induction 

fC          skin-friction coefficient 

c
G          solutal Grashof number 

G            thermal Grashof number 

g             acceleration due to gravity 

K            permeability of the porous medium 

k             thermal conductivity 

M           magnetic field parameter 

N            dimensionless material parameter 

rP           Prandtl number 

0Q          heat absorption coefficient 

Rex        local Reynolds number 

T            temperature 

t             dimensionless time 

0U        scale of free stream velocity  

u, v       components of velocities along and                                                                                                                 

              perpendicular to the plate respectively 

 0V         scale of suction velocity. 

           fluid thermal diffusivity 

          coefficient of volumetric thermal expansion 

           dimensionless normal distance 

           dimensionless heat generation coefficient 

          fluid electrical conductivity 

          fluid density 

          fluid dynamic viscosity 

ν           fluid kinematic viscosity 

           friction coefficient 

           dimensionless temperature 
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1. INTRODUCTION 

Natural convection in porous media has gained 

significant attention in recent years due to its diversified 

applications in geophysics and energy related 

engineering problems such as in isothermal reservoirs, 

heat storage beds, aquifers, porous insulation, extraction 

of geothermal energy and grain storage. Magneto-

hydrodynamics (MHD) plays a vital role in agriculture, 

engineering and petroleum industries. The study of 

MHD natural convection flow and heat transfer of an 

electrically conducting fluid in a heated semi-infinite 

vertical porous movable plate finds useful applications 

in many engineering problems such as MHD generator, 

plasma studies, nuclear reactors and the boundary layer 

control in the field of aeronautics and aerodynamics. 

Muthucumaraswamy and Ganesan (1998) have 

presented a finite-difference solution for an unsteady 

flow in an impulsively started vertical plate with heat 

and mass transfer. They reported that there is a rise in 

the velocity due to the presence of a mass diffusion and 

the velocities decreases with in increases of Schmidt 

number leads to a fall in the velocity. Kim (2000) 

studied the unsteady two-dimensional laminar flow of a 

viscous incompressible electrically conducting fluid in 

the vicinity of a semi-infinite vertical porous moving 

plate in the presence of a transverse magnetic field. The 

effect of radiation on MHD steady asymmetric flow of 

an electrically conducting fluid is a stretching porous 

sheet in the presence of radiation is studied by Ouaf 

(2005). Exact solutions for the velocity and temperature 

fields’ effect have been derived. An investigation has 

done to study the effects of variable viscosity and 

thermal conductivity on the unsteady two-dimensional 

laminar flow of a viscous incompressible conducting 

fluid in a semi-infinite porous moving plate taking into 

account the effect of a magnetic field in the presence of 

variable suction by Seddeek and Salama (2007).  

It reframe indicates that the velocity increases with the 

increase in variable viscosity, thermal conductivity, the 

exponential index, Grashof number but it decreases as 

the magnetic field parameter increases. Earlier reports 

shows that do not deal with internal heat generation. 

Chamkha et al. (1998, 1999) have been extensively 

studied about unsteady flow and heat transfer on a 

semi-infinite flat plate. Most of the previous studies 

have not dealt with the internal heat generation. In the 

present work an attempt has been made to extend the 

earlier works of Kim (2000), Seddeek and Salama 

(2007) and Suneetha (2011) by investigating the effects 

of internal heat generation to the unsteady MHD flow in 

a semi-infinite vertical moving plate with variable 

suction. 

2. MATHEMATICAL ANALYSIS 

Consider unsteady two-dimensional flow of a laminar, 

incompressible, viscous, electrically conducting and 

heat-generating fluid past a semi-infinite vertical 

permeable moving plate embedded in a uniform porous 

medium and subjected to a uniform transverse magnetic 

field in the presence of thermal buoyancy effects. 

Continuity: 
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where 
* *

x ,y are dimensional distances along and 

perpendicular to the plate, 
*

t , dimensional time 
* *
,u v , 

components of the dimensional velocities along 
*x and 

*
y directions respectively. ρ  is fluid density, v , 

kinematic viscosity, , the fluid electrical 

conductivity, 0B , Magnetic induction, *K , 

permeability of the porous medium, T  dimensional 

temperature, 0Q , dimensional heat generation 

coefficient,  , the fluid thermal diffusivity, g ,  

gravitational acceleration and  , thermal expansion 

coefficient. 

The boundary conditions for the velocity and 

temperature fields are  

* *

pu u  

* * *( )         0n tT T T T e at y       
(4) 

* ** *

0 (1 )
n t

u U U e    

*
      T T as y    

(5) 

where *

pu  is wall dimensional velocity,T , wall 

dimensional temperature, *U 
, free stream dimensional 

velocity, T , free stream dimensional  temperature, 

0U  and 
*

n are constants. 

It is clear from Eq. (1) that the suction velocity at the 

plate surface is a function of time only. Assuming that 

it takes the following exponential form 

* **

0 (1 )
n t

v V Ae    (6) 

where A  is real positive constant,   and A are small 

less than unity, 0V is scale of suction velocity which  has 

non-zero positive constant. Outside the boundary layer 

of equation: 
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It is convenient to employ the following dimensionless 

variables. 
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Substituting Eq. (7) and Eq. (8) in Eq. (2), we get 

(1 )
u untAe
t
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(9) 

where 
1

N = (M + )
K

. 

Again substituting Eq. (7) and Eq. (8) in Eq. (3) we get 

(1 )ntAe
t

 




 
 

 

2

2

1
  

rP
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


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
 (10) 

where G  is thermal grashof number, rP , Prandtl 

number and  , dimensionless heat generation 

coefficient. 

The dimensionless form of the boundary conditions Eq. 

(4) and Eq. (5) become: 

,    1     0p

ntu U e at       (11) 

,          0    u U as     (12) 

 

2.1 Solution of the Problem 

Equations (10), (11) and (12) represent a set of partial 

differential equations that cannot be solved in closed 

form. However, it can be reduced to a set of ordinary 

differential equations in dimensionless form that can be 

solved analytically. This can be done by representing 

the velocity and temperature as: 

2

0 1( ) ( ) ( ) ..........ntu f e f o        (13) 

and 

2

0 1( ) ( ) ( ) ..........ntg e g o         (14) 

Substituting Eq. (13) in Eq. (9), we get 
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Equating the harmonic and non-harmonic terms and 

neglecting the higher order terms of 
2

0( ) in Eq. (15), 

we get 

1 1 1 0 1
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Substituting Eq. (14) in Eq. (10), we get 
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Equating the harmonic and non-harmonic terms and 

neglecting 
2

0( )  in Eq. (19) we get 

1 1 0 1 1

1 1 1 1 0
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and 

0 0 0

1' ''   0
r

g g g
P
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0 0 0

'' '   0rg P g P gr    

(21) 

First we solve Eq. (21) analytically, 

0 0 0

'' ' 0r rg P g P g   . The solution is 

0

22 11 [ 4 ][ 4 ] 22( )  
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p p pp p p

g Ae Be
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The Boundary conditions are                    

0 1      g at o   and 0 0   g as   . 

Substituting the Boundary conditions in the above 

equation we get 

1

0

m
g e


  (22) 

Next we solve Eq. (20) 

1 1 1 1 0

'' ' '
r r r rg P g nP g P g AP g    . 
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Substituting Eq. (22) in Eq. (20), we get 
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The boundary conditions are 1 1     0g at   and 

0 0   g as   . 

Substituting the boundary conditions in the above 

equation, we get 
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The boundary conditions are 
0     pf U at o  and 

0 1        f as   . 

Substituting the boundary conditions in the above 

equation we get 
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equation, we get 
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Hence, we obtain the solution for the velocity equation 

as  
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and the solution for the temperature  as  

0 1( , ) ( ) ( )
nt

t g e g       

1 3 1

2 2( , )  [(1 ) ]
m m mntt e e A e A e
  

  
  

     

(27) 



T. Raja et al. / JAFM, Vol. 6, No. 4, pp. 589-595, 2013.  

 

593 

 

3. RESULTS AND DISCUSSIONS 

We have formulated and solved the problem of the 

effect of variable suction and heat generation on a 

MHD convective heat transfer past a semi-infinite 

moving plate. Based on these solutions, we have carried 

out numerical computations for the velocity and 

temperature for values of the material parameters. The 

boundary condition y   is approximated by   

y = 6max , which is sufficiently large for the velocity to 

approach the relevant stream velocity.  

Figure 1 illustrates the temperature profiles with 

spanwise co-ordinate y for different Prandtl numbers. 

Here we take 0.1n  , 1t  , 0.2  , 0.5U p  , 

0.5A  , 1.0S   , 2.0Gr  , 0.5K   and 

2.0M  . 

We have plotted the curves for temperature for different 

values of Prandtl number Pr such as Pr = 0.7, 0.1 and 

6.7. Pr = 0.7 corresponds to gases, Pr = 1.0 corresponds 

to air and Pr = 6.7 corresponds to water. Figure1 depicts 

that as the values of Pr increases from 0.7 to 6.7, we can 

find that there is a decrease in the temperature profile 

and hence there is a decrease in thermal boundary layer 

thickness and more uniform temperature distribution 

across the boundary layer. 

 
Fig. 1. Temperature profiles for different Prandtl 

numbers with 0.1n  , 1t  , 0.2  , 0.5U p  , 

0.5A  , 1.0S   , 2.0Gr  0.5K   and 

2.0M   

 

Figure 2 shows the temperature profiles for different 

heat generation parameters with 0.1n  , 1t  , 

0.2  , 0.5U p  , 0.5A  , Pr 0.7 , 2.0Gr  ,

0.5K   and 2.0M  . 

From this figure, we conclude that the temperature 

decreases gradually as the heat generation parameter S 

increases from zero. When S takes 2, we see that the 

temperature is lowest and there is a uniform 

temperature distribution across the boundary layer. This 

result agrees with the natural phenomenon. From Fig. 3. 

we observe that the increasing Prandtl numbers results 

in decreasing velocity. When Pr takes 0.7 (which the 

Prandtl number is for gases), velocity starts from zero 

near to the boundary layer, increases rapidly and attains 

its peak. Then it gradually decreases before attaining 

the free stream velocity. The velocity profiles for 

different Grashof numbers are depicted in Fig. 4 we 

plot the temperature profile for Gr = 1, 5 and 10. We 

observe from this figure that when Grashof number 

increases, velocity attains in peak value and decreases 

suddenly before reaching the free stream velocity. 

 
Fig. 2. Temperature profiles for different heat 

generation parameters with 0.1n  , 1t  , 0.2  , 

0.5U p  , 0.5A  , Pr 0.7 , 2.0Gr  , 0.5K   

and 2.0M   

 

Fig. 3. Velocity profiles for different Prandtl numbers 

with 0.1n  , 1t  , 0.2  , 0.5U p  , 0.5A  , 

1.0S   , 2.0Gr  , 0.5K   and 2.0M   

 

Fig. 4. Velocity profiles for different Grashof  numbers 

0.1n  , 1t  , 0.2  , 0.5U p  , 0.5A  , 

1.0S   , Pr 0.7 , 0.5K  and 2.0M   

We have plotted the curves for velocity profile for 

different values of heat generation parameters S in Fig. 

5. From this, we infer that when S increases from zero, 

the velocity decreases. The velocity is minimum when 

S = 10. Figure 6 plots the velocity profile against the 
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spanwise co-ordinate y for different Hartmann numbers 

M.  

 
Fig. 5. Velocity profiles for different heat generation 

parameters 0.1n  , 1t  , 0.2  , 0.5U p  , 

0.5A  , Pr 0.7 , 2.0Gr  , 0.5K  and 

2.0M   

 

 
Fig. 6. Velocity profiles for different Hartmann 

numbers with 0.1n  , 1t  , 0.2  , 0.5U p  , 

0.5A  , Pr 0.7 , 2.0Gr  , 0.5K  and 0.1S   
 

 
Fig. 7. Velocity profiles for different permeability of 

the porous medium 0.1n  , 1t  , 0.2  , 

0.5U p  , 0.5A  , Pr 0.7 , 2.0Gr  and 

2.0M   
This illustrates that the velocity decreases as the 

existence of magnetic field becomes stronger. This 

conclusion agrees with the fact that the magnetic field 

exerts retarding force on the free- convection flow.       

From Fig. 7, we observe that the velocity increases with 

increase values of the permeability K of the porous 

medium. It is seen that the velocity attains the 

maximum value when K = 1.0 for all the values of K, 

the velocity starts from zero initially and increases 

gradually, attains the corresponding peaks and then 

reduces until the free-stream velocity is attained.  

Physically this result can be achieved when the holds of 

the porous medium are very large so that the resistance 

of the medium may be neglected. 

4. CONCLUSION 

The problem of MHD convective heat transfer past a 

semi-infinite moving plate with variable suction and 

heat generation has been studied. The governing 

equations are developed and transformed into a system 

of ordinary differential equations by perturbation 

technique and are solved analytically. The details of 

velocity and temperature fields are presented for 

various values of parameters of the problem. We 

observe that, when the magnetic parameter increases, 

the velocity decreases whereas when Grashof number 

and the heat generation parameter increases, the 

velocity increases. It is hoped that the present work will 

serve to understand more complex problems involving 

the various physical effects investigated in this 

presentation. 
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