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ABSTRACT

In this paper, the ghost fluithermallattice Boltzmann

methots improvedto properly imposehe heat flux

boundary conditionon complex geometriefKhazaeli, R., S. Mortazaviand M. Ashrafizaadeh(2013).
Application of a ghost fluid approachrfa thermal lattice Boltzmann method, J. Comput. Phys, P56
140]. A doublepopulation thermal lattice Boltzmann method is used to handletheflow and temperature
fields on a Cartesian grid and the boundary conditions are imposed using a goaefhuwd The method is
based on the decomposition of the unknown distribution functions into their equilibrium aedjuibbrium

parts at every ghost point. The equilibrium parts are determined by performing an extrapolation of major

quantities from thémage points to the associated ghost points. The bewsxde scheme is then used to
determine the nerequilibrium parts. The method benefits from somatdres such as eaggplementation
and second order accuracy. The method is applied to simulatalnedmvection within annuluses with

differentshapes and boundary conditiprithe obtained results are generally in a good agreement with those

predicted by other numerical efforts.

Keywords: Ghost fluid approach; Thermal lattice Boltzmann method; Flawg Heat transferHeat flux

boundary conditionComplex geometry

1. INTRODUCTION

In recent years the lattice Boltzmann method
(LBM) (Qian, d'Humiéres andLallemand 1992;
Chen and Doolen1998) has been applied
successfullyas apracticalalternative totraditional
computational fluid dynamics (CFDYhe LBM isa
mesoscopic particle based apprgaaimich solves
the discrete Boltzmann equationto represent
characteristis of flow by tracking evolution of a
single particle distribution The LBM is
straightforward to apply, computationally efficient,
numerically stable, highly accurate and easy for
parallelization.

So far, severalapproachge have been psengd to
impose hydrodynamic boundary conditions for the
LBM. The bouncéback approach(Cornubert,
dHumiéres and Levermore 1991, halfway
bounceback approach  (Ziegler 1993)
hydrodynamic methodNoble, Chen, Georgiadis
and Buckius 1995)nonequilibrium bainceback
method (Zu and He 1997)and the extrapolation
scheme(Chen, Martinez and Mei 199&an be
considered athemore popular methods.

Several thermal lattice Boltzmann methqd@&BM)
have been mseneéd to adequatelysimulate heat
transferphenomenaln general, curreniLBM can

be classified into three tegories: the multispeed
model (McNamara and Alder 1993; Alexander,
Chen and Sterling 1993; Chen, Ohashi and
Akiyama 1994) the passive scalar model
(Bartoloni, Battista and Cabasino 1993; Shan 1997
and themost popular method sagouble population
model. The double populatioapproachpropoed

by Heet al (1998)containsan independent internal
energy distributiorpopulationwhich enhances the
numerical stability. Furthermore the viscous
dissipation term and the compression work done by
pressureare includedn this model. Howeverit is

not easy to apply this methaihcea complicated
gradient operators included As a result various
simplified models have beeimtrodued in which
the effectsof viscous dissipatiorand/or pressure
work in the energy equation have been neglected
(Peng, Shu and Chew 2003; Shi, Zzhao and Guo
2004; Li, He, Wangand Tang 2008. To construct
properthermal boundary conditions for the TLBE,
so far severakreatmersg have beepresenteqTang,
Tao and He 2005;
2004; Liu, Lin, Mai and Lin 2010)
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However, due to some limitations in the standard et al (2006)presented a curved boundary condition
LBM (e.g. the requirement of using uniform for TLBE, which isbasedon the idea of Guet al

orthogonal lattices and a constdime step), it is

(2002). Here the unknown distribution functions

not so easy to implement boundary conditions for associatedwith each wall point are decomposed
complex geometriesSeveral researches have been into their equilibrium and non equilibrium pars.

made (Kao and Yang 2008)o overcome such
difficulties. The work ofFillipova and Hang[1998)
can be considered as the fisstemptin this respect.
They developd amethodfoundedon the bounce
back ruleto impose a naslip boundary conditioon
the curved boundarylLater, Mei et al (1999)
improved this methadGuo et al (2002)introduced
a nonequilibrium  distribution  extrapolation
method A boundary conditionfor LBM was
proposedby Changet al. (2009)to simulate flows
with complex geometrieBased on a reformation
of the populations from thaensity, velocityand the
strain rateVersctaeve and Mille(2010)proposd
a noslip curvedboundarytreatmentfor the LBM.
Yin and Zhang(2012) developeda novelbounce
back boundaryapproachfor moving walls. They
used a midpoint velocity intpolated/extrapolated
from the boundary and related fluid points
velocitiesinstead of the real boundary velocity
obtain the unknown populations

On the other handseveral studies have utidéid the
immersed boundary method (IBNPeskin 19725as
anotherproper techniquéo treatfluid flows within

complex geometries via the LBMFeng and

The equilibrium parts estimatedusing the values
pertained tothe boundary conditionwhile a first
order extrapolation from the fluidoints is used to
determine the noenequilibrium part Their results
show a second order accuracy for the method.
Using feedback forcing schemégonget al (2010)
imposal the curvel boundary condition for both
momentumand energyfields to simulae thermal
flows around bluff bodies. However, thisethod
suffers fromshortcomingssuch as instability and
arbitrarinesdn choosingthe associatecparameters
(He, Chen and Doolen 199&ang and Hassan
2011) Moreover, using the comiex double
population model (He, Chen and Doolen 1998¢
implementation of thisnethodis morecomplicated.
Afterwards, Kang and Hassg@011) utilized the
IBM in dealing with complexhermal flows. They
extendedtheir sharp interface schem@ang and
Hassan 2010Q)which is based ona secondorder
bilinear anda linear interpolationinto two thermal
LB models: a doublpopulation model with a
simplified TLBE and a hybrid model with an
advectiondiffusion equation for thetemperature
field. A boundary condition for the TLB was
developed byLin et al (2012)to simulate natural

Michaelides 2004; Niu, Shu, Chew and Peng 2006
Wu and Shu 2009)In this approachthe effect of
the b o d waéllson the fluid field is enforced by However,thereis a uniquework on the application

*convection vith complex solid objects.

estimatinga local forceterm

As another flexible approado usethe ghost fluid
method (GFM) Tiwari and Vanka (201Ximulatel

the fluid flow within complex geometries. In this

method,after decomposinghe density distribution
function into equilibrium and nonequilibrium
parts the unknown values a&achghost poirt (e.g.
density velocity, and non equilibrium parts) are

estimaed using an extrapolation from the image

nodes within the fluid field.

In general, the GFMvaspropo®d by Fedkivet al
(1999)in dealing withthe multrmedium flows. The

major appealing characteristics of the GFM are its

easy implementationand extension to multi

dimensionsand its preservation of a sharp interface

without smearing. Recently, severatearchebave
beenconductedto develop a appropriateGFM in

dealing with the fluid flow and/or heat transfer

phenomenomwithin complex geometriesJsing the
GFM, Mittal et al. (2007)propose a versatile sharp
interface techniqueto treat the fluid flow with
complex threadimensionabluff bodies.Pan (2010)
developed a GFM thandleboth the fluid flow and
heat transfer phenomenowrer the immersetodies
with complex shape Chaudhuriet al (2011)
implemented the GFM in order tovestigaé the
complex shoclobstacle interactions.

To the best of the
only a few proposed models in the open literatare

treatboth fluid flow and heat transfer phenomenon compared  with

of the LBM for thermal flow problems witlturved
Neumann (heat flux) boundary conditidrRecently,

Li et al (2013) proposé a thermal boundary
condition for the TLBE based orthe bounceéback
approach and interpolation of the distribution
functions for both the Dirichlet and Neumann
conditions.For a curvedboundary, they achieved a
second order accuracy in space for Dieichlet
boundary condition while for theNeumannone
only a first order accuracyas achieved

In this paper,some enhancement dfie previous
work of the authors (Khazaeli, Mortazavi and
Ashrafizaadeh 2013)s providedto simulate the
thermal problems with Neumann boundary
condition on curved boundaries usitige LBM.
This approachs basicallyfounded orinterpolation
extrapolation methodologlpy applying ghost fluid
methodwithout utilizing the forcing concept (unlike
Immersed boundary methpd The method is
generaland secondrder accuree. The paper is
organizedas follows: Section 2 introducése ghost
fluid thermal lattice Boltzmann ethod In Section
2.1, the double population TLBMis described
Section 2.2 addresseke ghost fluidapproachto
handlecomplex geometrieS’he combination of the
ghost fluid method with the LBM and also the
presented hydrodynamic and thermal boundary
conditions aradiscussedn Section 2.3 In Section

ameu t B, varieus heat Hamsier preblgrase simulategitp e

validate the method and the obtainesbults are
other numerical approaches.

using the lattice Boltzmann model on complex Ultimately, a concise conclusion is drawn in
geometriesAs the first study in this respect, Huang Section 4.
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2. THERMAL GHOST FLUID LATTICE and e , the discrete velocity vector is expressed as:
BOLTZMANN METHOD .
TiTT
2.1.Thermal L attice Boltzmann M ethod Q Al @ p“Jc fi Q& p*T¢ @

) ) O¢iICQ w Tt MELQ w“ft Vo
In this study, we used the double population TLBM
that includes two evolution equations for density for

distribution functionf,, and internal energy

T

distribution function, g, , in order to solve the flow "Q phfoft 7

and temperature fields, respectively. The following LhpX &)

equations xpress the approach (Khazaeli,

Mortazavi and Ashrafizaadeh 2013) where ¢ = 1/3R1ﬂ' denotes lattice speedRand T,
f(x+e Bt +) f(xt) = are the gas constant and the reference temperature,
‘ ' e respectively.

a 0 1
a0 o) g =gt
[f C 2 { -
g (x+e Bt +)p g{xt) =
1, " a 1 0 2)
-~ (xt) g (x1) g8 — @ t
L, c 2 A

whereX denotes the spatial coordinate,and Dt

show time and its interval, respectivel@, is the Fig. 1. Lattice links for the D2QO9 lattice
Boltzmann model.

lattice velocity in i" lattice direction, and the _ o

relaxation timesfor the density and the internal The internal energy idefined ag = DRT/2, where

energy functions are shown byt and: |, dimension of simulation is denoted By. Here we
9

. . . . considerd only two-dimensional problems and
respectively. In addition, the discrete forcing term, consequently we s&=2. The weighting

F.. and energy sourceQ,, can be expressed as coefficient for the D2Q9 modés defined as:
follow:

@4/9 i=0
3 e - t u xt
E(X,t):wlggel (L;JZ(X, ) 49% UC(4X )q ﬁF(X't) (3) w :‘: ]/9 i =1,2,3,4 (8)
{1/36 i=506738
Q (x,t) = w Q(x, 1) (4) The solution of Egs. (1) an@) is composed of two

main computational steps known as the collision
In the above relationsF and Q are the forcing ~and the streaming steps and an intermediate
term and energy source densities, respectively. additional step, which is the force/source adding

step. Hence, these equations may be restated as:
The D2Q9 model (Fig. 1) which is the two

dimensional ninevelocity LBE model on a square
lattice is employedhere The density and internal

collision step:

energy equilibrium distribution functions in Egs. (1) 1é fi(x,t) = f (x,t) igf (x,t) £(x.t) |
and (2) can be calculated by: 1 Z,
i
. i 1, . (C)]
“_wrede w2 catPe B 1gi(xt)=g(xt) —ga(x9) g (x.9
e S Yo o
c C c (5)
force/source adding step:
€ &4 500 - A1 .5
7w 5 iz =0 < fII(X,t)Z f (x.t) -!£ — tD
Rii el o e ul w0
14 ) ) g0 T o8 0
SRR PR R LE A PR ((DETTCOR-SCg
T lg C 2 e 20 2 e I (;21‘g -
’|‘ 1 g C c~ =
= T8 5 (e ¥ 0 . “streaming step:
i G =) )msg(‘ij@ 4500 eReT 9T
¢ ¢ “c & CiT & f(x+e Bt +)D fifxt) 1)
|

(6) i g(x+e Bt +t)D gHit)
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The directionspecific distribution functions are where the kinematic viscosityy, and thermal
relaxed towards their quasquilibrium diffusivity, & , are represented as:

distributions during the collision procesand the

lattice particles exchange momentum and energy in 13
the meantime and simultaneously the mass, 'gg-‘
momentum and energy conversation laws are i
satisfied over each node. Then, after experiencing , :Ea 1

1
— tC
2

|-G

7

the effect of the external force and energy source 3¢ 2
terms through the intermediate step, each particlejt js necessary to state that throughout this study,
goes along its related latticenks, and moves the time increment and lattice space are
toward the adjacent points during the streaming oy = ,p 1, and we have set =1. Moreover, no
process. energy source isonsidered in the simulations and

Macroscopic quantities such as the densityfluid hence, the last term in the righand side of Eq. (2)
velocity U, and the internal energg can then be  simply vanishes.

calculated through:

|-G

tl

2.2 GhostFluid Approach

In the present study, ghost fluid thermal lattice
Boltzmann method (GFTLBM) applied in
ru=gef E = (13) (Khazaeli, Mortazavi and Ashrafizagtdl 2013)has
s been adopted.

Fig. 2 illustrates a schematic diagram of the ghost

.. Dt points arrangement, where the computational
reay, *;Q (14) domain is divided into two separate regions: a
' physical domain,w,, and a solid domawv,. The

fluid pointes (FPs) are placed within the physical

1 domain while the ghost point$sPg are located
P==r¢ (15) inside the body pointsgPs) adjacent to the fluid

3 solid demarcation. The practical ghdistid

appro&h consists of two major stefdarst, a list of
ghost points in the whole domain is determined.
This list includes every point inside the solid
domain which has at least one neighbor point inside

r = a f‘ (12)

Also, the pressure is given by:

It is shown that the ChapmdEnskog multi-scale
analysis correctly recovers the following
macroscopic continuity, momentum and energy

ion . . . .
equations the fluid domain. The second step is to obtain all
W variables needed to form the distribution function
E +bru 9 for all ghost points belonging to the list.

£(ru)+ B ou) = PP
it

+uDgre (+ up gr+

(rg+8( ne="@) &

(16)

M
Ht

GP

P

BP

BI

FP & NPy

Omx-e00

(a)
Fig. 2. Schematic illustration of the immersed boundary treatment: (a) regular ghost point
arrangement with for neighboring fluid points; (b) special case of one neighboring point belonging to
solid domain; (c) special case of image point very close to one neighhg point.

The procedure is as follows: nearest boundary segmériten, the image point (

. . . IP) is obtained inside the fluid domain by
1. For each ghost pointdP ) an image pointIP)  \irroring the line with respect to the boundary

should be determined. For this purpose, from eachyqfile (by stretching the line into the fluid domain
GP, the boundary interceptBl ) is defined by  such that the boundary intercept is halfway between
extending a line segment perpendicular to thethe ghost point and the image poif)g. 2a).
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2. The main flow variables at IPs are then
interpolated. There areseveral interpolation
methods In our previous studyKhazaeli, Mortazavi
and Ashrafizaadeh 20)3 the inverse distance
weighting interpolation was used. Howevéere,
we used another interpolation scheme which is
more accurate. dflowing the study oMittal et al
(2008) a hilinear interpolation with the following
form is utilized to estimate the value of a general

variable sayG,, from four nods surrounding the (
NP with k =1...4):

Gy G

where, Xand y are the Cartesian coordinate of the

image point. The four unknown coefficientare
determined in terms of the variable values of the
four surroundingpoints:

{a=[v[11e

G, LTxy €X (18)

(19)

where {G'is the vector including the four
unknown coefficients and[G]'is the vector

containing the variablevalues at the four
surrounding  points. Besides [V] is the
Vandermonde matrix related to the bilinear

interpolationmethodexplainedin Eq. (35) and has
thefollowing form:

exy, X % 1
e
> 1
v =8 %
ey, X Y, 1 17
e
éx4y4 X4 y4 1

In theabove procedure, there are sorass which

need particular consideration, containing cases with

NP i W (Fig. 2b). For the former case,

following the work of Tiwari and Vanka(2012)
these points can be replaced by tioeresponding
boundary intercept poiat However using tlis
method it wasseen that the result for the cases with
heat flux on the curved boundary are not
reasonableBesides, using the interpolation used in
our previous work (Khazaeli, Mortazavi and
Ashrafizaadeh2013) some oscillations near the
curvedboundaryappearfor the cases with heat flux
boundary conditionPerhapghis is due to the fact
that thevalue of image pointss obtained by three
or eventwo pointsfor the former caseThis can
lead toa decreas in the accuracy oéstimatingthe
values at ghost points Consequently, werefer to
utilize the method used by Mittat al (2008) (to
solve a couple system. However,since problems
considered here arall steady statewe used the
variable values of ghost fluidbtained in the last
time step.Another pointhereis thatwe locatedhe
outer planar boundaries at halhy between two
grid lines, for convenienc@&his strategycauses the
IPsto be coincithg with the first gridnodes next to
the outer boundarie§ herefore there is no need to
perform interpolatiorfor estimatng themain flow
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variables atPs. For acornerGP, our treatment i
average over themajor quantities at the two
adjoining GPs (see step 3 in the following) and
associate the values $achGP.

3. Finally, to appropriately enforce the
hydrodynamic or thermal boundary conditions for
the fluid-solid interface, themain flow variables at
eachlP should be extrapolated to thmelated GP.
For a Dirichlet boundary conditionthe following
straightforward second order relatida usel to
extrapolate the variables

GGP 2 BG [13 (20)
Furthermore,the following secongrder central
difference schemés used to employ the Neumann

boundary condition:

éu Gg:GuD - GG
cn &

o( o)

Wwhere (u ¢5 r1) is the gradient of themajor
guantites at the boundarglong theperpendicular
direction, n denotedocal unit outward normal to
theboundary profileand D¢ represert the spatial
distance between th&P and the IP . Therefore
we imposethe heat flux onBls by calculaing the
guantities at th6&Psas follows:

adG
GGP = |Q {%_

cadn

(21)

Q
0

BP

(22)

For the density at th@ Ps however, we have:

r

GP ki

> (23)
2.3.Combination the Thermal L attice
Boltzmann M ethod and theGhost Fluid
Approach

To accurately satisfy boundary conditioimsLBM,
specifying the unknown values at the points
belonging to the solid domain aratljacent tothe
interface is a critical step. The final step is to
compue the density and energy distribution
functions ateachGP by means ofhe data obtained
via the interpolation (as mentioned in the previous
Subsection)To performthis, we adopted the nen
equilibrium bounceback method (Peng, Shu and
Chew 2003)as the boundary condition for both
flow and thermal boundaryconditions. In this
approachwe decompos the unknown distribution
functions into equilibrium and neequilibrium
parts. The equilibrium parts athen estimaed by
Egs. (5) and (6)hrough the values obtainetby
interpolation. However, the nesquilibrium parts
are evaluate by applying the nonrequilibrium
bounceback method as follosv

" (GP,t) = £™(IP, 1)

g™ (GPt) = -g™(IP,1)
+e ) 1™(IP,t)

(24)
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Where ™ =1f -f*, g™=g -¢g*, and ;;=0—u=01v=0

e = -e. Here f™(P) and g™(r) are
calculaed in the same way as for g . In other R

words the norequilibrium distribution functions at =T =T,
any IP are interpolated using those at the neighbor wo [ E L]0
pointsvia the interpolation scheme described above. b A
We mote that in our previous worKKhazaeli,
Mortazavi and Ashrafizaadeh 2018k eliminated
the second part in the right hand side of the second L
equationin Eq. 2L. But, here,it wasfound that it is T
necessary tose the whole relation proposed by He v

et al (1998)in orderto reachmoreaccurateresults. @)
Ultimately, the equilibrium and noequilibrium
parts atachGP are added togeth&s determinethe
density and energy distribution functions

u=0, v=0

(25) s

f, (GP, t) = fleq(GP, t) +fneq( GP l) =T, gi T-T,
0.(GR.{= ¢*(GR ) +¢( oR)

3. RESULTS AND DISCUSSION

L v

3.1. Natural Convection in aHorizontal e w0770
Enclosure with anAdiabatic Circular (b)
Cylinder

T=T..u=0, v=0

In order to reveakhe capability of the proposed
approach, the natural convection affluid in an
annulus at different Rayleigh numbers has been
considered.As can be seen from Fig. 3(a), the
geometry consists of a twdimensional rectangular
enclosure with length and a circular cylinder of
radiusr, which are concentrically placedhe left
wall of cavity is maintained at the high temperature
T,whereas the right one is kept at the low

temperaturd_ . Moreover, the top and bottom walls

of cavity and also the cylinder wall were assumed
adiabatic. Note here that, both cavity and circular
cylinder walls are considered to be stationary.

T=T., u=0, v=0

The aspect ratio between the enclosure #rel
circular cylinder is defined ds=L/2r_and is set
to/ =2.5. Here, we assumed the fluid properties to
be constant, aside from the density in the buoyancy
term, which adopts the Boussinesg approximation.
The externhforce term F in Eq. (3), corresponds

to the buoyancy force, and is evaluated by

F= -+ £T T)g, where g represents the (d)

gravitational acceleration vector acting in the Fig. 3. Schematic of configuration and boundary
negative vertical direction, and is the thermal conditions pertained to the problems under
expansion coefficient al, . The Rayleigh number, consideration.

Ra, and the Prandthumber, Pr, are the main Defining the  characteristic  velocity as

control parameters for this problem and are defined ; - /bg DL, the viscosity, thermal diffusivity

as:
and the relaxation times can be rewritten in the
b(T, -T)P u following forms:
Ra= 224" &) & (T.-T) , Pr = (26)
na ‘ Pr Pr 1
n=,—UL , ¢3,/[—UL +
Ra Ra 2
(27)
2= u.L UL 1

b = =
JRaPr 2. RaPr 2
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Note here that in order to avoid significant which the PCGsolver was employed to solve the
compressibility errors, the value @f, should be Pressure equation and the

; lied to solve the momentum and energy
kept small. Therefore, in the present study we have?PP'® -
P P y v equations.Furthermore, a ddy-fitted unstructured

chosenU, =0.01c for Ra=10" and U, =0.03¢ tetrahedron mesh was employ&or all boundaries,

for Ra=10', whereasU_  =0.1c for Ra=10 the fAfixedValueo wdsowseddary
¢ aside from the temperature boundary condition at

and 10° . Moreover, the working fluid is air with ci rcul ar cylinder, whi ch

Pr =0.7. The proposed GFTLBM is utilized to boundary condition was selectdedgure 4, shows a

treatthe surfaces of both of the square cavity and comparison between the associated flow pattern and

the circular cylinder. A uniform rectangular lattices temperature distribution calculated by GFTLBM

of sizes 100 10C and 150% 150 are used for and he numerical results taken by OpenFOAM, at

Rayleigh number1G’ andl0', respectively. For several Rayleigh numbersRa=10",10 ,10).As

. expected, the contours are in very good agreement
Rayleigh pu_mber]s(f’ and 10, howev.er, & with those obtained by the OpenFOAM software.
200° 200grid is employed. In order to validate our pq can pe seen, there is a good agreement between
results, we utilized the results obtained by the CFDhe resuls of the present method and those
software packag®penFOAM(Open Source Field  computed by the OpenFOAM software. Fig 5

Operation and Meipulation) version 2.1.0  shows thedimensionlessocal temperature profiles
developed bythe OpenFOAM Teanat SGI Corp  around the circular cylinder for different Rayleigh
We useda solver based on the finite volume nmpers.

technique sayjb uoyant BoussinesqSi mpleFoamd 1in

| "\\_\"‘”‘.
)

Ra=16¢

cY (b) @ (b)
Fig. 4. Comparison of (a) isothermals and (b) streamlines at four different Rayleigh numbers for
natural convection phenomenon within a horizontal enclosure with an adiabatic circular cylinder, left:
present study; right: the results taken by OpenFOAM.

3.2.Natural Convection in aConcentric geometry comprises of a twtimensional circular
Horizontal Annulus with an Outer cylinder of radius, which is located concentridgl
Isothermal Square Cylinder and an in rectangular cavity with length. The cavity
Inner I soflux Circular Cylinder walls are maintained at the cold temperatdge

As another example to show the ability of the whereas the cylinder wall is kept at a uniform heat
proposed approagithe natural convection of fluid fluxQ,. Note here that, both cayitand circular

It? an ann%lus (zjatAdlfferent: Raylel?h nl'J:r_nb%rsb h?ﬁcylinder walls are set to be stationary. The aspect
een considered. As can be seen from Fig. 3(b), Gatio between the square and circular cylinders is
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defined a¢ =L/2r and is set td =25. *r
Furthermore, the Boussinesgpproximation is | NN f ‘?.‘;2,‘,2{)“1
followed here again.The dynamic similarity o / .
depends on two dimensionless parameters: the T \
Rayleigh numberRa, and the Prandtl numbepy, 06 "-_
defined as: £ ¥ y
DT 8 zof ‘
b i | ]
Ra=20 = | pr =t (28) 3
na . 04 | W
- L ]
where, DT" =Q, L/ K, where K is conductivity of sk \ 4
. L] o
fluid. Note here that for all simulations we set | L
DT =1. Here the Prandtl number, Pr, was taken S Y U SR R U R B
to be 0.71, and the Rayleigh number varies over the 0 60 i B W » W
rangel0’ ¢ Ra ¢1C°. In Fig 6, the dimensionless Ra=16
local temperature profiles around the circular
cylinder for various Rayleigh numbers are Fig. 5. Comparison of local dimensionless

illustrated. As can be seen, there is a good temperature around the inner circular cylinder
agreement between the results of the present at four different Rayleigh numbers for natural
method and those taken by the OpenFOAM. Here, convection phenomenon within a horizontal
t h éxedbradi ent 0 boundary c¢ o entlosuré vaith an adélsatic cirgulaecglinder.
for the temperature boundary condition at circular
cylindersurface

021
Present
oo = OpenFOAM
- - =
0gh y W Present 0.205 = ]
| p, . " OpenFOAM A
.
L] A
07 a ! = - =\
L d W 4 i w\
. J \ = o2k / \
= 06 " L = 0 /m "\
- / \ H L]
= [ L, |l ( ]
. — [ -
E oS [ " . .
= J . PN .
- ’ ] .
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L o L] " /
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018 Table 1Comparison ofNu,, for the natural

Present convection in annulus
" . OpenFOAM

n1s - A4 Ra Nu

avg

0.14 -

oA
! Present work OpenFOAM

N 108 5.015 5.039

J \ 100 5.029 5.048
\ 106 5.635 5.663
- . 100 9.206 9.253

01 - -

(T-Ty) /AT"

012

Due to the buoyancy force, the trapped working
L T e v Tra— fluid undergoes two free circulatioriBurning to the
8 isotherms, it is observed that these contours are also
Ra=1G¢ perfectly symmetric, regardless of the value of the
Rayleigh number.Furthermore, the plots suggest
Fig. 6. Comparison of local dimensionless that at low Rayleigh numbers heat transfer is mainly
temperature around the inner circular cylinder dominated by conductiors the Rayleigh number
at four different Rayleigh numbers for natural approaches higher values, the role of convection in
convection phenomenon within an annulus heat transfer becomes more significant. The
comprised of a circular cylinder in a square circulation of the flow grows more and the stagnant
enclosure. area increases at the bottom of the cylinder.
Consequently the thermal boundary layer on the
surface of the cylinder becomes thinner and a plume
forms on the top of the cylinder. At a Rayleigh

number as high d€°, strong convective flow
causes the separation of the boundary layer and as a
result, tiny symmetric vortices appear near the
bottom wall of the enclosure. As expected, the
contours are in very good agreement with those
taken by the OpenFOAM softwar&he Nusselt
number is an important parameter, which is used to
estimate the rate of heat transfer in thermal
phenomenon.

In Fig. 7, we compare the assated flow pattern
and temperature distribution obtained by GFTLBM
and the CFEbased numerical results, at several
Rayleigh numbers Ra=10", 10°,10¢). Inclusively
going through the plots, it can be observed that
regarding the streamlines, the flow is generally

symmetrical about the vertical centerline crossing
the middle of the configuration

Ra=10¢

Ra=1@

Ra=1@¢
@ () (@ (b)

Fig. 7. Comparison of (a) isothermals and (b) streamlines at four different Rayleigh numbers for
natural convection phenomenon within an annulus comprised of a circular cylinder in a square
enclosure, left: present study; right: the results taken by OpenFOAM.
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critical contributions in transport charadsgics of

Here, the average Nusselt number is calculated a&his phenomenon

the circular cylinder surface via:
X 3.3.Natural Convection in aConcentric
Ny = DI o 1 d (29) Horizontal Annulus with an Outer
Isothermal Circular Cylinder and an

U =—o
% 01031 Inner Isoflux Circular Cylind
A comparison between our results Kuw__, and nner isofiux Lircular Lylinder

ave !

those taken by the OpenFOAddftware for various [N order to further demonstrate ability of the
Rayleigh numbers has been shown in Table 1. Apresented thermal boundary conditioanother
good agreement is revealed, which shows thehatural convection problem was testédschematic
accuracy of the present curved boundary treatmentOf this problem is sketched in Fig. 3 (c).

It is also visible that the Rayleigh number has

Ra=10’

Ra=5 310

@ (b) @ (b)

Fig. 8. Comparison of (a) isothermals and (b) streamlines at four different Rayleigh numbers
for natural convection phenomenon within a horizontal concentric cylindrical annuli, left:
present study; right: Renet al

As can be seerthe configuration consists of tWwo gnq r =40forRa=5.7 216, 5 30. Also a

ncentric circular cylinders with inner radi f . S .
concentric circular cylinders wit er radius g uniform rectangular grid with size2.5r, is used for

all cases. Fig. 8 presents the isotherms and
kept at a constant low temperatureTof while the streamlines pertained to the cage=2 and for

inner cylinder wall is maintained at a uniform heat Pr =0.7andRa=10*,5.7 310 ,5 310. The results
flux Q, . The aspect ratio between the outer circular given by Ren et al (2013) are also included for
comparison.They utilized the secondrder finite
) . . difference scheme to discretize the spatial
and is set td =2. Besides, the characteristic gerivatives. Besides, an implicit direfcrcing 1BM
lengthL is defined as the gap between inner andwas used to handle curved boundary conditions.
outer cylinder. Moreover, the Boussinesq Considering the streamlingsjs clear thathe flow
approximation is adopted here again, and theis generally symmetric about the vertical centerline.
Rayleigh number varies in the range of Due to the buoyancy force, the fluid undergoes two
10’ ¢ Ra ¢5 2d. Note that, both cylinderslo free circulations.From the plots, it is found that
not have any motion. We set=30 for Ra=10° according to the isotherms, these contours are also
' completely symmetridaregardless of the value of

and outer radius df . The outer cylinder wall is

cylinder and the inner one is defined as=r, /r,
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