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ABSTRACT 

Application of acoustic waves in cell manipulation and cell separation is very usual these days but considering 

that the acoustic force can cause what kind of changes in cell shape, is a question right now. Under the influence 

of the ultrasound field in specific circumstances, cell deformation can occur. In order to model this deformation, 

elastic and shell models are usually used for simulation. In the current study, we present a numerical procedure 

to investigate the cell deformation based on the viscoelastic model while the cell is exposed to a bulk acoustic 

wave. Second-order acoustic pressure in the resonance frequency of 8 MHz is applied to cell boundary as an 

acoustic force and cell deformation is determined by solving the fluid-solid interaction (FSI) physics. Results 

show that the viscoelastic model predicts the cell deformation closer to experimental data relative to the elastic 

deformation model. Kelvin, Maxwell and SLS models are used to approximate a viscoelastic behavior. The 

present study shows that the Kelvin viscoelastic model is more compatible with experimental data compared 

with previous elastic and other viscoelastic models. By applying the Kelvin model, the root mean square error 

(RMSE) is obtained about 0.064 at 980kpa pressure amplitude. The effect of stiffness on aspect ratio is also 

investigated and it’s observed that the cell deformation decreases gradually by increasing Young’s modulus. 

Results also show that in the cases with stiffness up to the 600 pa in Young’s modulus, there’s a sharp drop in 

cell deformation. 

Keywords: Acoustic force; FSI; Elastic model; Viscoelastic model; SLS model; Maxwell model, Kelvin model. 

NOMENCLATURE 

Cf speed of sound in fluid  

C speed of sound in solid 

E Young’s modulus 

Ee Young’s modulus of the extra branch 

F acoustic force 

f frequency 

H domain height of rigid cylinder channel 

h distance between the particle and wall  

k wave number 

L domain width 

n normal unit vector 

P total pressure 

Pamp acoustic pressure amplitude 

R radius of cell/particle 

S particle/cell surface 

t time 

V acoustic velocity 

W domain height 

ε strain 

η cell viscosity 

λ wavelength 

µ dynamic viscosity of fluid 

ν Poisson ratio 

ρ density of fluid 

ρp density of cell/particle 

σ stress 

τ relaxation time 

1. INTRODUCTION

In recent years, there has been an interest in using 

acoustofluidic systems for mechanical manipulation 

of biological cells. When a standing wave is 

established in a fluid containing suspended particles 

or cells, these cells under the influence of acoustic 

waves are subjected to time average forces. 

Generally, this force can be used to control the 

trajectory of micro-size particles and cells and in 

some cases, it can cause deformation in biological 

cells and flexible particles. 

http://www.jafmonline.net/
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Radiation acoustic force first considered by King 

(1934), who calculated the radiation force on the 

incompressible particle. Then, Yosioka and 

Kawasima (1955), extended his analysis and 

considered the compressibility of a particle in an 

inviscid fluid. Gor’Kov (1962), presented a simple 

solution for particles much smaller than the acoustic 

wavelength. Another useful investigation was about 

the effect of viscosity in determining acoustic 

radiation force. Doinikov (1996), showed that 

viscosity only affects the forces exerted on small 

particles. Muller et al. (2012), demonstrated that 

drag force from acoustic streaming isn’t significant 

compared with acoustic radiation force for particles 

larger than 0.05 of the wavelength. Besides, in the 

case of two close particles, there is another acoustic 

force due to the particle interaction in the acoustic 

field. Recently, Mohapatra et al. (2018) and Saeidi et 

al. (2019) studied this phenomenon in the pressure 

nodal line and outside of pressure nodal line 

experimentally, respectively. Their results show that 

particle interaction force is not negligible while two 

or more particles are in the close proximity of each 

other. Another study, also shows this force between 

biological cells and silica particle as well, Saeidi et 

al. (2020).  

On the other hand, cellular function and its 

dependency on mechanical properties have been 

studied widely. Stiffness is an important factor to 

determine cell behavior and it can be changed by 

disease or external effects (Oberti et al., 2007). For 

instance, a healthy blood cell is softer than a malaria 

blood cell (Li and Liu, 2008). Cell membrane 

stiffness is measured by some tools like atomic force 

microscopy and optical tweezers. In the first method, 

optical tweezer traps a single cell using a laser beam 

to generate force and finally, the cell is stretched 

tightly along the beam axis and by using this 

mechanism, the stiffness can be evaluated (Sleep et 

al., 1999). In the second method, by using the atomic 

force microscopy and a sharp probe, the force is 

applied to a single cell to estimates the stiffness 

(Mitri and Fellah, 2007). Force measurement of soft 

samples, is affected considerably by viscosity. Cell 

viscosity plays a key role in some cases and it can be 

used to consider a viscous contribution in cell 

deformation measurement. Hertz’s model (Hertz, 

1882) has already used for this problem. Zeng et al. 

(2007), demonstrated that viscosity affects the elastic 

response of samples and a viscoelastic model can 

solve this matter. 

In past years, some studies have investigated the 

deformation of bubbles and water droplets in sound 

fields. Marston (1980) reported a formulation for 

determining droplet shape under acoustic waves. He 

presented a method to calculate acoustic stress on the 

droplet surface. Cell and particle deformation has 

been also presented recently. An experimental study 

was carried out by Mishra et al. (2014). They 

observed the swollen red blood cell deformation in 

the acoustic field and compared that with the 

numerical investigation. To achieve that, they used a 

finite element method to simulate an elastic cell 

deformation. Their acoustic device was based on the 

glass capillary in which cells were levitated and 

deformed. The ultrasonic wave was excited by a PZT 

and acoustic pressure difference of the outer and 

inner layer of the cell caused the deformation. They 

presented the aspect ratio of the deformed cell in the 

range of acoustic pressure from 12.9 kPa to 978 kPa. 

Wijaya et al. (2016), investigated red blood cell 

stiffness in the acoustic field by both numerical and 

experimental methods. They obtained Young’s 

modulus by considering a coupled acoustic-shell 

model and variation of cell volume in the sound field. 

In this paper, we numerically simulate viscoelastic 

cell deformation and compare its results with 

experimental data of Mishra et al. (2014). Similar to 

their study, we have chosen a red blood cell as a 

biological part of the modeling. At first, we 

investigate cell deformation by considering an elastic 

model. Afterward, we develop a similar approach to 

a viscoelastic cell and apply an acoustic radiation 

force to the Kelvin, Maxwell and SLS models and 

compare their results with elastic model and 

experimental data.  

2. GOVERNING EQUATIONS 

2.1 Wave Equation 

The first step of finding acoustic force on a cell is 

calculating the acoustic pressure field. A 

combination of perturbation theory and Navier-

Stokes equation leads to find a pressure field in the 

fluid domain which is exerted to the cell boundary. 

By assuming that the fluid characteristics like 

pressure, density and velocity can be divided into 

three different terms including stationary, first-order 

and second-order terms, we have (Settnes and Bruus, 

2012):   

0 1 2P P P P                                                             (1) 

0 1 2                                                                (2) 

0 1 2V V V V                                                               (3) 

In these equations, P, ρ, and V are pressure, density, 

and velocity of the fluid, respectively. Subscript 0 

also represents the fluid characteristics in the absence 

of the acoustic field. By considering a sound wave, 

the first and second-order terms are added to 

equations (subscript 1 and 2, respectively). 

Substituting Eq. (1) into the Navier-Stokes equation 

and considering first-order approximation leads to 

Helmholtz equation for the first order acoustic 

pressure (Settnes and Bruus, 2012): 

2 2
1 12

1
t

f

P P
C

                                                      (4) 

where Cf is the speed of the wave in fluid. Based on 

the harmonic wave, time-averaged of first-order 

acoustic terms are zero while the time-averaged of 

second-order acoustic terms are non-zero. For an 

inviscid fluid, the second-order acoustic pressure is 

obtained by (Settnes and Bruus, 2012): 

2 2
2 1 12

1 1

22
P P V

C



                                      (5) 
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where < > denotes the time average operator and P2 

is the second-order pressure. The time-averaged 

acoustic force has been called radiation force and 

that is given by: 

( )

2( )

S t

F P n ds                                               (6) 

here n is the surface normal unit vector and S(t) is a 

moving particle surface. It is difficult to solve this 

integration over the particle boundary due to the 

surface movement and deformation (Yosioka and 

Kawasima, 1955). By implementing second-order 

acoustic pressure and using a Reynolds transport 

theorem in Eq. (6), acoustic radiation force is 

obtained over the equilibrium particle surface, S(0):  

-

(0) (0)

2 0 1 1( . )

S S

F P nds n V V ds                       (7)   

To investigate the cell deformation, we apply 

acoustic radiation force to elastic and viscoelastic 

solid models in different acoustic fields and solve a 

Fluid Structure Interaction (FSI) physics by adopting 

a finite element in COMSOL software. 

2.2 Equations of Solid Mechanic 

In this study, we have investigated the cell 

deformation by considering the cell as an elastic and 

viscoelastic material. For elastic materials, the 

correlation between stress and strain is given by: 

E                                                                      (8) 

where σ and ε are the stress and strain, respectively. 

E refers to Young’s modulus which represents an 

elasticity. By applying an external load, the elastic 

materials deform instantaneously and return to their 

original shape instantly when the load is removed. 

For this group of materials, the effect of time isn’t 

significant.  

On the other hand, for viscoelastic materials, the 

concept of time is mainly important. They also return 

to their original shape after the load will be removed, 

but the viscous component takes time to do 

(Radmacher, 1997). Viscoelasticity is made up of 

viscosity and elasticity and possess both behaviors. 

Generally, biological cells belong to this category of 

material (Vincent, 2012). Any arbitrary linear 

viscoelastic behavior can be modeled utilizing 

networks of springs and dashpots arranged in series 

or parallel (Kollmannsberger and Fabry, 2011). The 

spring constant and dashpot damping are analogous 

to Young’s modulus and viscosity, respectively. 

Spring is used to take elastic solid behavior into 

account and dashpots are used to describe the viscous 

fluid behavior (Haase and Pelling, 2015). Most 

important viscoelastic models are explained below: 

2.2.1   Kelvin Model 

The simplest form of a viscoelastic model is obtained 

by the parallel connecting of a spring and a dashpot 

(Fig. 1(a)). In this method, total stress divided into 

two parts which are applied to spring and the dashpot 

while the strain magnitudes are equal. The 

differential equation which is describing the Kelvin 

model is (Fung and Tong, 2001): 

E  


                                                            (9) 

where η is the particle viscosity and  


=dε/dt is the 

strain rate. Final expression for strain is given by 

(Lopez-Guerra and Solares, 2014): 

( )
0( ) (1 )

E
t

t e
E






                                                (10) 

where σ0 is a constant stress at time equal to 0. 

2.2.2   Maxwell Model 

The Maxwell model involves the same elements 

(spring and dashpot), but they are arranged in a 

series way. In contrast of the Kelvin model, the 

Maxwell model considers equal stress to spring and 

dashpot while the strain is shared between them 

(Iversen, 2015). This model is illustrated in Fig. 

1(b). Maxwell model can be described by the 

differential equation: 

E E  
 

                                                        (11) 

where  =dσ/dt is the stress rate. The strain is 

obtained by (Machiraju et al., 2006): 

0( ) (1 )
E

t t
E





                                                     (12) 

2.2.3   Standard Linear Solid Model (SLS) 

SLS model is a combination of a spring and Kelvin 

element in series. After loading, the left-hand 

component (Fig.1 (c)), stretches immediately and 

due to the Kelvin unit, the stress transfers slowly in 

the second spring (Chester, 2012). The differential 

equation describing the SLS model is:  

( )e eE E EE E   
  

                                (13) 

If we consider τ=η/E as a relaxation time, the strain 

response after time τ is given by: 

( ) ( )
0( ) ( 1)

e eE E
t

e

t e e
E


 


 

                                    (14) 

where Ee is the stiffness of extra branch (Chester, 

2012).  

 

   

a b c 

Fig. 1. Viscoelastic models base on the spring and 

damper connection a) Kelvin b) Maxwell c) SLS 

(Iversen, 2015). 
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3. NUMERICAL MODELING 

The 2D model is implemented in a COMSOL 

commercial multi-physics package (version 5.2). To 

investigate the cell deformation in an acoustic field, 

we place a cell in the middle of the rectangular 

channel while it is exposed to an acoustic wave. The 

finite element method is constructed in pressure 

acoustic physics of COMSOL which can be used to 

obtain the first-order acoustic pressure distribution. 

Second-order acoustic pressure can be also 

calculated by Eq. (5) and applied to FSI physics of 

COMSOL, to approximate the cell deformation. 2D 

acoustic standing wave propagates in the rectangular 

domain with dimensions 1000 µm × 500 µm. A red 

blood cell is located in the center of the channel while 

the diameter of the cell is 6.2 µm. We study the cell 

deformation in the excitation frequency of 8 MHz 

while the boundary condition for the upper and the 

bottom walls are considered as a sound-hard wall 

perpendicular to wave propagation direction. The 

computational domain is limited by a matched 

boundaries in both walls in wave propagation 

direction and background-pressure-field generates 

the standing wave with P1=Pampcos(kx). The 

geometry and boundary conditions are depicted in 

Fig. 2. Material properties, acoustic field conditions, 

and dimensions are given in Table 1. 

 

 
Fig. 2. Geometry and boundary condition of the 

computational domain. 

 
 

Table 1 List of parameters 

 Value  Value 

C 1000 (m/s) f 8 (MHz) 

E 629 (Pa) λ 125 (µm) 

ν 0.499 ampP 980 (kPa) 

pρ 1139 (kg/m^3) K 50265(1/m) 

ρ 1000 (kg/m^3) R 3.1(µm) 

pC 1680 (m/s) L 1000 (µm) 

µ 0.001 (Pa.s) W 500 (µm) 

eE 251.6 (Pa) τ 0.0001 (s) 

 

 

3.1 Mesh Independence 

The fluid domain and cell are meshed as depicted in 

Fig. 3(a). Mesh elements are finer close to the cell 

and coarser at the surrounding fluid. In the absence 

of an acoustic field, the cell has a circular shape and 

afterward, by applying the sound wave, the cell 

transforms into an oval shape. Cell deformation has 

been studied by considering the aspect ratio of the 

cell which is the ratio of large diameter to the small 

diameter of the oval. Figure 3(b), shows aspect ratio 

in a different number of grid elements. It’s clear that 

for the mesh elements more than 4000, as the number 

of elements is increased, the aspect ratio is nearly 

constant. Based on that we have chosen 4210 grid 

elements in our study.  

 

 
a 

 
b        

 
Fig. 3(a). Grid Elements of cell domain and 

surrounding fluid (b). Grid study for aspect 

ratio. 
 

4. RESULTS 

In this section, first, we discuss first and second-

order pressure field and based on that we evaluate the 

acoustic force acting on the cell surface and finally 

we show cell deformation due to acoustic force and 

compare that with experimental data. 

4.1   First and Second Order Pressure   

Figure 4(a) shows the first order acoustic pressure 

(P1) contour which is obtained by Helmholtz 

equation. Figure 4(b) is a distribution of second order 

acoustic pressure field (P2) which is applied to the 

cell boundary. Pressure variation in x, wave 

propagation direction and y, perpendicular to the 

wave propagation direction, is also depicted in Fig. 

5(a) and Fig.5 (b). As it is shown in Fig. 5(a), the 

pressure gradient is higher in the center of the 

channel, so we expect more cell deformation in this 

area.  
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(a)  

 

(b)  
Fig. 4. First and second order acoustic pressure (a) First order acoustic pressure contour (P1). (b) 

Second order acoustic pressure (P2). 
 

 

 
(a)  

(b) 
Fig. 5(a). P2 variation in the x direction, line BBˈ 

(b). P2 variation in the y direction line AA. 

ˈ 

 

4.2   Force on a Rigid Cylinder 

In order to verify the magnitude of the acoustic force, 

we compare our results with the investigation of 

Wang and Dual (2009). They presented a finite 

volume (FVM) solution to obtain an acoustic force. 

Table 2, shows the acoustic force on a rigid cylinder 

for different cylinder sizes and our results are 

compared with their values. Their domain is depicted 

in Fig. 6 and it has the same condition of Wang and 

Dual (2009) domain. A set of parameters is taken 

from their tables and readers can see details of Wang 

and Dual (2009). In Table 2, R and h are the particle 

radius and horizontal distance between the particle 

and wall. H and L denote the dimensions of a 

rectangular domain. In the worst-case scenario the 

force difference between Wang and Dual (2009) 

modeling and presented study is about 0.8% which 

shows the accuracy of the current model.   

 
Fig. 6. Boundary condition and dimensions of the 

rigid cylinder study. 

 
 

4.3   Cell Deformation  

Elastic modeling: By applying the second-order 

acoustic pressure (P2) to the cell surface in FSI 

physics of COMSOL, the equators of the cell move 

inward while its poles move outward in the wave 

propagation direction. The amount of deformation is 

estimated by aspect ratio. Results are compared with 

the experimental and theoretical study of Mishra et --
al. (2014). They investigated red blood cell 

deformation in pressure between 12.9 kPa-980 kPa 

by both experimental and numerical methods. They 

studied a red blood cell when it was located inside of 

a glass capillary tube and exposed to the high-

frequency acoustic wave (Mishra et al., 2014). 

Figure 7(a), shows their experimental setup. A red 

blood cell deformation is also shown in different 

acoustic pressure amplitude in Fig. 7(b). We 

compare our results with both experimental and 

numerical achievement of Mishra et al. (2014). The 

parameters like frequency, Young’s modulus, and 

Poisson’s ratio, are chosen the same as Mishra et al. 

(2014) study. At first, we compare the cell  
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Table 2 Acoustic force on a rigid cylinder (Wang and Dual, 2007) 

𝐹𝑤𝑎𝑛𝑔(N/m) 𝐹𝑝𝑟𝑒𝑠𝑠𝑒𝑛𝑡 𝑠𝑡𝑢𝑑𝑦(N/m) h(μm) H(μm) L(μm) R(μm) 

7.260E-07 7.320E-07 53.6 14.3 143 0.715 

3.053E-06 3.065E-06 53.6 14.3 143 1.43 

1.257E-05 1.267E-05 53.6 28.6 143 2.86 

6.452E-05 6.447E-05 53.6 28.6 143 5.72 

2.287E-04 2.300E-04 53.6 71.5 143 11.44 

 

 

deformation by using an elastic model with 

numerical and experimental data of Mishra et al. 

(2014), and results show good agreement especially 

in higher pressure amplitudes (Fig. 8). It can be 

observed that the aspect ratio increases gradually by 

increasing the pressure amplitude. As shown in Fig. 

8, the results of the present study follow the 

experimental results of Mishra et al. (2014), better 

than numerical data, which is reported by them. 

 

a   

 
b 

 
Fig. 7(a). Experimental setup of Mishra et al. 

(2014) (b). red blood cell after the deformation in 

acoustic field. 

 
Fig. 8. Comparison of aspect ratio of elastic red 

blood cell in different square of pressure. 

 

Viscoelastic modeling: Although Mishra et al. 

(2014), just considered an elastic model in their 

study, here we also investigate the viscoelastic 

model to simulate the cell deformation. Three 

different viscoelastic models, Kelvin, Maxwell, 

and SLS are considered, and their results are 

compared with experimental data of Mishra et al. 

(2014) in Fig. 9(a). It can be seen that Maxwell and 

SLS models show the same behavior while the 

Kelvin model has better agreement with 

experimental data. By considering the Kelvin 

model has the most accuracy, we compare that with 

the elastic model and experimental data in Fig. 

9(b). It is clear that viscoelastic Kelvin model not 

only gives better agreement with experimental data 

in the lower square of acoustic pressure 

amplitudes, it is also completely matched with 

experimental data in high-acoustic pressure 

amplitudes. For better comparison, the difference 

between the numerical and experimental results is 

calculated in the Root Mean Square Error (RMSE) 

method. RMSE values of the Kelvin model and 

numerical model of Mishra et al. (2014) are 0.097 

and 0.64 respectively. The difference percentage of 

the values of the present model and Mishra et al. 

(2014) are also tabulated in Table 3. 

Relaxation time: Dynamic behavior of shape 

deformation, in particular, the relaxation time is also 

notable. Figure 10, illustrates the variation of aspect 

ratio in time transition and it’s obvious, after about 

1ms, there are no significant changes in deformation.   

But it’s not for sure because we get deformation in 

FSI physics and time-dependent condition, while the 

acoustic force is obtained by the frequency domain. 

Despite this inconsistency, the result is 

approximately acceptable. The same behavior was 

reported by Baskurt and Meiselman, (1996). 

Besides, Mishra et al. (2014) observed that red blood 

cell deformation had occurred too fast to be seen by 

eye. 

Effect of frequency: We expect that by increasing 

the acoustic wave frequency, the cell deformation 

and aspect ratio increase as well. To investigate the 

effect of wave frequency on cell deformation 

magnitude, the range of 2-8 MHz considered in our 

modeling with the viscoelastic Kelvin model and 

our results are shown in Fig. 11. It can be observed 

that, as the frequency is increased, cell deformation 

increases. It must be noticed for frequencies less 

than 2 MHz, it wasn’t found any remarkable 

deformation. 
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(a) 

 
(b) 

Fig. 9(a). Aspect ratio of viscoelastic models and 

comparison with experimental results of Mishra 

et al. (2014). (b). Comparison of Kelvin model 

results with experiment and numerical aspect 

ratios of Mishra et al. (2014). It’s obvious that 

Viscoelastic Kelvin model has better agreement 

with experimental results in compared with 

Elastic model of Mishra et al. (2014). 

 

Effect of cell stiffness: The mechanical stiffness 

of the cells, has a major influence on deformation 

response. There’s a wide range of Young’s 

modulus and stiffness values for biological cells 

(Zeng et al., 2010). According to cell stiffness, the 

amount of the required acoustic pressure for 

deformation can be various. We have investigated 

the effect of Young’s modulus on cell deformation 

in Fig. 12(a). In this case, the acoustic pressure 

amplitude and the frequency are 980 kPa and 8 

MHZ, respectively. There’s a sharp drop in aspect 

ratio to the magnitude of about 1.34 at Young’s 

modulus 600 Pa. In the current study, the acoustic 

pressure amplitude and the frequency are 980 kPa 

and 8 MHZ, respectively. There’s a sharp drop in 

aspect ratio to the magnitude of about 1.34 at 

Young’s modulus 600 Pa. The stiffness of some 

biological cells, for instance, aortic endothelial 

cells or red blood cell, have been measured in this 

range of Young’s modulus (<600 pa) (Zeng et al., 

2010). It’s clear that for higher cell stiffness, 

higher pressure amplitude is needed to deform the 

cell. In order to investigate this issue, the aspect 

ratio is obtained in the normalized values of P/E 

in values from 1-2, the figure is nearly linear.  

 
Fig. 10. Variation of aspect ratio with time. 

 

 
Fig. 11. Variation of aspect ratio with frequency, 

using viscoelastic Kelvin model. 
 

   
 

  
Fig. 12(a). Cell deformation variations with 

stiffness by applying the Kelvin model and 

acoustic pressure of 980Kpa. (b). Cell 

deformation variations with the normalized 

quantity (P/E× 𝟏𝟎𝟎𝟎). 
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5. CONCLUSION 

In this paper, cell deformation is simulated by using 

a viscoelastic and elastic model while the cell is 

exposed to the bulk acoustic wave with a frequency 

of 8 MHz and an acoustic pressure amplitude of 980 

kPa. Results show that the viscoelastic model 

predicts the cell deformation in better agreement 

with experimental data relative to the elastic model. 

In the case of the red blood cell, the Kelvin model is 

more accurate in a 2D model than Maxwell and SLS 

models. In addition, our viscoelastic simulation is 

quite suitable for the other case of cell deformations 

with different types of exciting forces. We found that 

by increasing the pressure amplitude, the difference 

between the numerical and experimental values 

decreases. Percentage difference and RMSE between 

the numerical and experimental results are obtained 

and it is depicted that the Kelvin model is also 

reliable for cell deformation problems with low 

acoustic pressure amplitudes. We also investigated 

the effect of stiffness in different aspect ratios and 

found that by increasing Young’s modulus up to 600 

Pa, the aspect ratio sharply decreases. 
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