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ABSTRACT 

The objectives of the present study are to investigate the radiation effects on unsteady heat and mass transfer flow of 

a chemically reacting fluid past a semi-infinite vertical plate with viscous dissipation. The method of solution is 

applied using Finite element technique. Numerical results for the velocity, the temperature and the concentration are 

shown graphically for various flow parameters. The expressions for the skin-frication, Nusselt number and Sherwood 

number are obtained. The result shows that increased cooling (Gr>0) of the plate and the Eckert number leads to a 

rise in the velocity. Also, an increase in the Eckert number leads to an increase in the temperature, whereas increase 

in radiation lead to a decrease in the temperature distribution when the plate is being cooled. 
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NOMENCLATURE 

C - Dimensional concentration ,u v   - Velocity components in ,x y  Directions 

respectively 

pc - Specific heat at constant pressure  - Fluid thermal diffusivity 

D - Mass diffusivity 
 and   - Thermal and concentration expansion  

Coefficient 

g - Acceleration due to gravity  - Coefficient of viscosity 

rk  -  Chemical reaction parameter  - Kinematic viscosity 

T - Dimensional temperature   - The fluid density 

t -  Time 

 
 

1. INTRODUCTION 

For some industrial applications such as glass 

production and furnace design in space technology 

applications, cosmial flight aerodynamics rocket, 

propulsion systems, plasma physics which operate at 

higher temperatures, radiation effects can be significant. 

Soundalgekar and Takhar (1993) considered the 

radiative free convection flow of an optically thin grey-

gas past a semi-infinite vertical plate. Radiation effects 

on mixed convection along an isothermal vertical plate 

were studied by Hussian and Takhar (1996). Raptis and 

Perdikis (1999) have studied the effects of thermal 

radiation and free convection flow past a moving 

vertical plate.  

Chamkha et al. (2001) analyzed the effects of radiation 

on free convection flow past a semi-infinite vertical 

plate with mass transfer. Kim and Fedorov (2003) 

studied transient mixed radiative convection flow of a 

micro polar fluid past a moving, semi-infinite vertical 

porous plate. Prakash and Ogulu (2006) have 

investigated an unsteady two-dimensional flow of a 

radiating and chemically reacting fluid with time 

dependent suction.  

In many chemical engineering processes, there does 

occur the chemical reaction between a foreign mass and 

the fluid in which the plate is moving. These processes 

take place in numerous industrial applications viz., 

Polymer production, manufacturing of ceramics or 

glassware and food procession. Das et al. (1994) have 
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studied the effects of mass transfer on flow past an 

impulsively started infinite vertical plate with constant 

heat flux and chemical reaction. 

In all these investigations, the viscous dissipation is 

neglected. The viscous dissipation heat in the natural 

convective flow is important, when the flow field is of 

extreme size or at low temperature or in high 

gravitational field. Gebhar (1962) shown the 

importance of viscous dissipative heat in free 

convection flow in the case of isothermal and constant 

heat flux in the plate. Soundalgekar (1972) analyzed the 

effect of viscous dissipative heat on the two 

dimensional unsteady, free convective flow past an 

vertical porous plate when the temperature oscillates in 

time and there is constant suction at the plate. Israel 

Cookey et al [18] investigated the influence of viscous 

dissipation and radiation on unsteady MHD free 

convection flow past an infinite heated vertical plate in 

porous medium with time dependent suction. 

The objective of the present paper is to analyze the 

radiation and mass transfer effects on an unsteady two-

dimensional laminar convective boundary layer flow of 

a viscous, incompressible, chemically reacting fluid 

along a semi-infinite vertical plate with suction, by 

taking into account the effects of viscous dissipation. 

The equations of continuity, linear momentum, energy 

and diffusion, which govern the flow field are solved by 

using finite element technique. The behavior of the 

velocity, temperature, concentration has been discussed 

for variations in the governing parameters. 

2. MATHEMATICAL  ANALYSIS 

An unsteady two-dimensional laminar boundary layer 

flow of a viscous, incompressible, radiating fluid along 

a semi-infinite vertical plate in the presence of thermal 

and concentration buoyancy effects is considered, by 

taking the effect of viscous dissipation into account. 

The x -axis is taken along the vertical infinite plate in 

the upward direction and the y -axis normal to the 

plate. The level of concentration of foreign mass is 

assumed to be low, So that the Soret and Dufour effects 

are negligible. Now under Boussinesq’s approximation, 

the flow field is governed by the following equations: 
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Where ,u v   are the velocity components in ,x y   

directions respectively. t - the time,  -the fluid 

density,  - the kinematic viscosity, pc - the specific 

heat at constant pressure, g -the acceleration due to 

gravity,  and   - the thermal and concentration 

expansion coefficient respectively, T - the dimensional 

temperature, C - the dimensional concentration,   - 

the fluid thermal diffusivity,  - coefficient of viscosity, 

D - the mass diffusivity, rk  - the chemical reaction 

parameter.  

The boundary conditions for the velocity, temperature 

and concentration fields are 
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Where 0U  is the scale of free stream velocity, 
wT  and 

wC  are the wall dimensional temperature and 

concentration respectively, T  and C  are the free 

stream dimensional temperature and concentration 

respectively, n - the constant. 

By using Rosseland approximation, the radiative heat 

flux is given by 
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Where s  - the Stefan-Boltzmann constant and eK - 

the mean absorption coefficient. It should be noted that 

by using Rosseland approximation, the present analysis 

is limited to optically thick fluids. If temperature 

differences within the flow are sufficiently small, then 

Eq. (6) can be linearised by expanding 4T  in the Taylor 

series about T  and neglecting higher order terms, we 

obtain 

4 3 44 3T T T T    (7) 

In view of Eq. (6) and Eq. (7), Eq. (3) reduces to  
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From the continuity Eq. (1), it is clear that suction 

velocity normal to the plate is either a constant or 

function of time. Hence, it is assumed in the form 

 0 1 n tv V Ae
      (9) 

Where A is a real positive constant, ε and εA are small 

values less than unity and V0 is scale of suction 

velocity at the plate surface. 
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In order to write the governing equations and the 

boundary condition in dimension less form, the 

following non- dimensional quantities are introduced. 
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In view of the Eqs. (6) - (10), Eqs. (2) - (4) reduce to 

the following dimensionless form.  
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where , , Pr, , ,Gr Gm R Ec Sc  and rk  are the thermal 

Grashof number , Modified Grashof number, Prandtl 

number, Radiation parameter, Eckert number, Schmidt 

number and Chemical reaction parameter respectively. 

The corresponding boundary conditions are 
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3. SOLUTION OF THE PROBLEM 

The Galerkin equation for the differential Eq. (11) 

becomes  
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Where 1 ntP Ae  , R Gr Gm   . 

Let the linear piecewise approximation solution  
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Neglecting the first term in Eq. (16) we get 
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After integrating term by term in the interval yj  to  yk 
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Where   ( )e
k jl y y h    and dot denotes the 

differentiation with respect to t . 

We write the element equations for the elements  

1i iy y y    and 1ii iy y y   assemble three element 

equations, we obtain 
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Now, equate row corresponding to the node i to zero, 

From Eq. (16a) the difference schemes is 

2 1 1 1 1( )( )

2

1 11 1

1
2

2

1
4

6 6

i i i i iee

i i ii i i

P
u u u u u

ll

M
u u u u u u R

   

 

  

           

 
          

  

 



V.S. Rao et al. / JAFM, Vol. 6, No. 3, pp. 321-329, 2013.  

 

324 

 

Applying Crank-Nicholson method to the above 

equation, then we get 
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 and ,h k are the mesh 

sizes along y  direction and time t direction 

respectively. Index i  refers to the space and j refers 

to the time. In Eqs. (17)-(19), taking i =1(1)n and using 

initial and boundary conditions (Eq. (14)), the following 

system of equations in matrix notation are obtained: 

         1(1)3i i iA X B i   (20) 

Where iA ’s are matrices of order n  and ,i iX B ’s 

column matrices having n  components. The solutions 

of above system of equations are obtained by using 

Thomas algorithm for velocity, temperature and 

concentration. Also, numerical results for these 

equations are obtained by C-program. In order to prove 

the convergence and stability of Galerkin finite element 

method, the same C-program was run with slightly 

changed values of h  and k  and no significant change 

was observed in the values of ,u   and . Hence, the 

Galerkin finite element method is stable and 

convergent.  

The skin-friction, Nusselt number and Sherwood 

number are important physical parameters for this type 

of boundary layer flow. 

 The skin-friction at the plate, which in the non-

dimensional form is given by 
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The rate of heat transfer coefficient, which in the non-

dimensional form in terms of the Nusselt number is 

given by   
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The rate of heat transfer coefficient, which in the non-

dimensional form in terms of the Sherwood number, is 

given by 

0 1

0

Re
y

x
w y

C

y
Sh x Sh

C C y

 

 

 
 

   
     

  
 

(23) 

Where  0Rex

V x


   is the local Reynolds number. 

4. RESULT AND DISCUSSION 

In the preceding sections, the problem of an unsteady 

free convective flow of a viscous, incompressible, 

radiating and dissipating fluid past a semi- infinite plate 

with chemically reacting was formulated and solved by 

finite element technique. The expressions for the 

velocity, temperature and concentration were obtained. 

To illustrate the behavior of these physical quantities, 

numeric values were computed with respect to the 

variations in the governing parameters viz., the thermal 

Grashof number Gr , Modified Grashof number Gm ,  

Eckert number Ec , radiation parameter R , Prandtl 

number Pr , Schmidt number Sc  and chemical reaction 

parameter rk .  

The temperature and the species concentration are 

coupled to the velocity via Grashof number Gr  and 

Modified Grashof number Gm as seen in Eq. (11). For 

various values of Grashof number, the velocity profiles 
u  are plotted in Fig. (1) and Fig. (2). The Grashof 

number Gr  signifies the relative effect of the thermal 

buoyancy force to the viscous hydrodynamic force in 

the boundary layer. As expected, it is observed that 

there is a rise in the velocity due to the enhancement of 

thermal buoyancy force. Also, as Gr  increases, the 

peak values of the velocity increases rapidly near the 

porous plate and then decays smoothly to the free 

stream velocity. The Modified Grashof number 

Gm defines the ratio of the species buoyancy force to 

the viscous hydrodynamic force. As expected, the fluid 

velocity increases and the peak value is more distinctive 

due to increase in the species buoyancy force. The 

velocity distribution attains a distinctive maximum 

value in the vicinity of the plate and then decreases 

properly to approach the free stream value. It is noticed 
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that the velocity increases with increasing values of 

Modified Grashof number (Gm). 

Fig. 1. Velocity profiles for different values of Gr 

 

Fig. 2. Velocity profiles for different values of Gm 

 

The Grashof number Gr  signifies the relative effect of 

the thermal buoyancy force to the viscous 

hydrodynamic force  

Fig. 3(a) and Fig. 3(b) show the velocity and 

temperature profiles for different values of the 

Radiation parameter R , it can be seen that an increase 

in the thermal radiation parameter produces significant 

increases in the thermal condition of the fluid and its 

thermal boundary layer. Through the buoyancy effect 

this increase in the fluid temperature induces more flow 

in the boundary layer causing the velocity of fluid there 

to increase. In addition the hydrodynamic boundary 

layer thickness increases as a result of increasing R . 

Further it is observed that the time required to reach the 

steady state increases with the increase in R . 

Fig. 3(a). Velocity profiles for different values of R 

 

Fig. 3(b). Temperature profiles for different values of R 

 

The effects of the viscous dissipation parameter i.e., 

Eckert number on the velocity and temperature are 

shown in Fig.4 (a) and Fig.4 (b) respectively. The 

Eckert number (Ec) expresses the relationship between 

the kinetic energy in the flow and the enthalpy. It 

embodies the conversion of kinetic energy into internal 

energy by work done against the viscous fluid stresses. 

Greater viscous dissipative heat causes a rise in the 

temperature as well as the velocity. This behavior is 

evident from Fig. 4(a) and Fig.4 (b). 
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Fig. 4(a). Velocity profiles for different values of Ec 

 

Fig. 4(b). Temperature profiles for different values of 

Ec 

 

The effect of the Prandtl number on the velocity and 

temperature are shown in Fig 5(a) and Fig 5(b). As the 

Prandtl number increases, the velocity and temperature 

decreases. The values of the Prandtl number are chosen 

for Mercury (Pr = 0.025), air (Pr = 0.71), electrolytic 

solution (Pr = 1.0), water (Pr = 7.0) and water at 4oC 

(Pr = 11.40). In Fig 5(b) we depict the effect of Prandtl 

number (Pr) on the temperature field. It is observed that 

an increase in the Prandtl number leads to decrease in 

the temperature field. Also, temperature field falls more 

rapidly for water in comparison to air and the 

temperature curve is exactly linear for mercury, which 

is more sensible towards change in temperature. From 

this observation, it is concluded that mercury is most 

effective for maintaining temperature differences and 

can be used efficiently in the laboratory. Air can replace 

mercury, the effectiveness of maintaining temperature 

changes are much less than mercury. However, air can 

be better and cheap replacement for industrial purpose. 

This is because, either increase of kinematic viscosity 

or decrease of thermal conductivity leads to increase in 

the value of Prandtl number (Pr). Hence temperature 

decreases with increasing of Prandtl number (Pr).  

For various values of the magnetic parameter M the 

velocity profiles are plotted in Fig 5(c). The influence 

of the magnetic parameter M on the velocity profiles is 

an expected. As M increase the Lorentz force which 

oppose the flow also increases and leads to enhanced 

deceleration of the flow this result qualitatively agrees 

with the expectations, since the magnetic field exact a 

retarding force on the free convective flow the obvious 

from the decrease in the velocity profiles in Fig 5(c). 

The effect of the Schmidt number on the velocity and 

concentration are shown in Fig 6(a) and Fig 6(b). To 

focus out attention on numerical values of the results 

obtained in the study the values of Sc are chosen for the 

gases representing diffusing chemical species of most 

common interest in air namely Hydrogen (Sc = 0.22), 

Water-vapour (Sc = 0.60), Oxygen (Sc = 0.66), 

Ammonia (Sc = 0.78), Methanol (Sc = 1.00) and 

Propyl-benzene (Sc = 2.62) at 20oC and one 

atmospheric pressure. As the Schmidt number 

increases, the velocity and concentration decreases. 

This causes the concentration buoyancy effects to 

decrease yielding a reduction in the fluid velocity. 

Reductions in the velocity and concentration 

distributions are accompanied by simultaneous 

reductions in the velocity and concentration boundary 

layers.  

Fig. 6(b) shows the concentration field due to variation 

in Schmidt number ( )Sc  for the gasses Hydrogen, 

Water – vapour, Oxygen, Ammonia and Methanol. It is 

observed that concentration field is steady for Hydrogen 

and falls rapidly for Oxygen and Ammonia in 

comparison to Water – vapour. Thus, Hydrogen can be 

used for maintaining effective concentration field and 

Water – vapour can be used for maintaining normal 

concentration field. 

Fig. 7(a) and Fig.7 (b) illustrate the behavior of velocity 

and concentration for different values of chemical 

reaction parameter rk . It is observed that an increase 

in chemical reaction parameter leads to a decrease in 

both the values of velocity and concentration.  

Fig. 5(a). Velocity profiles for different values of Pr 
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Fig. 5(b). Temperature profiles for different values of Pr 
 

 
Fig. 5(c). Velocity profiles for different values of M 

 

Fig. 6(a). Velocity profiles for different values of Sc 

Fig. 6(b). Concentration profile for different values of 

Sc 

Fig. 7(a). Velocity profiles for different values of Kr 

 

Fig. 7(b). Concentration profiles for different values of 

Kr 
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Table 1-5 present the effects of the thermal Grashof 

number, Modified Grashof number, Radiation 

parameter, Schmidt number and Eckert number on the 

skin-frication coefficient, Nusselt number and 

Sherwood number. From Table 1 and Table 2, it is 

observed that as Gr  or Gm  increases, the skin –

friction coefficient increases. However, from Table 3, it 

can be seen that as the radiation parameter increases, 

the skin-friction coefficient increases and Nusselt 

number decreases. From Table 4, it is noticed that an 

increase in the Schmidt number reduces the skin-

friction coefficient and increases the Sherwood number. 

Finally, it is observed from Table 5 that as Eckert 

number increases, the skin-friction coefficient increases 

and the Nusselt number decreases. 

Table 1 Effect of Gr  on fC Reference values as in 

Fig.1. 

Gr  fC  

0.0 

1.0 

2.0 

3.0 

0.8343 

1.6445 

2.4548 

3.2652 

 

Table 2 Effect of Gm  on fC Reference values as in 

Fig.1.  

Gm  fC  

0.0 

1.0 

2.0 

3.0 

1.0816 

1.7682 

2.4548 

3.1414 

 

Table 3 Effect of R  on fC and Nu Reference values 

as in Fig.3 (a) 

R  fC  Nu  

0.0 

0.5 

1.0 

2.0 

2.1664 

2.4548 

2.6536 

2.9037 

0.8365 

0.6139 

0.5032 

0.4010 

 

Table 4 Effect of Sc  on fC and Sh Reference 

values as in Fig.3 (a) 

Sc  fC  Sh  

0.22 

0.60 

0.78 

0.94 

3.1068 

2.4548 

2.2767 

2.1540 

0.4515 

0.8431 

1.0214 

1.1745 

Table 5  Effect of Ec on Cf and Nu Reference values as 

in Fig.3 (a) 

Ec Cf Nu 

0.0 

0.25 

0.50 

0.75 

2.4546 

2.5010 

2.5489 

2.5985 

0.6143 

0.5130 

0.4039 

0.2863 

5. CONCLUSIONS 

We have formulated the problem of two-dimensional 

fluid flow in the presence of radiative heat transfer, 

viscous dissipation and chemical reaction.  A finite 

element technique is employed to solve the resulting 

coupled partial differential equations. The following 

conclusions are drawn from the study. 

1. The velocity increases with the increase in 

thermal Grashof number and Modified Grashof 

number. 

2. An increase in the Eckert number increases the 

velocity and temperature. 

3. An increase in the Prandtl number decreases the 

velocity and temperature. 

4. An increase in the radiation parameter leads to 

increase in the velocity and temperature. 

5. The velocity as well as concentration decreases 

with an increase in the Schmidt number. 

6. The velocity as well as concentration decreases 

with an increase in the chemical reaction 

parameter. 
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