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ABSTRACT 

This paper concerns with the boundary layer flow and heat transfer over a permeable stretching/shrinking sheet in 

a viscous fluid, with the bottom surface of the plate is heated by convection from a hot fluid. The partial 

differential equations governing the flow and heat transfer are converted into ordinary differential equations using 

a similarity transformation, before being solved numerically. The effects of the suction, convection and 

stretching/shrinking parameters on the skin friction coefficient and the local Nusselt number are examined and 

graphically illustrated. Dual solutions are found to exist for a certain range of the suction and stretching/shrinking 

parameters. The numerical results also show that suction widens the range of the stretching/shrinking parameter 

for which the solution exists. 

 

Keywords: Boundary layer; Stretching/shrinking sheet; Permeable surface; Convective boundary condition; Fluid 

Mechanics. 

NOMENCLATURE

 a, b constants 
wV  mass flux velocity 

fC  skin friction coefficient ,x y  Cartesian coordinates along the surface and  

f  dimensionless stream function  normal to it, respectively 

 hf heat transfer coefficient  

 k thermal conductivity   thermal diffusivity 

xNu  local Nusselt number   convection parameter 

Pr  Prandtl number   similarity variable 

Rex  local Reynolds number   dimensionless temperature 

 S suction parameter   dynamic viscosity 

T  fluid temperature   kinematic viscosity 

wT  surface temperature   fluid density 

T  ambient temperature   stretching/shrinking velocity 

,u v  velocity components along the x and y   
w  surface shear stress 

 directions, respectively   stream function 

wU  stretching/shrinking velocity  
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1. INTRODUCTION 

The flow and heat transfer over a stretching surface 

has many applications in manufacturing processes 

such as the aerodynamic extrusion of plastic sheets, 

glass and fiber production, manufacture of foods and 

polymer extrusion. Crane (1970) initiated the study of 

two-dimensional flow over a stretching surface in a 

quiescent fluid. The three-dimensional case was 

considered by Wang (1984). Thereafter, a number of 

investigations on this problem have been continued 

by many researchers who incorporated different 

physical conditions (see for example Lok et al. 2011; 

Yacob et al. 2011; Ishak et al. 2011; Bachok et al. 

2012; Mahapatra and Nandy 2013; Malvandi et al. 

2014; Sharma et al. 2014; Shit and Majee 2014). 

In recent years, the investigation of the flow and heat 

transfer under a convective boundary condition has 

become a new interest. The use of the convective 

boundary condition is more general and realistic with 

respect to several engineering and industrial processes 

like the transpiration cooling process, material drying, 

etc. (Makinde and Aziz 2010). Usually, the boundary 

condition applied in the modelling of boundary layer 

flow and heat transfer is either prescribed surface 

temperature or prescribed surface heat flux. In the 

present paper, we consider the situation when the 

bottom surface of the plate is heated by convection 

from a hot fluid. This results in the heat transfer rate 

through the surface being proportional to the local 

difference in the temperature with the ambient 

conditions. This type of boundary condition was 

applied quit recently by Aziz (2009), Bataller (2008), 

Ishak (2010), Makinde and Aziz (2011) and Abu 

Bakar et al. (2012), among others. They reported that 

similarity solution exists if the convective heat 

transfer associated with the hot fluid on the lower 

surface of the plate is proportional to 
1/ 2x

 where x is 

the distance from the leading edge of the solid 

surface. 

Different from Aziz (2009), who considered the 

problem of laminar thermal boundary layer flow over 

a flat plate with a convective surface boundary 

condition, in the present paper we investigate the 

boundary layer flow and heat transfer over a 

stretching/shrinking sheet with the same surface 

heating condition, and show that dual solutions exist 

for both stretching and shrinking cases. 

2. MATHEMATICAL FORMATION 

Consider a steady two-dimensional laminar boundary 

layer flow over a permeable stretching/shrinking sheet 

of temperature wT  immersed in quiescent viscous 

fluid as shown in Fig. 1. It is assumed that the sheet 

moves with a linear velocity wU ax  and the mass 

transfer velocity at the surface of the 

stretching/shrinking sheet is wv V , where a  is a 

positive constant. It is also assumed that the bottom 

surface of the solid surface is heated by convection 

from a hot fluid of temperature fT T bx  , which 

provides a heat transfer coefficient fh  and b  is a 

positive constant. The boundary layer equations 

describing the flow problem are as follows (Bejan, 

2004). 

 
(a) Stretching case ( 0  ) 

 

 
(b) Shrinking case ( 0  ) 

Fig. 1. Physical model and coordinate system. 
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where u and v are velocity components in the x (along 

the stretching/shrinking sheet) and y (normal to the 

stretching/shrinking sheet) directions, respectively,   

is the kinematic viscosity, T  is the temperature and 

  is the thermal diffusivity of the fluid. 

The boundary conditions are (Aziz, 2009) 

, , ( )w w f f

T
u U v V k h T T

y
 


    


 at 0y   

,u T T   as y       (4) 

where   is the stretching/shrinking parameter with 

0   for stretching and 0   for shrinking and k is 

the thermal conductivity. 
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We seek for a similarity solution of Eqs.(1)-(3) 

subject to the boundary conditions (4) by introducing 

the following transformation (Aziz, 2009; Ishak, 

2010) 

 

1/2

1/2

, ( ) ,

( )

w

f

w

U T T
y

x T T

xU f

  


  





 
  

 



    (5) 

where ( )f   and ( )   are the dimensionless velocity 

and temperature,   is the stream function defined as 

/u y    and /v x    which identically 

satisfies Eq. (1). Using (5), we get 

( ), ( )u axf v a f          (6) 

where prime denotes differentiation with respect to 

 . From Eq. (6), the mass flux velocity can be 

defined as wV a S  , where S is a constant. 

Substituting (5) into Eqs.(2) and (3), we obtain the 

following system of nonlinear ordinary differential 

equations 

2 0f f f f          (7) 

1
0

Pr
f f             (8) 

The transformed boundary conditions (4) can be 

written as 

(0) , (0) , (0) 1 (0)f S f              

( ) 0, ( ) 0f       as        (9) 

where (0) 0S f   is the suction parameter, Pr is the 

Prandtl number and   is the convection parameter 

(Biot number), which are defined as 

Pr ,
fh

k a

 



      (10) 

The quantities of physical interest in the present study 

are the skin friction coefficient fC  and the local 

Nusselt number xNu  which are defined as 

2
,

( )

w w
f w

w w

xq
C q

U k T T



 

 


   (11) 

Here,   is the fluid density, w  and wq  are the 

surface shear stress  and the surface heat flux,  

respectively, which are given by 

0 0

,w w

y y

u T
q k

y y
 

 

    
     

    
   (12) 

where   is the dynamic viscosity. Using (5), (11) 

and (12), we get 

1/ 2 1/ 2Re (0), / Re (0)f x x xC f Nu        (13) 

where Re /x wU x   is the local Reynolds number. 

3. RESULTS AND DISCUSSION 

The nonlinear ordinary differential Eqs. (7) and (8) 

subject to the boundary conditions (9) were solved 

numerically using a shooting method with the help of 

Maple software. The description of this method can be 

found in Bhattacharyya et al. (2011), Aman and Ishak 

(2012) and Mohamed et al. (2013). The results were 

obtained for some values of the governing parameters 

involved, namely suction parameter S, 

stretching/shrinking parameter  , convection 

parameter   and Prandtl number Pr. Particular 

attention was given to the effect of the suction 

parameter and the stretching/shrinking parameter on 

the skin friction coefficient (0)f   and the local 

Nusselt number (heat transfer rate at the surface) 

(0)   as well as the velocity and temperature 

profiles. Using the shooting method, the dual solutions 

are obtained by setting two different initial guesses for 

the values of (0)f   and (0)  , where all velocity 

and temperature profiles reach the infinity boundary 

conditions (9) asymptotically but with different shapes 

and boundary layer thicknesses. To conserve space, 

we restrict our attention to unit Prandtl number, taking 

Pr = 1. We expect our findings to be qualitatively 

similar for other values of Pr of O(1). Table 1 presents 

the values of (0)f   for different values of   when 

0S   (impermeable surface), which shows a good 

agreement with those reported by Crane (1970) and 

Ishak et al. (2006). 

Table 1 Values of (0)f   for different values of   

when 0S   (impermeable surface) 

  
Crane 

(1970) 

Ishak et 

al. (2006) 

Present 

results 

0.1   -0.031623 

0.5   -0.353553 

1 -1 -1.0000 -1.000000 

2   -2.828427 

 

Figure 2 displays the variation of the skin friction 

coefficient with the stretching/shrinking parameter   

when 1S  , while Fig. 3 shows the local Nusselt 

number for different values of   when Pr 1 . It is 

found that dual solutions exist for both stretching 

( 0  ) and shrinking ( 0  ) cases. We term these 

solutions as first and second solutions in the following 

discussion, based on how they appear in Fig. 2, i.e. the 

first solution has a higher value of (0)f   compared to 

that of the second solution. We note that the 

parameters   and Pr give no effect to the flow field, 
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which is clear from Eqs. (7)-(9). As discussed by 

Merkin (1985), Weidman et al. (2006), Paullet and 

Weidman (2007), Harris et al. (2009) and Rosca and 

Pop (2013), the first solution is stable and physically 

realizable while the second solution is not. We expect 

that the same behavior holds for the present solutions. 

 

 
Fig. 2. Variation of the skin friction coefficient 

1/ 2Ref xC  with   when 1S  . 

 

 
Fig. 3. Variation of the local Nusselt number 

1/ 2/ Rex xNu  with   for different values of   when 

1S   and Pr 1 . 

 

Figure 4 elucidates the variation of the skin friction 

coefficient as a function of the stretching/shrinking 

parameter   for different values of S, while that of 

the local Nusselt number is presented in Fig. 5, for 

1   and Pr 1 . It is seen from these figures that 

there are two solutions when c   (except at 

0  ), where c  is the critical value of   for 

which the solution exists. A unique solution is 

obtained when c   and 0  , and no solution 

exists for c  . The values of   for different 

values of S are given in Figs. 4 and 5, which show 

that increasing S is to increase the range of   for 

which the solution exists. For the first solution, which 

we expect to be the physically relevant solution, the 

skin friction coefficient increases (in absolute sense) 

as the suction parameter S increases. The values of the 

skin friction coefficient are positives for 0  , but 

are negatives for 0  . Physically, positive value 

means the fluid exerts a drag force on the solid 

surface, while negative value means the opposite. 

From Fig. 5, the local Nusselt number which 

represents the heat transfer rate at the surface increases 

as S  increases. This is due to the fact that suction 

increases the surface shear stress, and thus increases 

the skin friction coefficient, in consequence increases 

the local Nusselt number. For the second solution, the 

local Nusselt number presented in Fig. 5 suggests that 

(0)   becomes unbounded as 0    and as 

0  . 

 
Fig. 4. Variation of the skin friction coefficient 

1/ 2Ref xC  with   for different values of S. 

 

 
Fig. 5. Variation of the local Nusselt number 

1/ 2/ Rex xNu  with   for different values of S when 

1   and Pr 1 . 

Figure 6 illustrates the effects of the convection 

parameter   on the temperature profiles. It is noted 

from this figure that the temperature in the boundary 

layer increases with the increasing values of   for 

both solutions. It is seen that increasing   is to 
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increase the magnitude of the temperature gradient at 

the surface (0) . As discussed by Aziz (2009), the 

parameter   at any location x is directly proportional 

to the heat transfer coefficient associated with the hot 

fluid h. The thermal resistance on the hot fluid side is 

inversely proportional to h. Thus, the hot plate side 

convection resistance decreases as   increases and in 

turn increases the surface temperature (0) . As a 

result, the local Nusselt number increases with  , as 

shown in Fig. 3. 

 
Fig. 6. Effect of the convection parameter   on 

the temperature profiles ( )   when Pr 1, 1S   

and 0.2    (shrinking case). 

 

 
Fig. 7. Effect of the suction parameter S on the 

velocity profiles ( )f   when Pr 1  and 0.2    

(shrinking case)  

 

Figure 7 shows the graphical representation of the 

velocity profiles for different values of S while the 

others parameters are fixed. It is noticed from Fig. 7 

that for the first solution, the fluid velocity in the 

boundary layer decreases (in absolute sense) as S 

increases. This is due to the fact that suction increases 

the surface shear stress which retards the flow, 

implying an increasing velocity gradient at the 

surface. Also, there would be a significant reduction 

in the velocity boundary layer thickness when S 

increases. Thus, the skin friction coefficient increases 

with suction at the boundary, which agrees with the 

results presented in Fig. 4. The opposite behavior is 

observed for the second solution. 

Figure 8 is drawn to see the effect of suction on the 

temperature. It is clear that the temperature decreases 

for the first solution as S increases, but the opposite 

behavior is observed for the second solution. All 

velocity and temperature profiles presented in Figs. 6-

8 satisfy the far field boundary conditions (9) 

asymptotically and hence, supporting the validity of 

the numerical results obtained. 

 
Fig. 8. Effect of the suction parameter S on the 

temperature profiles ( )    when Pr 1, 1   and 

0.2    (shrinking case). 

4. CONCLUSION 

The steady laminar boundary layer flow over a 

permeable stretching/shrinking sheet immersed in a 

viscous fluid under a convective surface boundary 

condition was numerically studied. The effects of 

suction, convection and stretching/shrinking 

parameters on the flow and the thermal fields were 

graphically illustrated and discussed. It was found that  

 dual solutions exist for a certain range of the suction 

and stretching/shrinking parameters, 

 suction widens the range of the stretching/shrinking 

parameter for which the solution exists, 

 the magnitude of the skin friction coefficient 

increases as the suction as well as the 

stretching/shrinking parameter increases, 

 the heat transfer rate at the surface increases with 

increasing values of both convection and suction 

parameters 
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